专题16 矩形的判定与性质-2020-2021学年八年级数学下册常考题专练(人教版)(解析版)

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

专题16矩形的判定与性质
★知识归纳
●矩形的定义
有一个角是直角的平行四边形叫做矩形.
要点梳理:矩形定义的两个要素:①是平行四边形;②有一个角是直角.即矩形首先是一个平行四边形,然后增加一个角是直角这个特殊条件.
●矩形的性质
矩形的性质包括四个方面:
1.矩形具有平行四边形的所有性质;
2.矩形的对角线相等;
3.矩形的四个角都是直角;
4.矩形是轴对称图形,它有两条对称轴.
要点梳理:(1)矩形是特殊的平行四边形,因而也是中心对称图形.过中心的任意直线可将矩形分成完全全等的两部分.
(2)矩形也是轴对称图形,有两条对称轴(分别通过对边中点的直线).对称轴的交点就是对角线的交点(即对称中心).
(3)矩形是特殊的平行四边形,矩形具有平行四边形的所有性质,从而矩形的性质可以归结为从三个方面看:从边看,矩形对边平行且相等;从角看,矩形四个角都是直角;从对角线看,矩形
的对角线互相平分且相等.
●矩形的判定
矩形的判定有三种方法:
1.定义:有一个角是直角的平行四边形叫做矩形.
2.对角线相等的平行四边形是矩形.
3.有三个角是直角的四边形是矩形.
要点梳理:在平行四边形的前提下,加上“一个角是直角”或“对角线相等”都能判定平行四边形是矩形.
★实操夯实
一.选择题(共11小题)
1.如图,矩形ABCD的两条对角线相交于点O,∠AOB=60°,AO=4,则AB的长是()
A.4B.5C.6D.8
【解答】解:∵四边形ABCD是矩形,
∴AO=OC,BO=OD,AC=BD,
∴OA=OB,
∵∠AOB=60°,
∴△AOB是等边三角形,
∴AB=AO=4,
故选:A.
2.四边形ABCD的对角线互相平分,要使它变为矩形,需要添加的条件是()
A.AB=CD B.AC=BD C.AB=BC D.AD=BC
【解答】解:可添加AC=BD,
∵四边形ABCD的对角线互相平分,
∴四边形ABCD是平行四边形,
∵AC=BD,根据矩形判定定理对角线相等的平行四边形是矩形,
∴四边形ABCD是矩形.
故选:B.
3.下列说法正确的是()
A.有一组对角是直角的四边形一定是矩形
B.有一组邻角是直角的四边形一定是矩形
C.对角线互相平分的四边形是矩形
D.对角互补的平行四边形是矩形
【解答】解:∵有一组对角是直角的四边形不一定是矩形,
∴选项A不正确;∵有一组邻角是直角的四边形不一定是矩形,
∴选项B不正确;
∵对角线互相平分的四边形是平行四边形,
∴选项C不正确;
∵对角互补的平行四边形一定是矩形,
∴选项D正确;
故选:D.
4.如图,在矩形COED中,点D的坐标是(1,3),则CE的长是()
A.3B.C.D.4【解答】解:∵四边形COED是矩形,
∴CE=OD,
∵点D的坐标是(1,3),
∴OD==,
∴CE=,
故选:C.
5.如图,矩形ABCD中,AB=,BC=3,AE⊥BD于E,则EC=()
A.B.C.D.【解答】解:作EF⊥BC于F,
∵四边形ABCD是矩形,
∴AD=BC=3,AB=CD=,∠BAD=90°.
∴tan∠ADB==,
∴∠ADB=30°,
∴∠ABE=60°,
∴在Rt△ABE中cos∠ABE===,
∴BE=,
∴在Rt△BEF中,cos∠FBE===,
∴BF=,
∴EF==,
∴CF=3﹣=,
在Rt△CFE中,CE==.
故选:D.
6.如图,矩形ABCD的对角线AC,BD相交于点O,点P是AD边上的一个动点,过点P分别作PE⊥AC于点E,PF⊥BD于点F.若AB=6,BC=8,则PE+PF的值为()
A.10B.9.6C.4.8D.2.4
【解答】解:连接OP,
∵矩形ABCD的两边AB=6,BC=8,
∴S矩形ABCD=AB•BC=48,OA=OC,OB=OD,AC=BD,AC==10,
∴S△AOD=S矩形ABCD=12,OA=OD=5,
∴S△AOD=S△AOP+S△DOP=OA•PE+OD•PF=OA(PE+PF)=×5×(PE+PF)=12,∴PE+PF==4.8.
