轧钢自动化_酸轧联合机组方案38页-BD
合集下载
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
液压辊缝控制(RGC)
辊缝标定
辊缝标定的目的就在于找到各侧的零辊缝位置辊缝计算,为 辊缝计算提供参考点;酸轧机组中的机架标定分为有无带钢 标定和有带钢标定两种;
无带钢标定
有带钢标定
2020/12/12
液压辊缝控制(RGC)
机架安全
辊缝锁定
急停按钮; “机架锁定”按钮; 辊缝倾斜(轧制力差)超限; 检测元件(SONY磁尺,压力传感器)故障 伺服阀(泄漏检测,阀芯反馈等)故障;
主要内容
概述:检测及执行单元等; 控制模式 :辊缝控制,轧制力控制; 控制技术 :伺服阀特性补偿,泄漏检测等; 辊缝标定 ; 机架安全 ;
2020/12/12
液压辊缝控制(RGC)
概述
液压辊缝控制功能(HGC)主 要实现机架的辊缝或轧制力控制,以 及倾斜控制或轧制力差控制。
每个机架安装有两个液压推上
RGC5
RGC4
RGC3
RGC2
MFC
FF2
FB1
FF1
RGC1
6#张力辊
FB5S
VC5
VC4
VC3
VC2
VC1
2020/12/12
测厚仪 激光测速仪 带钢张力计
Mon
ITC: 中间机架张力控制 FB : 反馈控制 FF: 前馈控制 Mon:监控控制
RGC: 辊缝控制 MFC :秒流量控制 VC: 速度控制
Actual FR OS
Actual Diff. FR
FR Setpoint OS
Ramp
FR Control OS
Indi./Avg. Gap Ctrl Gap/FR Ctrl
Indi./Avg. Gap Ctrl
Gap/FR Ctrl
Indi./Total FR Ctrl
Indi./Total FR Ctrl
Actual FR
FR Setpoint 2
Diff.FR Setpoint 2
FR Setpoint DS
Ramp
Ramp Ramp Ramp
Gap Control OS
FR Control DS FR Control
Diff. FR Control
Pist Area OS Pist Pressure OS
倾斜控制-控制倾斜,用于位置模式轧制; 轧制力差控制-控制轧制力差,用于轧制力模式轧制;
模式切换
保证切换的互斥性; 通过赋值当前值+斜坡函数实现辊缝控制和轧制力控制之间的无
冲击切换!!
2020/12/12
K SV
PS 2P
液压辊缝控制(RGC)
伺服阀特性补偿
伺服阀的流量与其入口、出口间压力差的平方根成正比,使得伺 服阀在控制系统表现为一个非线性环节,并导致整个伺服系统响 应变慢。为了补偿这一非线性环节,可以通过对伺服阀输出乘以 一个可变增益来实现:
Pm
到油箱
Ps
K_op
Ps 2 (Ps Pb)
P = Ps-Pb
2020/12/12
油流动方向 移动位置
液压辊缝控制(RGC)
伺服阀泄露检测
伺服阀在长期运行后其性能将逐渐下降,泄漏(或称零漂)增加。 通过一个偏差积分单元监测伺服阀的泄漏情况,当泄漏检测值到 达一定的限幅值后,伺服阀报警,提示更换伺服阀;
2020/12/12
系统结构(外环-内环)
MFC
ITC
ITC
ITC
ITC
THFF
THFB THFF
RGC
RGC
RGC
RGC
RGC
THFB VC
VC
VC
VC
Mon
2020/12/12
VC VC
TC
内外环结构
厚度外环
AGC_Corr
Ref
S
磁尺
位置内环
伺服阀
2020/12/12
液压辊缝控制(RGC)
单独轧制力控制-轧制力模式,以各侧轧制力作为控制对象 (分别闭环控制),用于辊缝标定;
平均辊缝控制-位置模式,以平均辊缝作为控制对象,用于 位置模式轧制;
总轧制力控制-轧制力模式,以总轧制力作为控制对象,用 于轧制力模式轧制;通常应用于末机架的光整模式;
2020/12/12
液压辊缝控制
控制模式
平均辊缝即两侧辊缝的算术平均值,辊缝倾斜即传动侧辊缝减去 操作侧辊缝所得差值 (人为定义);
2020/12/12
液压辊缝控制(RGC)
轧制力控制:
实际轧制力由轧制力仪测量或者根据安装在液压油路中的压力传 感器检测信号进行计算。
