2021年九年级数学中考一轮复习专项突破训练:二次函数图象与x轴的交点(附答案)

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2021年九年级数学中考一轮复习专项突破训练:二次函数图象与x轴的交点(附答案)1.已知抛物线y=ax2+bx+c(b>a>0)与x轴最多有一个交点,现有以下四个结论:
①该抛物线的对称轴在y轴左侧;
②关于x的方程ax2+bx+c+2=0无实数根;③a﹣b+c≥0;
④的最小值为3.其中,正确结论的个数为()
A.1个B.2个C.3个D.4个
2.如图,抛物线y=﹣2x2+8x﹣6与x轴交于点A、B,把抛物线在x轴及其上方的部分记作C1,将C1向右平移得C2,C2与x轴交于点B,D.若直线y=x+m与C1、C2共有3个不同的交点,则m的取值范围是()
A.﹣2<m<B.﹣3<m<﹣C.﹣3<m<﹣2D.﹣3<m<﹣
3.若函数y=x2﹣2x+b的图象与坐标轴有三个交点,则b的取值范围是()A.b<1且b≠0B.b>1C.0<b<1D.b<1
4.已知抛物线y=x2+bx+c的部分图象如图所示,若y<0,则x的取值范围是()
A.﹣1<x<4B.﹣1<x<3C.x<﹣1或x>4D.x<﹣1或x>3
5.若二次函数y=x2+bx的图象的对称轴是经过点(2,0)且平行于y轴的直线,则关于x 的方程x2+bx=5的解为()
A.x1=0,x2=4B.x1=1,x2=5C.x1=1,x2=﹣5D.x1=﹣1,x2=5 6.二次函数y=a(x﹣4)2﹣4(a≠0)的图象在2<x<3这一段位于x轴的下方,在6<x <7这一段位于x轴的上方,则a的值为()
A.1B.﹣1C.2D.﹣2
7.已知二次函数y=﹣x2+x+6及一次函数y=﹣x+m,将该二次函数在x轴上方的图象沿x 轴翻折到x轴下方,图象的其余部分不变,得到一个新函数(如图所示),当直线y=﹣x+m与新图象有4个交点时,m的取值范围是()
A.﹣<m<3B.﹣<m<2C.﹣2<m<3D.﹣6<m<﹣2
8.已知抛物线y=﹣x2+x+6与x轴交于点A,点B,与y轴交于点C.若D为AB的中点,则CD的长为()
A.B.C.D.
9.二次函数y=kx2﹣6x+3的图象与x轴有交点,则k的取值范围是()A.k<3B.k<3且k≠0C.k≤3D.k≤3且k≠0 10.在平面直角坐标系中,已知a≠b,设函数y=(x+a)(x+b)的图象与x轴有M个交点,函数y=(ax+1)(bx+1)的图象与x轴有N个交点,则()
A.M=N﹣1或M=N+1B.M=N﹣1或M=N+2
C.M=N或M=N+1D.M=N或M=N﹣1
11.函数y=ax2+2ax+m(a<0)的图象过点(2,0),则使函数值y<0成立的x的取值范围是()
A.x<﹣4或x>2B.﹣4<x<2C.x<0或x>2D.0<x<2
12.抛物线y=x2+bx+3的对称轴为直线x=1.若关于x的一元二次方程x2+bx+3﹣t=0(t 为实数)在﹣1<x<4的范围内有实数根,则t的取值范围是()
A.2≤t<11B.t≥2C.6<t<11D.2≤t<6
13.关于x的一元二次方程ax2﹣3x﹣1=0的两个不相等的实数根都在﹣1和0之间(不包括﹣1和0),则a的取值范围是.
14.已知关于x的二次函数y=ax2+(a2﹣1)x﹣a的图象与x轴的一个交点的坐标为(m,0).若2<m<3,则a的取值范围是.
15.如图,抛物线y=ax2+bx+c与x轴相交于点A、B(m+2,0)与y轴相交于点C,点D 在该抛物线上,坐标为(m,c),则点A的坐标是.
