《方程的意义》教案

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《方程的意义》教案
《方程的意义》教案(精选18篇)
作为一名辛苦耕耘的教育工作者,时常会需要准备好教案,教案是保证教学取得成功、提高教学质量的基本条件。

那么问题来了,教案应该怎么写?以下是店铺收集整理的《方程的意义》教案,欢迎阅读,希望大家能够喜欢。

《方程的意义》教案篇1
教学目标:
1、使学生初步认识方程的意义,知道等式和方程之间的关系,并能进行辨析。

2、使学生会用方程表示简单情境中的等量关系,培养学生的动手操作能力、观察能力、分析能力和解决实际问题的能力。

教学重点:方程的意义。

教学难点:正确区分等式和方程这组概念。

教学准备:简易天平、法码、水笔、橡皮泥、纸条、白纸、磁铁。

教学过程:
一、课前谈话:
同学们,你们平时喜欢干什么?你们喜欢玩吗?喜欢的请举手?
这么多人喜欢玩,老师想问这么多同学中有人玩过玩过跷跷板吗?玩过的请举手,谁来说说玩跷跷板时是怎样的情景?(学生自由回答)当两边的距离相等,重的一边会把轻的一边跷起来,两边的重量相等,跷跷板就平衡。

二、新授
1、玩一玩
利用这种现象,科学家们设计出了天平,老师也自己做了一个简易的天平。

我们用它来玩一个类似于跷跷板的游戏。

好不好?
谁想上来玩?
请你在左边放一个20克的法码,右边放一个50克的法码,这时天平怎么样?(右边的把左边的跷起来了),在左边再放一个20克的
法码,这时天平怎么样?(右边的把左边的跷起来了,说明右边的重量比左边的重),你能用一个数学式子来表示这时候的现象吗?(用水笔板书:20+20<50)
再在左边放一个10克的法码,这时天平怎么样?(平衡了)
你能也用一个式子来表示这时候的现象吗?(板书:20×20+10=50。

学生说加法,则说两个20相加还可用。

看来我们还可以用式子来表示天平的平衡情况,你们想不想亲自来玩一玩?
老师为你们每一个学习小组也准备了一架简易天平,还有一些法码,以及两块橡皮泥,大家可以利用这些工具,或者利用你们身边一些比较轻的物体,如橡皮、小刀等,来玩一玩,然后把你们玩的时候看到的现象用式子表示出来,好不好?
给你们5分钟的时间,比一比哪个小组又快又好。

哪个小组把自己所写的式子拿上来展示出来。

(有不一样的都可以拿上来)
2、分类
你们对这些式子满意吗?
大家写出了这么多的式子,你能把这些式子按照一个统一的标准分类吗?小组讨论怎么分?按照什么样的标准分?
谁来说说你们是按照什么标准分的?
1、如果学生中有“是否含有未知数”(板书:含有未知数)“是否是等式”(板书:等式)这两类的指名上黑板分,其余的口头交流。

2、把学生写的式子分成两堆,让学生分。

师:按照不同的标准,有不同的结果。

这一种分法,我们得到的这几个式子是什么式子?这一种分法,
师:你能把这一种再分成两类吗?怎么分?指名板演。

你们发现了这一类式子有什么特点?(揭示:含有未知数的等式)象这样,含有未知数的等式我们把它叫做方程。

这也是我们今天这堂课要学习的内容。

出示课题。

3、理解概念
练习:你能举一个方程的例子吗?学生在本子上写一个。

回忆一下,我们以前见过方程吗,在哪见过?(学生展示交流)
4、巩固概念
老师这儿也有几个式子,它们是方程吗?(用手势表示,随机让学生说说为什么)
通过这几道题的练习,你对方程有了哪些新的认识?
(1)未知数不一定用X表示。