故选:C.
7.如图,ABCD是矩形,AC、BD相交于O,AE垂直平分BO,若AE=2,则OD=()
A.2B.3C.4D.6
【解答】解:∵四边形ABCD是矩形,
∴OB=OD,OA=OC,AC=BD,
∴OA=OB,
∵AE垂直平分OB,
∴AB=AO,
∴OA=AB=OB=2OE,
∵AE=2,
∴,即4OE2﹣OE2=12,
∴OE=2,
∴OD=OB=2OE=4;
故选:C.
8.如图,在矩形ABCD中,O为AC中点,EF过O点且EF⊥AC分别交DC于F,交AB于E,点G是AE中点且∠AOG=30°,则下列结论正确的个数为()
(1)DC=3OG;(2)OG=BC;(3)△OGE是等边三角形;(4)S△AOE=S矩形ABCD.
A.1个B.2个C.3个D.4个
【解答】解:∵EF⊥AC,点G是AE中点,
∴OG=AG=GE=AE,
∵∠AOG=30°,
∴∠OAG=∠AOG=30°,
∠GOE=90°﹣∠AOG=90°﹣30°=60°,
∴△OGE是等边三角形,故(3)正确;
设AE=2a,则OE=OG=a,
由勾股定理得,AO===a,
∵O为AC中点,
∴AC=2AO=2a,
∴BC=AC=×2a=a,
在Rt△ABC中,由勾股定理得,AB==3a,
∵四边形ABCD是矩形,
∴CD=AB=3a,
∴DC=3OG,故(1)正确;
∵OG=a,BC=a,
∴OG≠BC,故(2)错误;
∵S△AOE=a•a=a2,
S ABCD=3a•a=3a2,
∴S△AOE=S ABCD,故(4)正确;
综上所述,结论正确是(1)(3)(4)共3个.
故选:C.
9.如图,矩形ABCD中,AC、BD交于点O,M、N分别为BC、OC的中点.若∠ACB=30°,AB=8,则MN的长为()
A.2B.4C.8D.16
【解答】解:如图,∵四边形ABCD是矩形,AC,BD交于点O,∠ACB=30°,AB=8,
∴BD=AC=2AB=2×8=16,
∴BD=2BO,即2BO=16.
∴BO=8.
又∵M、N分别为BC、OC的中点,
∴MN是△CBO的中位线,
∴MN=BO=4.
故选:B.
10.如图,在直角三角形ABC中,∠ACB=90°,AC=3,BC=4,点M是边AB上一点(不与点A,B重合),作ME⊥AC于点E,MF⊥BC于点F,若点P是EF的中点,则CP的最小值是()
A.1.2B.1.5C.2.4D.2.5
【解答】解:连接CM,如图所示:
∵∠ACB=90°,AC=3,BC=4,
∴AB===5,
∵ME⊥AC,MF⊥BC,∠ACB=90°,
∴四边形CEMF是矩形,
∴EF=CM,
∵点P是EF的中点,
∴CP=EF,
当CM⊥AB时,CM最短,
此时EF也最小,则CP最小,
∵△ABC的面积=AB×CM=AC×BC,
∴CM===2.4,
∴CP=EF=CM=1.2,
故选:A.
11.如图,矩形ABCD的对角线AC,BD交于点O,AB=6,BC=8,过点O作OE⊥AC,交AD于点E,过点E 作EF⊥BD,垂足为F,则OE+EF的值为()
A.B.C.D.
【解答】解:∵AB=6,BC=8,
∴矩形ABCD的面积为48,AC==10,
∴AO=DO=AC=5,
∵对角线AC,BD交于点O,
∴△AOD的面积为12,
∵EO⊥AO,EF⊥DO,
∴S△AOD=S△AOE+S△DOE,即12=AO×EO+DO×EF,
∴12=×5×EO+×5×EF,
∴5(EO+EF)=24,
∴EO+EF=,
故选:C.