使用压力传感器计算,单侧液压缸推上力=该侧液压缸活塞侧油 压*活塞侧横截面积 - 该侧液压缸杆侧油压*杆侧横截面积;
模式1:第五机架-光辊
VC TC
自动厚度控制(AGC)
系统结构
ITC3-4
ITC2-3
ITC1-2
MFC
FF2
FB1
FF1
RGC5
RGC4
RGC3
RGC2
RGC1
ITC4-5
VC5
VC4
VC3
VC2
VC1
FB4R
测厚仪 激光测速仪 带钢张力计
Mon
ITC: 中间机架张力控制 FB : 反馈控制 FF: 前馈控制 Mon: 监控控制
(压下)缸,一个在操作侧,一个在
传动侧;液压缸位置通过安装在每个
液压缸内的sony磁尺进行检测。轧制
力则通过轧制力仪或者推上缸主油路 的压力传感器进行检测。
轧制线
缸固定,活塞运动。每个活塞的 运动由液压回路的油流量确定,伺服 阀控制油流量,伺服阀线圈电流设定 来自控制器的模拟输出。
2020/12/12
开始轧制,辊缝张力模式下,采用张力极限方式,当实际张力位于 (TL1,TH1)内时,控制器不调节,当张力波动至(TL1,TH1)以 外时,控制器投入,调节张力进入(TL2,TH2)区间时,控制器被 保持。
2020/12/12
自动厚度控制(AGC)
系统结构
ITC4-5
ITC3-4
ITC2-3
ITC1-2
Ramp
Tilting Control
Actual Position OS Zero Position OS
Actual Gap OS
Pist Area DS Pist Pressure DS
Actual FR DS
Rolls Weight/2 Bending FR
Actual Tilting
Gap Setpoint OS
单侧轧制力= 该侧液压缸推上力-(下支撑辊重量+下中间辊重 量+下工作辊重量)/2 -弯辊力;液压辊缝控制-概述
总轧制力即两侧轧制力之和,轧制力差即传动侧轧制力减去操作 侧轧制力所得差值(人为定义) 。
2020/12/12
液压辊缝控制
控制模式
单独辊缝控制-位置模式,以各侧的辊缝作为控制对象(分 别闭环控制) ,用于辊缝标定及单缸调试;
酸轧联合机组 机架控制
演讲人:**
2020/12/12
主要内容
液压辊缝控制,简称为HGC( Hydraulic Gap Control),或 者RGC(Roll Gap Control)。
机架间张力控制,简称ITC( Interstand Tension Control)。 自动厚度控制,简称AGC( Automatic Gauge Control)。
到油箱
Ps
K_cl
Ps 2 (Ps Pm)
P = Ps-Pm
K_op Ps 2 Pm P = Pm
K_op
K_cl
2
0
Pb
0
25 50 75 100
Pb
主腔压力 [% Ps]
2
0
0
25 50 75 100
杆腔压力 [% Ps]
4-way
Pm
到油箱
K_cl
Ps
2 (Ps Pm)
Ps P = Ps-Pm
辊缝快开
上游发生断带; 拍下辊缝快开按钮; 轧制力超限; 液压站故障;
机架卸荷
有快开请求,同时,伺服系统(检测元件,执行元件,液压站)故障;
2020/12/12
机架间张力控制(ITC)
系统结构 速度张力模式 /辊缝张力模式
2020/12/12
机架间张力控制(ITC)
速度张力模式
穿带期间采用速度张力模式;另外对于4-5机架间张力,当末机架工 作于光整模式时,采用速度张力模式;
轧制力模式
自适应 CM
-CM/CG
f (H,h)
A dH D
FIFO
KP FF1辊缝修正
2020/12/12
FF1控制框图
自动厚度控制(AGC)-入口AGC
C1机架反馈(FB1)
反馈控制用于获得带钢所需的绝对出口厚度。
C1机架余下的带钢厚度偏差由出口测厚仪THG1进行测量,取采样段内 测量值的平均值作为实际厚度偏差(采样段长度可调,如可取出口测厚 仪与C1辊缝的距离)。厚度偏差经过一个积分控制器后作用于C1机架辊 缝,直到出口偏差为零。同样地,在调节C1辊缝的同时对C1机架前张力 辊速度进行修正,以补偿辊缝调节引起的张力波动,并保持进入C1机架 的金属秒流量恒定。
液压辊缝控制(RGC)
辊缝控制:
