动量定理PPt
合集下载
16.2动量定理 (共40张PPT)
例7:一质量为m的小球,以初速度v0 沿水平方向射出,恰好垂直地射到一倾角为300的固定斜面上,并立即反方向弹回.已知反弹速度的大小是入射速度大小的3/4,求在碰撞中斜面对小球的冲量大小.
解:小球在碰撞斜面前做平抛运动.设刚要碰撞斜面时小球速度为v. 由题意,v 的方向与竖直线的夹角为30°,且水平分量仍为v0,如右图.
Δp
课堂练习
2、质量为m的钢球自高处落下,以速率v1碰地,竖直向上弹回,与水平地面碰撞时间极短,离地时速率为v2,在碰撞过程中,钢球动量变化为多少?
课堂练习
思考与讨论?
在前面所学的动能定理中,我们知道,动能的变化是由于力的位移积累即合外力做功的结果,那么,动量的变化又是什么原因引起的呢?
思考与讨论
动量定理解释生活现象
①△P一定,t短则F大,t长则F小;
由Ft=ΔP可知:
②t一定,F大则△P大,F小则△P小;
③F一定,t长则△P大,t短则△P小。
——缓冲装置
生活中的应用
包装用的泡沫材料
船靠岸时边缘上的废旧轮胎
生活中的应用
生活中的应用
例4.质量为m的物体放在水平地面上,在与水平面成角的拉力F作用下由静止开始运动,经时间t速度达到v,在这段时间内拉力F和重力mg冲量大小分别是 ( ) A.Ft,0 B.Ftcos, 0 C.mv, 0 D.Ft, mgt
标量
Ek= mv2/2
动能
若速度变化, 则Δp一定不为零
kg·m/s (N·S)
矢量
p=mv
动量
动量与动能有什么区别?
动量与动能间量值关系:
思考与讨论
例1.两小球的质量分别是m1和m2,且m1=2m2,当它们的动能相等时,它们的动量大小之比是 .
解:小球在碰撞斜面前做平抛运动.设刚要碰撞斜面时小球速度为v. 由题意,v 的方向与竖直线的夹角为30°,且水平分量仍为v0,如右图.
Δp
课堂练习
2、质量为m的钢球自高处落下,以速率v1碰地,竖直向上弹回,与水平地面碰撞时间极短,离地时速率为v2,在碰撞过程中,钢球动量变化为多少?
课堂练习
思考与讨论?
在前面所学的动能定理中,我们知道,动能的变化是由于力的位移积累即合外力做功的结果,那么,动量的变化又是什么原因引起的呢?
思考与讨论
动量定理解释生活现象
①△P一定,t短则F大,t长则F小;
由Ft=ΔP可知:
②t一定,F大则△P大,F小则△P小;
③F一定,t长则△P大,t短则△P小。
——缓冲装置
生活中的应用
包装用的泡沫材料
船靠岸时边缘上的废旧轮胎
生活中的应用
生活中的应用
例4.质量为m的物体放在水平地面上,在与水平面成角的拉力F作用下由静止开始运动,经时间t速度达到v,在这段时间内拉力F和重力mg冲量大小分别是 ( ) A.Ft,0 B.Ftcos, 0 C.mv, 0 D.Ft, mgt
标量
Ek= mv2/2
动能
若速度变化, 则Δp一定不为零
kg·m/s (N·S)
矢量
p=mv
动量
动量与动能有什么区别?
动量与动能间量值关系:
思考与讨论
例1.两小球的质量分别是m1和m2,且m1=2m2,当它们的动能相等时,它们的动量大小之比是 .
动量守恒定律 (共19张PPT)
B
A
总
结
F外 0
F x =0
F y =0
5、斜面B置于光滑水平面上,物体A沿 光滑斜面滑下,则AB组成的系统动量守 恒吗? 光滑
x
光滑
F外 0
F x =0
F y 0
空中爆炸
F外 0
但是F 内 ?