(2)未知数不一定只有一个。

一个方程,必须具备哪些条件?
5、比较辨析
师:含有未知数的等式叫方程,那么方程和等式有什么关系呢?
如果老师说,方程一定是等式。

对吗?(结合板书交流)
等式也一定是方程。

(结合板书交流)
也就是说:方程一定是(等式),但等式[不一定是(方程)]。

你能用自己的方式来表示方等式和方程之间的关系吗?
例如画图或者别的方式,小组合作,试一试。

(用水笔画在白纸上,字要写得大些)
三、巩固
师:同学们的图非常形象地表示出了方程和等式之间的关系,
1、这些图你能用方程来表示吗?
2、看来同学们对今天学的知识掌握得不错,用方程还可以表示生活中的一些数量之间的关系?
如:我班一共有多少人,男生有多少人?如果把女生的人数看成X,你会用方程来表示男女生人数与全班人数之间的关系吗?
师:这里还有一些有关我们学校的信息,谁来读一读。

3、新的谢桥中心小学,是苏州市内占地面积最大的小学之一。

建筑面积约25000平方米,3幢教学楼的建筑面积一共约为19500平方米,平均每幢为c平方米,其它建筑面积为m平方米。

你能选择其中一些信息列出方程来吗?(同桌交流)
四、小结
学了这堂课你有什么想说的吗?你有什么想对老师说的吗?《方程的意义》教案篇2
教学内容:方程的意义和解简易方程(教材第105一107页,练习二十六)。

教学要求:
1.使学生理解和掌握等式及方程、方程的解和解方程的意义,以及等式与方程,方程的解与解方程之间的联系和区别。

2.使学生理解并掌握解方程的依据、步骤和书写格式,培养良好的解题习惯。

教具:
教学天平、小黑板。

学具:
自制的简易天平、定量方块。

教学步骤:
一、复习
1.根据加法与减法,乘法与除法的关系说出求下面各数的方法。

(1)一个加数=()○()
(2)被减数=()○()
(3)减数=()○()
(4)一个因数=()○()
(5)被除数=()○()
(6)除数=()○()
2.求未知数X(并说说求下面各题X的依据)。

(1)20十X=100 (2)3X=69
(3)17—X=0.6 (4)x÷5=1.5
二、新授
1.理解和掌握“方程的意义”。

(1)出示天平,介绍使用方法(演示)后,设问:
在天平两边放物体,在什么情况下才能使天平保持平衡?
(两边的物体同样重时,天平才能保持平衡。


(2)演示:在左边放两个重物各20克和30克,右边砝码也是50克,让学生观察,天平是平衡的。

说明了什么?怎样用式子表示?
板书:20十30=50
指出:表示左右两边相等的式子叫等式。

(并板书)等式:表示等号两边两个式子的相等关系,即等式是表示相等关系的式子。

(3)教学例2(课本105页)。

①教师继续演示,调整,在左盘放一20克的重物和一个未知重量的方块,右盘里放一个100克重的砖码。

(如教材105页第二幅图)让学生观察天平是否平衡(指针正好指在刻度线中央,天平是平衡的),那么也就说明了这个天平左右两边的物体的重量相等。

怎样用等式表示出来呢?
板书:20+?=100
②等式“20+?=100”中的?是未知数,通常我们用“X”来表示,那么上面的等式可写成(板书)20十X=100
③比较:等式“20+X=100”与等式“20+30=50”有什么不同?(含有未知数)教师指出,“20+X=100”是含有未知数的等式。

④想一想:X等于多少,才能使等式“20+X=100”左右两边相等?(未知方块重80克时才能使天平两边的重量相等,即X=30)(4)教学例3(课本106页)。

出示教材第106页上面的例图的放大图,并根据图意写出等式。

设问:
①图中每个篮球的价钱是X元,3个篮球的总价是多少元?(3x)
②依图示(看图)表明3个篮球的总价(3x)是多少元?(234元)它们之间的关系可以用一个怎样的等式表示出来?
(板书)3X=234
③这个等式有什么特点?(含有未知数)当X等于多少时,这个等式等号左右两边正好相等?(X=78)
(5)方程的意义:
综合观察以上三个等式,想一想,它们之间有什么联系,有什么
区别:
20+30=50……一般的等式
20+X=200 含有未知数的等式
3X=234 称之为方程
(板书)像20+x=100 3X=234 X—10=35 X÷12=5等,含有未知数的等式叫做方程。