对于两侧辊缝,实际辊缝 = 零辊缝位置 - 实际位置。其中, “零辊缝位置”来自标辊程序,作为辊缝计算的基准点;
零辊缝位置:类似使用“增量编码器+接近开关”测量位置时的 接近开关,简单地说,即把两侧的轧制力均加载至300ton(人为 定义)时,测得的液压缸的位置。例如,加载完毕,假设两侧的 磁尺位置读数为50mm,那么此50mm即为零辊缝位置,定义此处 的辊缝为0;当液压缸下降,磁尺位置读数为40mm时,此时两侧 辊缝=50mm-40mm,即10mm;辊缝标定
其中,Ps为系统压力,△P为伺服阀入出口压力差。 由于进出油两种情况下入出口压力差不同,所以补偿增益也需要
分两种情况考虑
2020/12/12
液压辊缝控制(RGC)
伺服阀特性补偿
3-way
Pm
k_cl
3
2
1
0
0
25
50
75
100
主腔压力 [%Ps]PmK_op来自321
0
0
25
50
75
100
主腔压力 [% Ps]
速度张力模式又分为张力连续和张力极限两种方式。 张力连续指张力控制器连续调节使张力保持为恒值; 张力极限指张力控制器仅在张力超限时进行调节,当张力调回目标
区间时,控制器被保持。
辊缝张力模式
轧制期间(>36m/min)采用辊缝张力模式速度张力模式;
辊缝张力模式采用张力极限方式;
2020/12/12
机架间张力控制(ITC)
2020/12/12
机架间张力控制(ITC)
控制说明;
以1-2机架间张力控制为例:当穿带进入ST2后,1-2之间设定为穿 带张力,采用张力连续方式,使带钢保持REF恒定,防止带钢跑偏。 穿带进入ST3后,1-2间张力为设定张力,采用张力极限方式进行 控制,当实际张力位于(TMIN,TMAX)内时,控制器不调节,当 张力波动至(TMIN,TMAX)以外时,控制器投入,调节张力进入 (TL2,TH2)区间时,控制器被保持。
2020/12/12
液压辊缝控制(RGC)
Actual Position DS
Zero Position DS
Actual Gap DS
2
Actual Gap
Gap Setpoint
Gap Setpoint DS
Ramp Ramp
Gap Control DS Gap Control
2
Tilting Setpoint
RGC: 辊缝控制 MFC :秒流量控制 VC: 速度控制
模式2:第五机架-毛辊(光整模式)
VC TC
2020/12/12
自动厚度控制(AGC)-入口AGC
C1机架前馈(FF1)
前馈控制用于补偿入口来料厚度的动态偏差。入口测厚仪采样测量一段 未轧带钢的偏差(该测量段长度可调),然后跟踪该测量段至其通过C1 辊缝时,通过比例调节器输出调整C1机架辊缝,同时对C1机架前张力辊 速度进行修正,以补偿辊缝调节引起的张力波动,并保持进入C1机架的 金属秒流量恒定。
Gap/FR Ctrl
Piston Side Pressure DS
Valve Adaption DS
Hydr. Cylinder DS
Rod Side Pressure
Piston Side Pressure OS
Valve Adaption OS
Hydr. Cylinder OS
2020/12/12
液压辊缝控制(RGC)
概述
操作侧
传动侧
有杆腔
无杆腔 压力传感器
PT
下支撑辊
Sony 磁尺
Sony 磁尺
比例伺 服阀
伺服阀
伺服阀
比例伺 服阀
压力传感器 PT
卸荷阀 锁紧阀
锁紧阀
比例减 压阀
锁紧阀
锁紧阀 卸荷阀
比例伺服阀:200L/min,快速打开; 伺服阀:90L/min,精细调节;
2020/12/12
Err
Ref
参考值恒定
检查
Out Sat
2020/12/12
液压辊缝控制(RGC)
伺服输出
Ps
Pm
伺服阀流量
线性化补偿
增益选择
位置反馈 位置参考值
PID 调节器
伺服阀泄露 补偿
2020/12/12
伺服阀参考值
液压辊缝控制(RGC)
控制输出
当采用平均辊缝控制时: 传动侧输出=平均辊缝控制环输出+倾斜控制环输出; 操作侧输出=平均辊缝控制环输出-倾斜控制环输出; 当采用总轧制力控制时: 传动侧输出=总轧制力控制环输出+轧制力差控制环输出; 操作侧输出=总轧制力控制环输出-轧制力差控制环输出;