F x 0
F y 0
F
外
3. 成立条件
(1) 系统不受外力或所受外力的矢量和为零。
4、动量的变化P
1、表达式:
P2
P1
△P
P=P2-P1 =mv2-mv1=m(v2-v1)
2、运算:
(1)成θ角,平行四边形定则 (2)在一条直线上,确定正方向后,用正 负表示方向,就转化为代数运算
3、方向:与速度变化量的方向相同。
预 学
理解三个概念:
(请自主阅读教材P12)
1. 系统:相互作用的 两个或多个物体 组成的整体。系统可按 解决问题的需要灵活选取。
这个系统的总动量保持不变。
m11 m2 2 m11 m2 2
二、动量守恒定律成立的条件 1. 系统不受力,或者 F外合 = 0 2. F内 >> F外合
3. 若系统在某一方向上满足上述 1 或 2,则在该方向上系
统的总动量守恒。
三、应用动量守恒定律解决问题的基本步骤
定系统
判条件
2. 动量守恒定律是一个 独立的实验定律 ,它适用于目前为 止物理学研究的 一切 领域。
3. 与牛顿运动定律相比较,动量守恒定律解决问题优越性表 现在哪里? 动量守恒定律只涉及始末两个状态,与过程中力的 细节无关,往往能使问题大大简化。
课 堂 总 结
A
总
结
F外 0
F x =0
F y =0
5、斜面B置于光滑水平面上,物体A沿 光滑斜面滑下,则AB组成的系统动量守 恒吗? 光滑
x
光滑
F外 0
F x =0
F y 0
空中爆炸
F外 0
但是F 内 ?
F x 0
F y 0
F
外
3. 成立条件
(1) 系统不受外力或所受外力的矢量和为零。
4、动量的变化P
1、表达式:
P2
P1
△P
P=P2-P1 =mv2-mv1=m(v2-v1)
2、运算:
(1)成θ角,平行四边形定则 (2)在一条直线上,确定正方向后,用正 负表示方向,就转化为代数运算
3、方向:与速度变化量的方向相同。
预 学
理解三个概念:
(请自主阅读教材P12)
1. 系统:相互作用的 两个或多个物体 组成的整体。系统可按 解决问题的需要灵活选取。
这个系统的总动量保持不变。
m11 m2 2 m11 m2 2
二、动量守恒定律成立的条件 1. 系统不受力,或者 F外合 = 0 2. F内 >> F外合
3. 若系统在某一方向上满足上述 1 或 2,则在该方向上系
统的总动量守恒。
三、应用动量守恒定律解决问题的基本步骤
定系统
判条件
2. 动量守恒定律是一个 独立的实验定律 ,它适用于目前为 止物理学研究的 一切 领域。
3. 与牛顿运动定律相比较,动量守恒定律解决问题优越性表 现在哪里? 动量守恒定律只涉及始末两个状态,与过程中力的 细节无关,往往能使问题大大简化。
课 堂 总 结
1.3.1动量守恒定律课件共13张PPT
小试牛刀
2.(多选)下列四幅图所反映的物理过程中,系统动量守恒的是 ( ACD )
小试牛刀
3、如图所示的装置中,木块B与水平桌面间的接触是光滑的,子 弹A沿水平方向射入木块后留在木块内,将弹簧压缩到最短.现将
子弹、木块和弹簧合在一起作为研究对象(系统),则此系统在从子
弹开始射入木块到弹簧压缩至最短的整个过程中( B )A.动量
二、动量守恒定律
1.内容:物体在碰撞时,如果系统所受的合外力为零,则系统的 总动量保持不变
2.表达式(:1)m1v1+m2v2=m1v1′+m2v2′ 或 p=p′
(系统作用前的总动量等于作用后的总动量).