①根据方程的含义,方程应该具备哪些条件,(一要是等式,二要含有未知数,二者缺一不可。


②方程与等式之间是什么关系?(是方程就一定是等式,但是等式不一定是方程,也就是说方程是等式的一部分。


(6)练一练(指名学生判断,并说明理由)教材第106页“做一做”。

2.学习“解简易方程”。

(i)理解和掌握方程的解和解方程的含义。

设问:①看教材第107页,什么叫做方程的解?什么叫解方程?
(板书)使方程左右两边相等的未知数的值,叫做方程的解。

例如:X=80是方程20+X=100的解;
X=78是方程3X=234的解。

(板书)求方程的解的过程叫做解方程。

②方程的解和解方程有什么联系和区别?
方程的解是指未知数的值等于多少时能使等式左右两边相等;而解方程是指求出这个未知数的值的过程。

因此方程的解是解方程过程中的一部分。

它们既有联系,又有区别。

(2)教学例1:
解方程X一8=16
①教师指出:我们以前做过一些求未知数X的题目,实际上就是解方程,以前怎么解,现在仍然怎么解,只是在格式要求方面增加了新的内容。

②引导学生说出自己的推想过程:题中的未知数X相当于什么数?(被减数)怎么求被减数?(减数十差)
(板书)解方程X一8=16
解::根据被减数等于减数加差;
X=16十8(与原来学过的求X的思路相同)
X=24
检验:把X=24代人原方程
左边=24一8=16,右边=16
左边=右边
所以X=24是原方程的解。

总结有关的格式要求:
①做题时要先写上“解”字。

②各行的等号要对齐,并且不能连等。

③方框里的运算根据可以不写。

④验算以“检验”的形式出示,有固定的格式。

解方程时,除了要求写检验以外,都要口算进行检验,防止走过场。

指导学生看教材第105一107页。

三、巩固
1.教材107页“做一做”。

2,教材第108页练习二十六第1、2题。

四、练习
教材第108页,练习二十六第3~5题。

作业辅导
1.判断题。

(1)含有未知数的式子叫方程。

()
(2)方程是等式,所以等式也叫方程。

()
(3)检验方程的解,应当把求得的解代人原方程。

()
(4)36是方程X÷3=12的解。

()
2.把下面的各关系式写完整。

(1)一个加数=()○()
(2)被减数=()○()
(3)减数=()○()
(4)一个因数=()○()
(5)除数=()○()
(6)被除数=()○()
3.解下列方程。

(第一行两小题要写出检验过程)
10—X=0.42 4.5X=27 X十5.8=16.4
X÷28=76 2÷X=0.5 X—8.75=4.65
板书设计:
解简易方程
例1解方程X-8=16
《方程的意义》教案篇3
教学目标:
知识与技能:
(1)初步理解方程的意义,会判断一个式子是否是方程
(2)会按要求用方程表示出数量关系
过程与方法:
经历方程的认识过程,体验观察、比较的学习方法。

情感态度与价值观:
在学习活动中,激发学生的学习兴趣,培养学生动手动脑的能力,养成仔细认真的良好学习习惯。

教学重难点
教学重点:
理解方程的含义,会用方程表示简单的情境中的等量关系。

教学难点:
正确分析题目中的数量关系
教学工具
多媒体设备
教学过程
教学过程设计
1创设情景,揭示课题。

(一)出示实物天平。

师:认识吗?它在生活中有什么作用?(称物体的重量、使得左右平衡)
(二)演示:出示三个质量分别20克、30克、50克砝码,(将未标有重量的一边朝向学生)
师:它们的重量我们还不知道,如果要分别放在两个盘上,天平会怎样呢?
(演示)学生观察后发现天平平衡(这时,将砝码标有重量的一边朝向学生)
提出要求:你能用等式表示天平两边物体的质量关系吗?(学生在本子上写,指名回答。