二.填空题(共3小题)
12.为了迎接2021年春节,李师傅计划改造一个长为6m,宽为4m的矩形花池ABCD,如图,他将画线工具固定在一根4m木棍EF的中点P处.画线时,使点E,F都在花池边的轨道上按逆时针方向滑动一周.若将点P所画出的封闭图形围成的区域全部种植年花,则种植年花的区域的面积是(24﹣4π)m2.
【解答】解:连接BP,如图,由题意可知BP为Rt△BEF的斜边中线,
∵EF=4m,
∴BP=2m,
∵AB=DC=4m,BC=AD=6m,
∴点P的运动轨迹为四个圆心分别在点A,B,C,D,半径为2m的四分之一圆,以及BC和AD上的一段线段.长为6m,宽为4m的矩形花池ABCD的面积为6×4=24(m2).
∴种植年花的区域的面积是:24﹣π×22=(24﹣4π)(m2).
故答案为:(24﹣4π).
13.如图,四边形ABCD是长方形,F是DA延长线上一点,CF交AB于点E,G是CF上一点,且∠ACG=∠AGC,∠GAF=∠F.若∠ECB=20°,则∠ACD的度数是30°.
【解答】解:∵四边形ABCD是矩形,
∴AD∥BC,∠DCB=90°,
∴∠F=∠ECB=20°,
∴∠GAF=∠F=20°,
∴∠ACG=∠AGC=∠GAF+∠F=2∠F=40°,
∴∠ACB=∠ACG+∠ECB=60°,
∴∠ACD=90°﹣60°=30°,
故答案为:30°.
14.如图,点E,F,G,H分别是BD,BC,AC,AD的中点:下列结论:①EH=EF;②当AB=CD,EG平分∠HGF;③当AB⊥CD时,四边形EFGH是矩形;其中正确的结论序号是②③.
【解答】解:∵点E,F,G,H分别是BD,BC,AC,AD的中点,
∴EF∥CD,HG∥CD,EF=CD,HG=CD,HE=AB,AB∥HE,∴EF=HG,EF∥HG,
∴四边形EFGH是平行四边形,
∵AB不一定等于CD,
∴EH不一定等于EF,故①错误,
∵AB=CD,
∴EH=EF,
∴平行四边形HEFG是菱形,
∴EG平分∠HGF,故②正确,
③∵AB⊥CD,
∴∠ABC+∠BCD=90°,
∵四边形HEFG是平行四边形,
∴GF∥HE∥AB,
∴∠GFC=∠ABC,
∵EF∥CD,
∴∠BFE=∠BCD,
∴∠GFC+∠EFB=90°,
∴∠EFG=90°,
∴平行四边形HEFG是矩形,故③正确,
故答案为:②③.
三.解答题(共12小题)
15.如图,在矩形ABCD中,BF=CE,求证:AE=DF.
【解答】证明:∵四边形ABCD是矩形,
∴AB=DC,
∠B=∠C=90°,
∵BF=CE,
∴BE=CF,
在△ABE和△DCF中,

∴△ABE≌△DCF,
∴AE=DF.
16.在四边形ABCD中,OA=OC,OB=OD,点P为四边形外一点,且∠APC=∠BPD=90°.求证:四边形ABCD为矩形.
【解答】证明:∵OA=OC,OB=OD,
∴四边形ABCD是平行四边形,
连接OP,
∵∠APC=∠BPD=90°,
∴BD=2OP,AC=2OP,
∴AC=BD,
∴四边形ABCD为矩形.
17.如图,矩形ABCD中,EF垂直平分对角线BD,垂足为O,点E和F分别在边AD,BC上,连接BE,DF.(1)求证:四边形BFDE是菱形;
(2)若AE=OF,求∠BDC的度数.
【解答】(1)证明:∵EF垂直平分对角线BD,
∴∠DOE=∠BOF=90°,OB=OD,
∵四边形ABCD是矩形,
∴AD∥BC,
∴∠DEO=∠BFO,
在△DEO和△BFO中,

∴△DEO≌△BFO(AAS),
∴DE=BF,
∵EF垂直平分对角线BD,
∴DE=BE,BF=DF,
∴DE=BE=BF=DF,
∴四边形BFDE是菱形;
(2)解:∵四边形ABCD是矩形,∴AB=CD,∠A=∠C=90°,
∵∠BOF=90°,
∴∠A=∠BOF=90°,
在Rt△BAE和Rt△BOF中,

∴Rt△BAE≌Rt△BOF(HL),
∴AB=OB,
∵AB=CD,OB=OD,
∴CD=BD,
∵∠C=90°,
∴∠CBD=30°,
∴∠BDC=180°﹣∠C﹣∠CBD=60°.