(2)Δp1=-Δp2 或 m1Δv1=-m2Δv2
(系统内一个物体的动量变化与另一物体的动量变化等大反向)
核心素养
➢ 知道什么是内力、外力,理解动量守恒的条件, 掌握动量守恒定律的内容
➢ 验证动量守恒定律 ➢ 体会将不易测量的物理量转换为易测量的物理量
的实验设计思想
温故知新
动量定理:物体所受合力的冲量等于物体动量的改变量
V0 F m
光滑
V1 F
t 表达式:F·t= mv1– mv0=Δp
由动量定理知,若物体所受合力为零,则其动量不发生改变
对于物体2,根据动量定理:F2t m2v2' m2v2
根据牛顿第三定律: F1 F2
得到: m1v1' m2v2' m1v1 m2v2 0
整理得:m1v1' m2v2' m1v1 m2v2
结论:物体在碰撞时,如果系统所受的合外力为零, 则系统的总动量保持不变,这就是动量守恒定律
和为物v1体,v22的,质碰量撞分后别,为物m体1,1m和2物,体碰2撞的前速,度物分体别1为和物v1'体,v22' 的。速度分别
动量和动量定理(共19张PPT)
解为变力在作用时间内的平均值。
②优点:不考虑中间过程,只考虑初末状态。 (与动能定理类似)
动量定理的物理实质与牛顿第二定律相同,但有时 应用起来更方便。
例 4 一个质量 m = 0.18 kg 的垒球,以ʋ0 = 25 m/s 的水平速 度飞向球棒,被球棒打击后,反向水平飞回,速度的大小变 为 ʋ = 45 m/s。设球棒与垒球的作用时间 t = 0.01 s,求球棒对 垒球的平均作用力。
瓷 器 包 装
船靠岸时边缘上的废旧轮胎
水 果 套 袋
瓦片受力大且时间短,所以破碎,蛋 受力也大,但是时间长,所以全。
做一做
动量与能量之间具有密切的关系,这种关系在粒子 的研究中更显得重要。
某实物粒于在速度不大大时的动能可以用它的速度 表示,E=½ mv2,请你导出用动量P表示动能的公式。同 样,请你导出用动能E表示动量的公式。
分析:球棒对全球的作用力是变力,力的作 用时间很短。在这个短时间内,力先是急剧 地増大,然后又急剧地减小为0。在冲击、碰 撞这类问题中,相互作用的时间很短,力的 变化都具有这个特点。
Ft=ΔP
mv'-mv=F(t'-t)
启示:要使物体的动量发生一定的变化,可以用较 大的力作用较短的时间,也可以用较小的力作用较 长的时间。
物体做平抛运动
动量方向时刻改变,大小随时间推移而增大
物体做匀速圆周运动
动量方向时刻改变,大小不变
例1: 一个质量m= 0.1 kg 的钢球,以ʋ = 6 m/s 的速度水平向右运动,碰到 一个坚硬物后被弹回,沿着同一直线以ʋ'= 6 m/s 的速度水平向左运动,如 图所示。碰撞前后钢球的动量各是多少?碰撞前后钢球的动量变化了多少?
③带入公式P'-P=I 而I=F(t'-t)
②优点:不考虑中间过程,只考虑初末状态。 (与动能定理类似)
动量定理的物理实质与牛顿第二定律相同,但有时 应用起来更方便。
例 4 一个质量 m = 0.18 kg 的垒球,以ʋ0 = 25 m/s 的水平速 度飞向球棒,被球棒打击后,反向水平飞回,速度的大小变 为 ʋ = 45 m/s。设球棒与垒球的作用时间 t = 0.01 s,求球棒对 垒球的平均作用力。
瓷 器 包 装
船靠岸时边缘上的废旧轮胎
水 果 套 袋
瓦片受力大且时间短,所以破碎,蛋 受力也大,但是时间长,所以全。
做一做
动量与能量之间具有密切的关系,这种关系在粒子 的研究中更显得重要。
某实物粒于在速度不大大时的动能可以用它的速度 表示,E=½ mv2,请你导出用动量P表示动能的公式。同 样,请你导出用动能E表示动量的公式。
分析:球棒对全球的作用力是变力,力的作 用时间很短。在这个短时间内,力先是急剧 地増大,然后又急剧地减小为0。在冲击、碰 撞这类问题中,相互作用的时间很短,力的 变化都具有这个特点。
Ft=ΔP
mv'-mv=F(t'-t)
启示:要使物体的动量发生一定的变化,可以用较 大的力作用较短的时间,也可以用较小的力作用较 长的时间。
物体做平抛运动
动量方向时刻改变,大小随时间推移而增大
物体做匀速圆周运动
动量方向时刻改变,大小不变
例1: 一个质量m= 0.1 kg 的钢球,以ʋ = 6 m/s 的速度水平向右运动,碰到 一个坚硬物后被弹回,沿着同一直线以ʋ'= 6 m/s 的速度水平向左运动,如 图所示。碰撞前后钢球的动量各是多少?碰撞前后钢球的动量变化了多少?
