初中数学归纳总结(精选5篇)

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初中数学归纳总结(精选5篇)
1.初中数学归纳总结第1篇
解题上要抓好三个字:数、式、形;阅读、审题和表述上要实现数学的三种语言自如转化(文字语言、符号语言、图形语言)。

不要仅仅满足于答案正确,还要学会优化解题过程,追求解题质量,少费时,多办事,以赢得足够的时间思考解答高档题。

在做选择题时,尽可能小题小做,除直接法外,还要灵活运用特殊值法、排除法、检验法、数形结合法、估计法来解题。

在做解答题时,书写要简明、扼要、规范,不要“小题大做”,只要写出“得分点”即可。

2.初中数学归纳总结第2篇
数学能力的提高离不开做题,“熟能生巧”这个简单的道理大家都懂。

但做题不是搞题海战术,要通过一题联想到很多题。

你要着重研究解题的思维过程,弄清基本数学知识和基本数学思想在解题中的意义和作用,研究运用不同的思维方法解决同一数学问题的多条途径,在分析解决问题的过程中既构建知识的横向联系又养成多角度思考问题的习惯。

一节课与其抓紧时间大汗淋淋地做二、三十道考查思路重复的题,不如深入透彻地掌握一道典型题。

例如深入理解一个概念的多种内涵,对一个典型题,尽力做到从多条思路用多种方法处理,即一题多解;对具有共性的问题要努力摸索规律,即多题一解;不断改变题目的条件,从各个侧面去检验自己的知识,即一题多变。

一道题的价值不在于做对、做会,而在于你明白了这题想考你什么。

从这个角度去领悟题,不仅可以快速的找到解题的突破口,而且不容易进入出题老师设置的陷阱。

3.初中数学归纳总结第3篇
①直线和圆无公共点,称相离。

AB与圆O相离,d>r。

②直线和圆有两个公共点,称相交,这条直线叫做圆的割线。

③直线和圆有且只有一公共点,称相切,这条直线叫做圆的切线,这个唯一的公共点叫做切点。

AB与⊙O相切,d=r。

(d为圆心到直线的距离)
平面内,直线Ax+By+C=0与圆x^2+y^2+Dx+Ey+F=0的位置关系判断一般方法是:1、由Ax+By+C=0,可得y=(-C-Ax)/B,(其中B不等于0),代入
x^2+y^2+Dx+Ey+F=0,即成为一个关于x的方程
如果b^2-4ac>0,则圆与直线有2交点,即圆与直线相交。

如果b^2-4ac=0,则圆与直线有1交点,即圆与直线相切。

如果b^2-4ac<0,则圆与直线有0交点,即圆与直线相离。

2、如果B=0即直线为Ax+C=0,即x=-C/A,它平行于y轴(或垂直于x轴),将
x^2+y^2+Dx+Ey+F=0化为(x-a)^2+(y-b)^2=r^2。

令y=b,求出此时的两个x值
x1、x2,并且规定x1
当x=-C/Ax2时,直线与圆相离;
4.初中数学归纳总结第4篇
一、方程的有关概念
1.方程:含有未知数的等式就叫做方程.
2.一元一次方程:只含有一个未知数(元)x,未知数x的指数都是1(次),这样的
方程叫做一元一次方程.例如:1700+50x=1800,2(x+1.5x)=5等都是一元一次方程.
3.方程的解:使方程中等号左右两边相等的未知数的值,叫做方程的解.
注:⑴方程的解和解方程是不同的概念,方程的解实质上是求得的结果,它是一个数值(或几个数值),而解方程的含义是指求出方程的解或判断方程无解的过程.⑵方程的解的检验方法,首先把未知数的值分别代入方程的左、右两边计算它们的值,其次比较两边的值是否相等从而得出结论.
二、等式的性质
等式的性质(1):等式两边都加上(或减去)同个数(或式子),结果仍相等.
等式的性质(1)用式子形式表示为:如果a=b,那么a±c=b±c
等式的性质(2):等式两边乘同一个数,或除以同一个不为0的数,结果仍相等,等式的性质(2)用式子形式表示为:如果a=b,那么ac=bc;如果a=b(c≠0),那么ca=cb
三、移项法则:
把等式一边的某项变号后移到另一边,叫做移项.
四、去括号法则
1.括号外的因数是正数,去括号后各项的符号与原括号内相应各项的符号相同.
2.括号外的因数是负数,去括号后各项的符号与原括号内相应各项的符号改变.
五、解方程的一般步骤
1.去分母(方程两边同乘各分母的最小公倍数)
2.去括号(按去括号法则和分配律)
3.移项(把含有未知数的项移到方程一边,其他项都移到方程的另一边,移项要变号)
4.合并(把方程化成ax=b(a≠0)形式)
5.系数化为1(在方程两边都除以未知数的系数a,得到方程的解x=a(b).
六、用方程思想解决实际问题的一般步骤
1.审:审题,分析题中已知什么,求什么,明确各数量之间的关系.
2.设:设未知数(可分直接设法,间接设法)
3.列:根据题意列方程.
4.解:解出所列方程.
5.检:检验所求的解是否符合题意.
6.答:写出答案(有单位要注明答案)
5.初中数学归纳总结第5篇
1、深刻理解概念,概念是数学的基石,学习概念不仅要知其然,还要知其所以然。

2、对于每个定义、定理必须在牢记其内容的基础上知道是怎样得来的,又是运用到何处的。

3、多看一些例题,不能只看皮毛,不看内涵。

4、要把想和看结合起来,各难度层次的例题都照顾到。

5、看例题要循序渐进,这同后面的“做练习”一样,但看比做有一个显著的好处,例题有现成的解答,思路清晰,只需循着思路走,就会得出结论,所以可以看一些技巧性较强、难度较大的例题。

相关文档
最新文档