18.如图所示,在矩形ABCD中,E,F分别是边AB,CD上的点,AE=CF,连接EF,BF,EF与对角线AC交于点O,且BE=BF,∠BEF=2∠BAC.
(1)求证:OE=OF;
(2)若AC=6,求AB的长.
【解答】(1)证明:∵四边形ABCD是矩形,
∴AB∥CD,
∴∠CAE=∠ACF,∠CFO=∠AEO,
在△AOE和△COF中,,
∴△AOE≌△COF(AAS),
∴OE=OF;
(2)解:连接OB,如图所示:
∵BF=BE,OE=OF,
∴BO⊥EF,
由(1)知,△AOE≌△COF,
∴OA=OC,
∵四边形ABCD是矩形,
∴∠ABC=90°,
∴BO=AC=OA,
∴∠BAC=∠OBA,
又∠BEF=2∠BAC,
∴∠BEF=2∠OBE,
而Rt△OBE中,∠BEO+∠OBE=90°,
∴∠BAC=30°,
∴BC=AC=3,
∴AB==9.
19.如图,△ABC中,AC=BC,CD⊥AB于点D,四边形DBCE是平行四边形.求证:四边形ADCE是矩形.
【解答】证明:∵AC=BC,CD⊥AB,
∴∠ADC=90°,AD=BD.
∵在▱DBCE中,EC∥BD,EC=BD,
∴EC∥AD,EC=AD.
∴四边形ADCE是平行四边形.
又∵∠ADC=90°,
∴四边形ADCE是矩形.
20.如图,▱ABCD中,O是AB的中点,CO=DO.求证:▱ABCD是矩形.
【解答】证明:∵四边形ABCD是平行四边形,
∴AD=BC,AD∥BC,
∴∠A+∠B=180°,
∵O是AB的中点,
∴AO=BO,
在△DAO和△CBO中,,
∴△DAO≌△CBO(SSS),
∴∠A=∠B,
∵∠A+∠B=180°,
∴∠A=90°,
∵四边形ABCD是平行四边形,
∴四边形ABCD是矩形.
21.如图所示,在▱ABCD中,AE⊥BD于点E,CF⊥BD于点F,延长AE至点G,使EG=AE,连接CG.(1)求证:△ABE≌△CDF;
(2)求证:四边形EGCF是矩形.
【解答】证明:(1)∵四边形ABCD是平行四边形,
∴AB=CD,AB∥CD,
∴∠ABE=∠CDF,
∵AE⊥BD于点E,CF⊥BD于点F,
∴AE∥CF,∠GEF=∠AEB=∠CFD=90°,
在△ABE和△CDF中,,
∴△ABE≌△CDF(AAS);
(2)由(1)得:△ABE≌△CDF,AE∥CF,
∴AE=CF,
∵EG=AE,
∴EG=CF,
∴四边形EGCF是平行四边形,
又∵∠GEF=90°,
∴四边形EGCF是矩形.
22.如图,在△ABC中,∠ACB=90°,∠CAB=30°,以线段AB为边向外作等边△ABD,点E是线段AB的中点,连接CE并延长交线段AD于点F.
(1)求证:四边形BCFD为平行四边形;
(2)连接BF,求证:四边形BCAF是矩形.
【解答】(1)证明:∵∠ACB=90°,∠CAB=30°,∴BC=AB,∠ABC=60°,
∵△ABD是等边三角形,
∴∠ABD=∠BAD=60°,AB=AD,
∴∠ABC=∠BAD,
∴BC∥DA,
∵点E是线段AB的中点,
∴CE=AB=BE=AE,
∵∠ABC=60°,
∴△BCE是等边三角形,
∴∠BEC=60°=∠ABD,
∴BD∥CF,
∴四边形BCFD为平行四边形;
(2)证明:如图所示:
∵BD∥CF,BE=AE,
∴AF=DF=AD,
∴BC=AF,
又∵BC∥DA,
∴四边形BCAF是平行四边形,
∵∠ACB=90°,
∴四边形BCAF是矩形.