③带入公式P'-P=I 而I=F(t'-t)
动量守恒定律 (共30张PPT)
系统之外与系统发生相互作用的 其他物体统称为外界。
碰撞 系统Leabharlann 重力势能属于地面附近 的物体与地球组成的系统。
弹簧具有的弹性势能 属于构成它的许多小小 的物质单元(这些物质单 元之间有弹力的作用)组 成的系统。
研究炸弹的爆炸时,它的 所有碎片及产生的燃气也要作 为一个系统来。
2、内力:属于同一个系统内,它们之间的力。 系统以外的物体施加的力,叫做外力。
解得:v共=88.2m/s正值,方向不变。
解: ①以子弹木块系统为研究对象,取右为正方向。
②碰撞前子弹的动量P子=mv,木块的动量P2=0
碰撞后不粘一起,P'子=mv',P'木=Mv'木
③列表带入公式:系统初动量=系统末动量
碰撞前
碰撞后
物块1 物块2 = 物块1 物块2
mv 0
mv' Mv'木
所以:mv=mv'+Mv'木
解:动量问题只与初末状态有关。
①以第一节车厢和把剩余车厢看为整体的系统为研究
对象,取右为正方向。
②碰撞前的动量P=mv,剩余车厢的动量P余=0
碰撞后粘一起,P共=(m+15m)v共
③列表带入公式:系统初动量=系统末动量
碰撞前
碰撞后
物块1 物块2 = 物块1 物块2
mv 0
(m+15m) v共
所以:mv=(m+15m)v共
解得:v'B=7.4m/s
带数据得:5×9+4×6=5v'1+4×10 正值,方向不变。
3、质量是10g的子弹,以300m/s的速度射入质量是24g、静止在光滑水平桌面上的木 块,并留在木块中。子弹留在木块中以后,木块运动的速度是多大?如果子弹把木块 打穿,子弹穿过后的速度为100ms,这时木块的速度又是多大?
碰撞 系统Leabharlann 重力势能属于地面附近 的物体与地球组成的系统。
弹簧具有的弹性势能 属于构成它的许多小小 的物质单元(这些物质单 元之间有弹力的作用)组 成的系统。
研究炸弹的爆炸时,它的 所有碎片及产生的燃气也要作 为一个系统来。
2、内力:属于同一个系统内,它们之间的力。 系统以外的物体施加的力,叫做外力。
解得:v共=88.2m/s正值,方向不变。
解: ①以子弹木块系统为研究对象,取右为正方向。
②碰撞前子弹的动量P子=mv,木块的动量P2=0
碰撞后不粘一起,P'子=mv',P'木=Mv'木
③列表带入公式:系统初动量=系统末动量
碰撞前
碰撞后
物块1 物块2 = 物块1 物块2
mv 0
mv' Mv'木
所以:mv=mv'+Mv'木
解:动量问题只与初末状态有关。
①以第一节车厢和把剩余车厢看为整体的系统为研究
对象,取右为正方向。
②碰撞前的动量P=mv,剩余车厢的动量P余=0
碰撞后粘一起,P共=(m+15m)v共
③列表带入公式:系统初动量=系统末动量
碰撞前
碰撞后
物块1 物块2 = 物块1 物块2
mv 0
(m+15m) v共
所以:mv=(m+15m)v共
解得:v'B=7.4m/s
带数据得:5×9+4×6=5v'1+4×10 正值,方向不变。
3、质量是10g的子弹,以300m/s的速度射入质量是24g、静止在光滑水平桌面上的木 块,并留在木块中。子弹留在木块中以后,木块运动的速度是多大?如果子弹把木块 打穿,子弹穿过后的速度为100ms,这时木块的速度又是多大?