)
板书:方程的意义
2新知探究
(一)出示课本例题(见PPT课件)
说明:含有等号的式子叫等式,它表示等号两边的结果是相等的。

(板书:含有等号的式子叫等式)
[设计意图]:让学生在天平平衡的直观情境中体会等式,符合学生的认知特点。

让学生用等式表达天平两边物体质量的相等关系,从中体会等式的含义。

(二)引导分类,概括方程概念。

1、学生自学(见PPT课件)
要求:
(1)学生在书上独立填写,用式子表示天平两边的质量关系。

(2)小组同学交流八道算式,最后达成统一认识:
20+30=50 20+X=100 50+X=100 50+2X>100 80<2x 20="" 3x="150">100+50 100+2X>50×3 (根据学生的回答,教师板书这8道算式。

)
(3)把这8道算式分成两类,可以怎样分,先独立思考后再小组内交流,要说出理由。

A、想一想你分类的标准是什么? B、把自己分类的情况,写在纸上?
学生可能会这样分:
第一种:相等的分一类,不相等的分一类
( 20+30=50 20+X=100 50+X=100 3X=150) (50+2X>100 80<2x 20="">100+50 100+2X>50×3)
第二种:含有未知数的,不含未知数的
(20+X=100 50+X=100 50+2X>100 80<2x 3x="150" 2x="">50×3) ( 20+30=50 100+20>100+50)
2、比较辨析,概括概念
过渡:看来同学们都能按自己的标准对式子进行分类。

引导学生理解第一种分法:你为什么这样分,说说你的想法。

A、教师指着黑板说:像右边的式子就是我们今天所要学习的方程。

(板书:像X+100=250、这样xxxx的等式方程)
B、你能说说什么叫方程吗?
C、学生发言,概括出:“像20+x=100,3×=180……这样,含有未知数的等式叫做方程”
师(板书)
师提问:你觉得这句话里哪两个词比较重要?
生:“含有未知数”“等式”
师:那X+100>100、X+50<100为什么不是方程呢?
生:因为它们不是等式,
师提问:那等式和方程有什么关系呢?生小组里交流。

方程一定是等式,但等式不一定是方程。

师:ⅹ=0,ⅹ=a,ⅹ=a2是方程吗?
生:是,因为它们既含有未知数,又是等式。

3、举例方程、理解概念你能例举出方程吗?谁能举的与刚才不一样吗?(用字母Y表示、有难度的方程)
生列举:ⅹ+5=18 6(ⅹ-2)=24 6(ⅹ-2)=24 5ⅹ=30 ⅹ÷4=6 ⅹ+ⅹ+ⅹ+ⅹ=35
(ⅹ+4)÷2=3 ⅹ+y=5等。