16.已知抛物线y=ax2+bx+c(a≠0)与x轴交于A,B两点,若点A的坐标为(﹣2,0),抛物线的对称轴为直线x=2,则线段AB的长为.
17.已知关于x的函数y=(m﹣1)x2+2x+m图象与坐标轴只有2个交点,则m=.18.若关于x的函数y=kx2+2x﹣1与x轴仅有一个公共点,则实数k的值为.19.若抛物线y=x2﹣6x+m与x轴没有交点,则m的取值范围是.
20.抛物线y=ax2+bx+c经过点A(﹣3,0)、B(4,0)两点,则关于x的一元二次方程a (x﹣1)2+c=b﹣bx的解是.
21.已知二次函数y=kx2﹣7x﹣7的图象和x轴有交点,则k的取值范围.
22.我们定义一种新函数:形如y=|ax2+bx+c|(a≠0,且b2﹣4ac>0)的函数叫做“鹊桥”
函数.小丽同学画出了“鹊桥”函数y=|x2﹣2x﹣3|的图象(如图所示),并写出下列五个结论:①图象与坐标轴的交点为(﹣1,0),(3,0)和(0,3);②图象具有对称性,对称轴是直线x=1;③当﹣1≤x≤1或x≥3时,函数值y随x值的增大而增大;④当x =﹣1或x=3时,函数的最小值是0;⑤当x=1时,函数的最大值是4.其中正确结论的个数是.
23.若二次函数y=kx2﹣6x+3的图象与x轴有交点,则k的取值范围是.
24.已知:二次函数y=ax2+bx+c图象上部分点的横坐标x与纵坐标y的对应值如表格所示,那么它的图象与x轴的另一个交点坐标是.
x…﹣1012…
y…0343…
25.如图,在平面直角坐标系中,抛物线y=x2+mx交x轴的负半轴于点A.点B是y轴正半轴上一点,点A关于点B的对称点A′恰好落在抛物线上.过点A′作x轴的平行线交抛物线于另一点C.若点A′的横坐标为1,则A′C的长为.
26.若二次函数y=x2﹣4x+n的图象与x轴只有一个公共点,则实数n=.
27.抛物线y=(k﹣1)x2﹣x+1与x轴有交点,则k的取值范围是.
28.抛物线y=﹣x2+bx+c的部分图象如图所示,则关于x的一元二次方程﹣x2+bx+c=0的解为.
29.如图,抛物线y=﹣x2+2x+m+1(m为常数)交y轴于点A,与x轴的一个交点在2和3之间,顶点为B.
①抛物线y=﹣x2+2x+m+1与直线y=m+2有且只有一个交点;
②若点M(﹣2,y1)、点N(,y2)、点P(2,y3)在该函数图象上,则y1<y2<y3;
③将该抛物线向左平移2个单位,再向下平移2个单位,所得抛物线解析式为y=﹣(x+1)
2+m;
④点A关于直线x=1的对称点为C,点D、E分别在x轴和y轴上,当m=1时,四边
形BCDE周长的最小值为+.
其中正确判断的序号是.
30.已知抛物线y=x2+2x﹣3与x轴交于A,B两点(点A在点B的左侧),将这条抛物线向右平移m(m>0)个单位,平移后的抛物线与x轴交于C,D两点(点C在点D的左侧),若B,C是线段AD的三等分点,则m的值为.
31.已知关于x的方程kx2+(2k+1)x+2=0.
(1)求证:无论k取任何实数时,方程总有实数根;
(2)当抛物线y=kx2+(2k+1)x+2图象与x轴两个交点的横坐标均为整数,且k为正整数时,若P(a,y1),Q(1,y2)是此抛物线上的两点,且y1>y2,请结合函数图象确定实数a的取值范围;
(3)已知抛物线y=kx2+(2k+1)x+2恒过定点,求出定点坐标.