《动量定理》课件
《动量定理》PPT课件
本课程将介绍动量定理的概念、公式及其应用。
动量的定义
1 动量的定义及其形式化表达
动量是物体运动的重要属性,它定义为物体质量与速度的乘积。
2 动量的守恒定律
动量在相互作用过程中是守恒的,即系统内各物体的动量总和保持不变。
动量定理
1 动量变化与动量定理
2 动量定理的应用范围
动量定理描述了物体所受合外力的作用下 其动量的变化规律。
动量定理适用于各种物体相互作用的问题, 包括弹性碰撞和非弹性碰撞等。
弹性碰撞
1 弹性碰撞的概念
弹性碰撞是指碰撞过程中动能守恒的碰撞。
2 弹性碰撞的公式
弹性碰撞中,根据质量和速度的守恒关系,可以得到碰撞前后物体的速度变化。
3 弹性碰撞的实例分析
通过实例分析,展示弹性碰撞的具体应用和效果。
非弹性碰撞
1 非弹性碰撞的概念
非弹性碰撞是指碰撞过程中动能不守恒的碰撞。
2 非弹性碰撞的公式
非弹性碰撞中,除了动量守恒外,还需考虑能量损失的因素。
3 非弹性碰撞的实例分析
通过实例分析,展示非弹性碰撞的具体应用和效果。
总结
1 动量定理的总结
2 动量定理的应用举例
动量定理是描述物体动量变化的基本定律, 包括守恒定律和变化定律。
通过实际例子展示动量定理在不同领域的 应用,如力学、运动学等。
参考资料
1 动量定理相关的参考书籍和网站
推荐几本权威的物理教材和一些相关的学术网站供学员参考。
问题与讨论
1 Q&A环节,对于学员流
为学员们提供互动环节,让他们分享观点
回答学员在授课过程中提出的问题,加深
和对动量定理的理解。
对动量定理的理解。
本课程将介绍动量定理的概念、公式及其应用。
动量的定义
1 动量的定义及其形式化表达
动量是物体运动的重要属性,它定义为物体质量与速度的乘积。
2 动量的守恒定律
动量在相互作用过程中是守恒的,即系统内各物体的动量总和保持不变。
动量定理
1 动量变化与动量定理
2 动量定理的应用范围
动量定理描述了物体所受合外力的作用下 其动量的变化规律。
动量定理适用于各种物体相互作用的问题, 包括弹性碰撞和非弹性碰撞等。
弹性碰撞
1 弹性碰撞的概念
弹性碰撞是指碰撞过程中动能守恒的碰撞。
2 弹性碰撞的公式
弹性碰撞中,根据质量和速度的守恒关系,可以得到碰撞前后物体的速度变化。
3 弹性碰撞的实例分析
通过实例分析,展示弹性碰撞的具体应用和效果。
非弹性碰撞
1 非弹性碰撞的概念
非弹性碰撞是指碰撞过程中动能不守恒的碰撞。
2 非弹性碰撞的公式
非弹性碰撞中,除了动量守恒外,还需考虑能量损失的因素。
3 非弹性碰撞的实例分析
通过实例分析,展示非弹性碰撞的具体应用和效果。
总结
1 动量定理的总结
2 动量定理的应用举例
动量定理是描述物体动量变化的基本定律, 包括守恒定律和变化定律。
通过实际例子展示动量定理在不同领域的 应用,如力学、运动学等。
参考资料
1 动量定理相关的参考书籍和网站
推荐几本权威的物理教材和一些相关的学术网站供学员参考。
问题与讨论
1 Q&A环节,对于学员流
为学员们提供互动环节,让他们分享观点
回答学员在授课过程中提出的问题,加深
和对动量定理的理解。
对动量定理的理解。
动量定理及其应用课件
VS
量子力学中的动量定理
将动量定理应用于量子力学领域,研究其 在描述微观粒子运动和相互作用中的作用 。
动量定理在交叉学科领域的研究
工程力学中的动量定理
将动量定理应用于工程力学领域,研究其在 结构分析、振动控制等方面的应用。
生物学中的动量定理
将动量定理应用于生物学领域,探讨其在描 述生物运动、生态平衡等方面的作用。
棒球投手投球
棒球投手通过改变球的速度和角度来 控制球的轨迹。这需要运用动量定理 来预测球在空中的运动轨迹,以便投 手能够准确地将球投到目标位置。
滑雪技巧
在滑雪过程中,运动员通过改变滑行 速度和方向来控制自己的轨迹。这需 要运用动量定理来理解速度和方向变 化对滑雪轨迹的影响。
工业生产中的应用
机械加工
全。
军事科技
导弹和炮弹的制导和射击精度也 依赖于动量定理来计算和控制弹 道轨迹,提高武器的打击效果。
04 动量定理的实验验证
实验设计
01
02
03
实验目标
验证动量定理在现实生活 中的应用,探究物体在碰 撞过程中的动量变化。
实验原理
基于动量定理,当一个物 体发生碰撞时,其动量的 变化与作用力和作用时间 的乘积成正比。
对碰撞问题的解决
动量定理为解决碰撞问题提供了重要 的工具,使得科学家能够预测和解释 物体碰撞过程中的各种现象。
动量定理在现代科技领域的应用
火箭科学
火箭发动机的推进原理正是基于 动量定理,通过高速喷射物质来 获得反作用力,从而实现火箭的
升空和推进。
碰撞安全研究
汽车、飞机和其他交通工具的碰 撞安全研究依赖于动量定理来分 析碰撞过程中能量的传递和吸收 ,以改进安全设计和保护乘员安
动量和动量定理ppt课件
(1)动量和速度都是描述物体运动状态的物理量,但
它们描述的角度不同.动量是从动力学角度描述物体运动状态
的,它描述了运动物体能够产生的效果;速度是从运动学角
度描述物体运动状态的.