师:同学们现在知道方程和等式有什么关系?
生:方程一定是等式,但等式不一定是方程。

师:你能用自己的方式来表示等式和方程的关系吗?
生思考汇报。

3、巩固提升
1、“试一试”
(1)观察左边的天平图,说说图中的是数量关系,列出方程。

(2)观察右边的图,弄清题意,列出方程。

2、练一练
判断下面的说法是否正确
(1)方程都是等式,但等式不一定是方程。

( √ )
(2)含有未知数的式子叫做方程。

( × )
(3)方程的解和解方程是一回事。

( × )
(4)X2不可能等于2X。

( × )
(5)10=4X-8不是方程。

( × )
(6)等式都是方程。

( × )
3、练习一
1、像100+x=250这样的(含有未知数)的(等式)称为方程
2、讨论判断:下面的式子哪些是方程,哪些不是方程?
8x=0 6x+2 4+2>10
2y÷5=10 n-5m = 15 17-8 = 9
10<3m 6x +3 = 11+2x 4+3z =10
是方程的是:8x=0 2y÷5=10 n-5m = 15 6x +3 = 11+2x 4+3z =10
不是方程的是:6x+2 4+2>10 17-8 = 9 10<3m
4、练习二
1、关系:含有未知数的等式叫方程,那么方程和等式有什么关系?你能用自己的方式来表示等式和方程的关系吗?
2、用方程表示以下实际问题中的数量关系。

(1)小红家买来一袋大米共重50千克,吃了3x千克,还剩30千克。

(3x+30=50)
(2)赵华家距离学校240米,她从家到学校走了3x分钟,每分钟
行60米。

(60 x 3x=240)
(3)小明今年x岁,爸爸40岁,它们俩相差28岁。

(28+x=40)
(4)小芳每天跑skm,她一星期跑了28km. (7s=28)
(5)一罐糖有a颗,平均分给25个小朋友,每人得3颗,正好分完。

(a÷25=3)
课后小结
本节课,我学到了什么是方程:含有未知数的等式叫做方程。

我还学到了等式和方程的关系:方程一定是等式,但等式不一定是方程。

板书
方程的意义
等式的概念:含有等号的式子叫等式
方程的概念:“含有未知数的等式叫做方程”
判断一个式子是不是方程必须满足的条件:
(1)“含有未知数”
(2)“等式”
注意:
方程一定是等式,但等式不一定是方程。

《方程的意义》教案篇4
【教材分析】方程在小学乃至初中整个学习过程中,都具有非常重要的地位。

《方程的意义》这一节内容是学习其他方程知识的基础。

本课只要求学生初步理解方程的意义,知道什么是方程,能判别一个式子是不是方程。

整个教学过程先通过天平演示引出等式和含有未知数的等式,然后对一些不同的式子通过观察.比较.分析对其进行分类,最后归纳.概括出方程的意义,培养了学生分析.比较.归纳.概括.创新等能力,为以后学习解方程和列方程解答应用题打下良好的基础【教学目标】
1.理解和掌握等式与方程的意义,明确方程与等式的关系。

2.通过自主探究.合作交流激发学生的学习兴趣,养成合作意识。

3.感受方程与生活的密切联系,发展抽象思维能力和符号感。

【教学重点】理解和掌握方程的意义。

【教学难点】弄清方程和等式的异同。

【数学思想】符号化思想,转化的思想,数形结合的思想。

一.创设情境,引出问题
教师活动
学生活动及达成目标
1.同学们,谁还记得《曹冲称象》的故事?
2.谁能简单地说一下曹冲是利用什么原理称出了大象的重量呢?
3.同学们其实在生活中有很多工具能帮我们测量出相同重量的物体。

今天就先来认识其中的一种:天平。

简单介绍《曹冲称象的故事》
能说出让大象和石头的重量相等,再称石头的重量。

达成目标:创设贴近学生实际不仅能集中学生注意力,调动学生的积极性,激发学习兴趣,也为下面出示天平做好铺垫。

二.共同探索,总结方法
教师活动
学生活动及达成目标
1.出示天平:让学生说一说对天平有哪些了解?
如果学生说得不全教师做补充:使用天平一般是左盘放物体,右盘放砝码;指针在中间说明天平平衡。