23.如图,在四边形ABCD中,AD∥BC,∠ABC=∠ADC=90°,对角线AC,BD交于点O,DE平分∠ADC交BC于点E,连接OE.
(1)求证:四边形ABCD是矩形;
(2)若AB=2,求△OEC的面积.
【解答】(1)证明:∵AD∥BC,
∴∠ABC+∠BAD=180°,
∵∠ABC=90°,
∴∠BAD=90°,
∴∠BAD=∠ABC=∠ADC=90°,
∴四边形ABCD是矩形.
(2)作OF⊥BC于F.
∵四边形ABCD是矩形,
∴CD=AB=2,∠BCD=90°,AO=CO,BO=DO,AC=BD,
∴AO=BO=CO=DO,
∴BF=FC,
∴OF=CD=1,
∵DE平分∠ADC,∠ADC=90°,
∴∠EDC=45°,
在Rt△EDC中,EC=CD=2,
∴△OEC的面积=•EC•OF=1.
24.如图,已知平行四边形ABCD.
(1)若M,N是BD上两点,且BM=DN,AC=2OM,求证:四边形AMCN是矩形;
(2)若∠BAD=120°,CD=4,AB⊥AC,求平行四边形ABCD的面积.
【解答】(1)证明:∵四边形ABCD是平行四边形,
∴OA=OC,OB=OD,
∵对角线BD上的两点M、N满足BM=DN,
∴OB﹣BM=OD﹣DN,即OM=ON,
∴四边形AMCN是平行四边形,
∵AC=2OM,
∴MN=AC,
∴四边形AMCN是矩形;
(2)解:∵四边形ABCD是平行四边形,
∴AD∥BC,AB=CD=4,
∴∠BAD+∠ABC=180°,
∵∠BAD=120°,
∴∠ABC=60°,
∵AB⊥AC,
∴∠BAC=90°,
∴AC=AB=4,
∴平行四边形ABCD的面积=AC•AB=44=16.
25.如图,在矩形ABCD中,AB=3cm,BC=6cm.点P从点D出发向点A运动,运动到点A即停止;同时,点Q从点B出发向点C运动,运动到点C即停止,点P、Q的速度都是1cm/s.连接PQ、AQ、CP.设点P、Q运动的时间为ts.
(1)当t为何值时,四边形ABQP是矩形;
(2)当t为何值时,四边形AQCP是菱形;
(3)分别求出(2)中菱形AQCP的周长和面积.
【解答】解:(1)由已知可得,BQ=DP=t,AP=CQ=6﹣t
在矩形ABCD中,∠B=90°,AD∥BC,
当BQ=AP时,四边形ABQP为矩形,
∴t=6﹣t,得t=3
故当t=3s时,四边形ABQP为矩形.
(2)由(1)可知,四边形AQCP为平行四边形
∴当AQ=CQ时,四边形AQCP为菱形
即时,四边形AQCP为菱形,解得t=,
故当t=s时,四边形AQCP为菱形.
(3)当t=时,AQ=,CQ=,
则周长为:4AQ=4×=15cm
面积为:.
26.如图,在▱ABCD中,点P是AB边上一点(不与A,B重合),CP=CD,过点P作PQ⊥CP,交AD边于点Q,连接CQ.
(1)若∠BPC=∠AQP,求证:四边形ABCD是矩形;
(2)在(1)的条件下,当AP=2,AD=6时,求AQ的长.
【解答】(1)证明:∵∠BPQ=∠BPC+∠CPQ=∠A+∠AQP,又∠BPC=∠AQP,
∴∠CPQ=∠A,
∵PQ⊥CP,
∴∠A=∠CPQ=90°,
∴四边形ABCD是矩形;
(2)解:∵四边形ABCD是矩形
∴∠D=∠CPQ=90°,在Rt△CDQ和Rt△CPQ中,,∴Rt△CDQ≌Rt△CPQ(HL)),
∴DQ=PQ,
设AQ=x,则DQ=PQ=6﹣x
在Rt△APQ中,AQ2+AP2=PQ2
∴x2+22=(6﹣x)2,
解得:x=
∴AQ的长是.。

相关文档
最新文档