(2)动量和动能都是描述物体运动状态的物理量,动量是矢量,
但动能是标量,它们之间数值的关系是:
Ek
p2 ,p 2m
2mEk.
2.动量定理的应用 (1)定性分析有关现象 ①物体的动量变化量一定时,力的作用时间越短,力就越大, 反之力就越小;例如:易碎品包装箱内为防碎而放置的碎纸、 刨花、塑料泡沫等填充物. ②作用力一定时,力的作用时间越长,动量变化量越大,反 之动量变化量就越小.例如:杂耍中,铁锤猛击“气功师”身上 的石板令其碎裂,作用时间很短,铁锤对石板的冲量很小, 石板的动量几乎不变,“气功师”才不会受伤害.
故动量的变化量:Δp=p2-p1=-1.4 kg·m/s
动量的变化方向为负,说明动量变化的方向向上.
一、选择题 1.下列关于动量的说法正确的是( ) A.质量越大的物体动量一定越大 B.质量和速率都相同的物体动量一定相同 C.一个物体的加速度不变,其动量一定不变 D.一个物体所受的合外力不为零,它的动量一定改变 【解析】选D.动量的大小取决于质量和速度的乘积,质量大, 动量不一定大,A错;质量和速率都相同的物体,动量大小相 同,但是动量方向不一定相同,B错;物体的加速度不变,速 度一定变化,动量一定变化,C错;物体所受合外力不为零时, 必产生加速度,速度变化,动量一定改变,故D对.
6.如图所示,两个质量相等的物体A、B从同一高度沿倾角不 同的两光滑斜面由静止自由滑下,在到达斜面底端的过程中, 下列说法正确的是( ) A.两物体所受重力的冲量相同 B.两物体所受合外力的冲量相同 C.两物体到达斜面底端时的动量不同 D.两物体动量的变化量相同
理论力学动量定理 PPT课件
Fy
2
m2g
dpx dt
Fx
,
dpy dt
Fy
m1g m2 g
Fx MO
Fx m2e2 sint, Fy (m1 m2)g m2e2 cost
动约束力
静约束力 动约束力
Ch.11. 动量定理
例11-2 图11—3表示水流流经变 截面弯管的示意图。设流体是不可 压缩的,流动是稳定的。求管壁的 附加动约束力。
分力。
解:设附加水平动约束力如图,有
v2
F
qV
[
1 2
(v2
v2
)
v1 ]
Fx
v1
Fx qV [v2 cos (v1)], Fy 0
v2 v2 v2
因此,水柱对涡轮固定叶片作用力的水平分力为
Fx Fx qV (v2 cos v1) N
Ch.11. 动量定理
小结
1. 动量定理 质点的动量定理:
解:取物块和小球为研究对象
A v
Fx(e) 0
px p0x 0
vB v vBA, vBA l l 0 sin t
px mAvAx mBvBx mAv mB (v vBA cos)
vr
B
px (mA mB )v mBl 0 sin t cos(0 cost) 0 v mBl 0 sin t cos(0 cost) /(mA mB )
mv mv0
Fdt I
0
2. 质点系的动量定理
第k个质点:
d (mk vk
)
(F
(e) k
Fk(i) )dt
Fk( e ) dt
Fk( i ) dt
外力 内力
n
n
n
2
m2g
dpx dt
Fx
,
dpy dt
Fy
m1g m2 g
Fx MO
Fx m2e2 sint, Fy (m1 m2)g m2e2 cost
动约束力
静约束力 动约束力
Ch.11. 动量定理
例11-2 图11—3表示水流流经变 截面弯管的示意图。设流体是不可 压缩的,流动是稳定的。求管壁的 附加动约束力。
分力。
解:设附加水平动约束力如图,有
v2
F
qV
[
1 2
(v2
v2
)
v1 ]
Fx
v1
Fx qV [v2 cos (v1)], Fy 0
v2 v2 v2
因此,水柱对涡轮固定叶片作用力的水平分力为
Fx Fx qV (v2 cos v1) N
Ch.11. 动量定理
小结
1. 动量定理 质点的动量定理:
解:取物块和小球为研究对象
A v
Fx(e) 0
px p0x 0
vB v vBA, vBA l l 0 sin t
px mAvAx mBvBx mAv mB (v vBA cos)
vr
B
px (mA mB )v mBl 0 sin t cos(0 cost) 0 v mBl 0 sin t cos(0 cost) /(mA mB )
mv mv0
Fdt I
0
2. 质点系的动量定理
第k个质点:
d (mk vk
)
(F
(e) k
Fk(i) )dt
Fk( e ) dt
Fk( i ) dt
外力 内力
n
n
n
动量定理ppt课件
5
得 dp Fi(e)dt dIi(e)
或
dp dt
F (e) i
称为质点系动量定理的微分形式,即质点系动量的增量
等于作用于质点系的外力元冲量的矢量和;或质点系动 量对时间的导数等于作用于质点系的外力的矢量和.