2.合作探究。

(1)在天平的右边放一个100g的砝码,怎样才能让天平平衡呢?
用算式怎样表示呢?
让学生观察式子,等号左边与右边相等,这样的式子就是一个等式。

(板书:等式)
(2)把一个杯子放在天平的左边,右边放100g的砝码,让学生观察天平说一说发现了什么。

教师质疑:如果我往杯子里倒些水,观察天平现在的情况。

师:一杯水的重量是多少,怎样表示?你有办法吗?
追问:如果用未知数x来表示水的重量,那么杯子和水一共有多重,又该怎样表示呢?
(3)再次让学生观察现在的天平(天平右边放100g砝码),发现了什么?哪边重一些呢?你们能用数学算式来表示吗?
(4)教师在右边依次加一个100g的砝码,加两个100g的砝码让学生观察,并说一说天平的情况,用数学算式怎样来表示吗?
教师让学生继续操作,怎样才能使天平平衡呢?
这说明了什么?
(一杯水的重量等于250g)
(5)你们能用数学算式来表示这天平的状况吗?
(师板书)
引导学生观察比较这三个算式有什么不同?
100+x >200
100+x<300
100+x =250
师总结:像这样两边相等的算式我们把它叫做等式。

(板书:等式)
(6)让学生比较50+50=100与100+x=250两个等式,有什么不同?
教师小结:像100+x =250这样的含有未知数的等式,称为方程。

(板书:方程)
(7)引导学生思考归纳小结:
是不是所有的等式都是方程?
是不是所有的方程都是等式?
那么,方程有哪些特点?
(8)让学生仿照课本情境图,自己试着写一些方程。

自由发言,可能会说:天平有两个托盘,中间有指针;天平一边放物品一边放砝码,物品的重量与砝码的重量相等;天平可以称量物体的质量,还可以判断两个物体的质量是否相等。

让学生自主思考.交流操作,得出:在天平的左边放2个50g的砝码就可以保持平衡。

用算式表示:50+50=100。

学生认真观察,然后会发现:现在天平平衡,说明空杯子重100g。

学生看出在空杯里加一杯水后天平不平衡了。

思考得出:一杯水的重量=水的重量十杯子的重量。

学生汇报:100+x
学生回答:天平两边不平衡,用数学算式来表示100+x >100
学生观察后分组讨论:
汇报时用式子表示:
100+x >200
100+x<300。

这时学生很容易发现这杯水的重量大于200g,小于300g。

引导学生把右边的砝码换成250 g,使天平左右两边平衡。

学生自主思考,再全班交流汇报:100+x =250
生观察后会发现:前面两个算式两边不相等,后面一个算式两边是相等的。

达成目标:通过直观演示活动,在老师引导,学生积极参与讨论.交流的过程中得出上面的式子,为下面的分类讨论环节做准备,同时培养学生观察思考.发现问题和解决问题的能力。

学生自主思考,并交流得出:第一个等式没有未知数x,第二个等式含有未知数x。

不是

达成目标:这样的设计我主要是给学生创造了一个大胆设想,敢于发现,抽象概括的机会,真正体会到自己获取知识,发现知识的成功乐趣。

三.运用方法,解决问题
教师活动
学生活动及达成目标
完成教材第63页“做一做”第1题。

完成教材第63页“做一做”第2题。

让学生说一说什么样的式子是方程,再自主判断,最后集体交流。

先说一说图意,再写方程表示数量关系。

达成目标:通过学生自主分类比较,调动了学生的主动性和能动性,让学生自己发现知识的形成过程,层层递进,达到理解方程意义和掌握方程判断方法的目的,同时培养学生对比.概括能力和发散思维。

四.反馈巩固,分层练习
教师活动
学生活动及达成目标
基础练习:66页练习十四第1.2.3题。

拓展练习:见
达成目标:孩子大部分应该能发现存在的等量关系,但可能会出现40-28=x这样的式子,应该规范孩子的写法。

五.课堂总结,提升认识
教师活动
学生活动及达成目标
这节课你运用了哪些学习方法,你有什么收获?你对自己这堂课的表现是怎么评价的?
达成目标:方程的特点:是一个等式,且含有未知数。