6
在 t1~ t2 内,
动量 p1 ~ p2 有
n
p2
p1
I (e) i
称为质点系动量定理的积分形i式1 ,即在某一时间间隔内,质点
m1 m2
s)
x 由 C1 xC2 ,
得 s m2 esin
m1 m2
23
16
系统动量沿x, y轴的投影为:
px mvCx mxC 2(m1 m2 )l sin t
py mvCy myC m1l cost
系统动量的大小为:
p
p
2 x
p
2 y
l
4(m1 m2 )2 sin 2 t m12 cos2 t
17
2.质心运动定理
由
d dt
(mvC
)
n
i 1
m1 2
m2
cos
t
应用质心运动定理,解得
Fx
F
r 2
m1 2
m2
cos
t
显然,最大水平约束力为
Fmax
F
r 2 m1
2
m2
21
e 例 11-6 地面水平,光滑,已知 m1, m2 , ,初始静止,
常量.
求:电机外壳的运动.
22
解:设
xC1 a
xC2
m1(a s) m2 (a e sin
量的变化等于作用于质点的力在此段时间内的冲量.
理论力学经典课件-动量定理
动量定理
※ 几种有意义旳实际问题 ※ 动量与冲量 ※ 动量定理 ※ 质心运动定理 ※ 结论与讨论
几种有意义旳实际问题
? 地面拔河与太空拔河,谁胜谁负
几种有意义旳实际问题
偏心转子电动机
? 工作时为何会左
右运动; 这种运动有什么
规律; 会不会上下跳动; 利弊得失。
几种有意义旳实际问题
? 蹲在磅秤上旳人站起来时
Fy(e) Fy m1g m2 g mi aiy
Fy (m1 m2 )g m2e 2 sin t
例 题7
已知:杆长为 2l; m ; ;
求: 转轴 O 处旳约束力。
O
解:取杆为研究对象
aC l; aCn l 2
aCx aC sin aCn cos l( sin 2 cos)
aCx 0
b
m2g
vCx const 0
m1g
O
x
xC 恒量
xC1
m1b m1
m2a m2
m2g m1g
xC 2
m1(b
s) m2 (a m1 m2
s
l)
பைடு நூலகம்
xC1 xC 2
s m2l m1 m2
结论与讨论
质点系旳动量定理
dp dt FRe
d (
dt
i
mi vi ) FRe
质量流旳流体形式
质量流旳气体形式
质量流旳颗粒形式
由滑流边界线定旳空气流
定常质量流 —— 质量流中旳质点流动过程中,在每一位 置点都具有相同速度。
定常质量流特点
1、质量流是不可压缩流动;
2、非粘性 —— 忽视流层之间以及质量流与管壁之间
旳摩擦力。
根据上述定义和特点,有
※ 几种有意义旳实际问题 ※ 动量与冲量 ※ 动量定理 ※ 质心运动定理 ※ 结论与讨论
几种有意义旳实际问题
? 地面拔河与太空拔河,谁胜谁负
几种有意义旳实际问题
偏心转子电动机
? 工作时为何会左
右运动; 这种运动有什么
规律; 会不会上下跳动; 利弊得失。
几种有意义旳实际问题
? 蹲在磅秤上旳人站起来时
Fy(e) Fy m1g m2 g mi aiy
Fy (m1 m2 )g m2e 2 sin t
例 题7
已知:杆长为 2l; m ; ;
求: 转轴 O 处旳约束力。
O
解:取杆为研究对象
aC l; aCn l 2
aCx aC sin aCn cos l( sin 2 cos)
aCx 0
b
m2g
vCx const 0
m1g
O
x
xC 恒量
xC1
m1b m1
m2a m2
m2g m1g
xC 2
m1(b
s) m2 (a m1 m2
s
l)
பைடு நூலகம்
xC1 xC 2
s m2l m1 m2
结论与讨论
质点系旳动量定理
dp dt FRe
d (
dt
i
mi vi ) FRe
质量流旳流体形式
质量流旳气体形式
质量流旳颗粒形式
由滑流边界线定旳空气流
定常质量流 —— 质量流中旳质点流动过程中,在每一位 置点都具有相同速度。
定常质量流特点
1、质量流是不可压缩流动;
2、非粘性 —— 忽视流层之间以及质量流与管壁之间
旳摩擦力。
根据上述定义和特点,有
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
练习
1.如图,用0.5kg的铁锤钉钉子,打击时 铁锤的速度为4m/s,打击后铁锤的速 度变为零,设打击时间为0.01s a.不计铁锤的重量,铁锤钉钉子的平均 作用力是多大? b.考虑铁锤的重量,铁锤钉钉子的平均 作用力是多大? C.你分析一下,在计算铁锤钉钉子的 平均作用力时在什么情况下可以不计 铁锤的重量.
作业: • 1.P123.3,4。 • 2.科技小论文:以“道路安全”为主题观 察在汽车和摩托车等交通工具中,都有什 么样的安全措施,应用你学习的知识,尤 其是动量定理加以分析。
谢谢指导
F mv mv 0.08 0.1 N 18N t 0.01
“﹣”表示力的方向与正方向相反。
利用动量定理解题步骤
1. 确定研究对象 2. 对研究对象进行受力分析,确定全部外力及作用时间; 3. 找出物体的初末状态并确定相应的动量; 4.或反向 选定正方向,并给每个力的冲量和初末动量带 上正负号,以表示和正方向同向; 5. 根据动量定理列方程求解。
永城市高级中学 朱颖斌
观察并思考
鸡蛋从一米多高的地方落到地板上,肯 定会被打破,现在,在地板上放一块泡沫 塑料垫,让鸡蛋落到泡沫塑料上,会看到 什么现象?你能解释这种现象吗?
上述体育项目中的海绵垫、沙子、接球时手的回收 都有些什么物理原理呢?
动量定理的推导:
质量为M 的物体在水平恒力F 的作用 下,经过时间t,速度由v0 变为 vt, v =v0
v =v0
——— F 作用了时间 t
F
———
v =v t
F
动量定理: 物体受到的合力的冲量 等于物体动量的变化 表达式: Ft mv mv 或
Байду номын сангаас
I p
t
0
动量定理的理解
(1)定理反映了合外力冲量是物体动量变化的原 因。 (2)动量定理不仅适用于恒定的力,也适用于变力。
(3) Ft mv mv 为矢量表达式 ,用 此式计算时应先规定正方向.
————F 作用了时间 t————
F F F F F F F
v =v t
F
v =v0
——— F 作用了时间 t
F
———
v =v t
F
分析: 由牛顿第二定律知: F = m a vt v0 a 而加速度: t
vt v0 F m t
整理得: mvt Ft
mv0 可以写成:I p
(4)动量定理不仅适用于宏观低速物体,对微观 现象和高速运动仍然适用。
动量定理的应用
P F t
P 一定, t 越短,
则F越大。
t 一定, P 越大,
则F越大。
利用动量定理解题
例1. 一个质量为0.01kg的弹性小球, 以10m/s的速度在光滑 水平面上运动, v 撞到前方的竖直墙壁后以8m/s的速度 反向弹回,设碰撞时间为0.01s,求球 FN 受到墙壁的平均撞击力。 F 解:取小球初速度方向为正方向 对小球受力分析,如图所示。 G 初动量: P=mv=0.01×10kg· m/s=0.1kg· m/s 末动量: P ′=mv′=0.01×(- 8)kg· m/s=-0.08kg· m/s 由动量定理得,墙壁受到的撞击力为
2、将一个质量m=2kg的物体以初速度 V0=10m/s:1)沿水平方向抛出。求该物 体在抛出两秒内动量的变化 (g值取10m/s2)
小结
1.动量定理的理解
Ft mvt mv0
2.动量定理的应用 (1)用动量定理解释现象 P 一定, t 越短,则F越大。 P F t 则 t 一定, P 越大, F越大。 (2)用动量定理解题