1.像100+x =250这样含有未知数的等式叫做方程。

2.方程有两个重要条件:一个是等式,一个是含有未知数。

3.方程一定是等式,等式不一定全都是方程。

《方程的意义》教案篇5
教学目标:
知识与技能:使学生通过活动初步理解方程的意义,知道方程与等式的关系,能正确判断方程。

过程与方法:使学生经历用方程表示简单情境中等量关系的过程,积累将现实问题数学化的经验,感受方程的方法及价值,培养学生的观察、描述、分类、抽象、概括和应用能力,发展抽象思维能力和符号感。

情感态度与价值观:让学生获得成功的体验,建立学好数学的信心,激发学习数学的兴趣。

教学方法:合作探索,小组交流、观察、分析、概括等方法
教学过程:
(一)创设情境,激发兴趣。

师:同学们,认识它吗?(出示天平)它是用来干什么的呢?然后说明天平用途和原理。

(二)观察现象,抽象概括
1.平衡现象数量关系的抽象概括。

师:我这里有2个25克的果冻,把它们放在天平的左边,右边再放一个质量为50克的砝码,天平怎么样了?
师:你能用一个数学式子表示你看到的现象吗?(生:25+25=50或25×2=50。


师:用这个简单的式子就能表示天平的这种平衡状况,那么左边表示的是什么?右边表示的又是什么?
2.不平衡到平衡现象数量关系的抽象概括
师:我这里还有一个大果冻,不知道是多少克,可以用什么来表示呢?我们把这个重X克的果冻放在天平的左边,右边放一个克的砝码,这时天平平衡吗?
师:谁能用一个数学式子来表示现在天平的这种不平衡状况?(生:X<)师:那我们怎样才能让天平平衡呢?(生:往左边盘中加砝码)我们往果冻
这边加150克砝码,观察天平平衡了吗?
师:左边盘中物体质量的可以怎样表示?(生:X+150)
师:能用一个数学式子来表示现在天平的这种不平衡状况?(生:X+150>)
师:刚才往左边盘中加的物体多了,现在我们拿掉50克,现在天平的左边怎样表示呢?
师:谁能用一个数学式子来表示现在天平的这种平衡状况?(生:X+100=)
3.不确定现象数量关系的抽象概括
师:我这里还有两瓶矿泉水,红色的有380克,蓝色的有350克,
如果将这两瓶矿泉水放到天平左右两边,天平会怎么样?
师:现在请一位同学将这瓶矿泉水喝掉一些,谁来?(请一位同学喝)
师:这瓶矿泉水被喝掉了多少克?(生:不知道)
师:可用什么来表示喝了的克数?(生:用X来表示喝了的克数,即X克)
师:这瓶矿泉水剩下的质量可以怎样表示?[生:(380-X)克]
师:如果现在把这两瓶矿泉分别放在天平的左右两边,天平会出现什么状况?(生:可能平衡,可能左轻右重,可能左重右轻,分别用380-X=350、380-X<350、380-X>350来表示)
(三)观察分类,抽象概念
1.观察分类。

师:大屏幕上出现的这些数学式子,你能按照这些数学式子的不同特征分类吗?请孩子们自己独立思考,按自己的方式进行分类。

(自主学习)
2.展示分类。

①交流分类情况,说明分类理由。

②揭示“等式”与“不等式”的概念
师:像这样的含有等号的式子,数学上称之为等式。

像这些含有不等号的式子,我们都称之为不等式。

(课件出示相应的分法。


3.抽象概念
师:请同学们仔细观察这些等式,它们有什么不同?
师:这些等式中的字母表示“未知数”,像这些“X+100=
含有未知数的等式,称之为方程。

这就是我们今天学习的内容。

(板书课题)
师:谁来说说什么是方程?(板书:含有未知数的等式叫方程)
(四)应用新知,加深理解
1.判断下列式子是不是方程。

2.创作方程。

3.问题质疑,揭示方程与等式的关系。

相关文档
最新文档