32.如图,二次函数的图象与x轴交于A(﹣3,0)和B(1,0)两点,交y轴于点C(0,3),点C、D是二次函数图象上的一对对称点,一次函数的图象过点B、D.
(1)请直接写出D点的坐标.
(2)求二次函数的解析式.
(3)根据图象直接写出使一次函数值大于二次函数值的x的取值范围.
33.设二次函数y=ax2+bx﹣(a+b)(a,b是常数,a≠0).
(1)判断该二次函数图象与x轴的交点的个数,说明理由.
(2)若该二次函数图象经过A(﹣1,4),B(0,﹣1),C(1,1)三个点中的其中两个点,求该二次函数的表达式.
(3)若a+b<0,点P(2,m)(m>0)在该二次函数图象上,求证:a>0.
34.定义:如图1,抛物线y=ax2+bx+c(a≠0)与x轴交于A,B两点,点P在该抛物线上(P点与A、B两点不重合),如果△ABP的三边满足AP2+BP2=AB2,则称点P为抛物线y=ax2+bx+c(a≠0)的勾股点.
(1)直接写出抛物线y=﹣x2+1的勾股点的坐标.
(2)如图2,已知抛物线C:y=ax2+bx(a≠0)与x轴交于A,B两点,点P(1,)是抛物线C的勾股点,求抛物线C的函数表达式.
(3)在(2)的条件下,点Q在抛物线C上,求满足条件S△ABQ=S△ABP的Q点(异于点P)的坐标.
35.在平面直角坐标系xOy中,抛物线y=mx2﹣2mx+m﹣1(m>0)与x轴的交点为A,B.(1)求抛物线的顶点坐标;
(2)横、纵坐标都是整数的点叫做整点.
①当m=1时,求线段AB上整点的个数;
②若抛物线在点A,B之间的部分与线段AB所围成的区域内(包括边界)恰有6个整点,
结合函数的图象,求m的取值范围.
36.已知关于x的一元二次方程x2+(k﹣5)x+1﹣k=0,其中k为常数.(1)求证:无论k为何值,方程总有两个不相等实数根;
(2)已知函数y=x2+(k﹣5)x+1﹣k的图象不经过第三象限,求k的取值范围;
(3)若原方程的一个根大于3,另一个根小于3,求k的最大整数值.
37.设二次函数y=(x﹣x1)(x﹣x2)(x1,x2是实数).
(1)甲求得当x=0时,y=0;当x=1时,y=0;乙求得当x=时,y=﹣.若甲求
得的结果都正确,你认为乙求得的结果正确吗?说明理由.
(2)写出二次函数图象的对称轴,并求该函数的最小值(用含x1,x2的代数式表示).(3)已知二次函数的图象经过(0,m)和(1,n)两点(m,n是实数),当0<x1<x2<1时,求证:0<mn<.
38.如图,已知抛物线y=x2﹣4与x轴交于点A,B(点A位于点B的左侧),C为顶点,直线y=x+m经过点A,与y轴交于点D.
(1)求线段AD的长;
(2)平移该抛物线得到一条新抛物线,设新抛物线的顶点为C′.若新抛物线经过点D,并且新抛物线的顶点和原抛物线的顶点的连线CC′平行于直线AD,求新抛物线对应的函数表达式.
39.已知关于x的一元二次方程mx2+(1﹣5m)x﹣5=0(m≠0).
(1)求证:无论m为任何非零实数,此方程总有两个实数根;
(2)若抛物线y=mx2+(1﹣5m)x﹣5与x轴交于A(x1,0)、B(x2,0)两点,且|x1﹣x2|=6,求m的值;
(3)若m>0,点P(a,b)与Q(a+n,b)在(2)中的抛物线上(点P、Q不重合),求代数式4a2﹣n2+8n的值.
参考答案
1.解:∵b>a>0
∴﹣<0,
所以①正确;
∵抛物线与x轴最多有一个交点,
∴b2﹣4ac≤0,
∴关于x的方程ax2+bx+c+2=0中,△=b2﹣4a(c+2)=b2﹣4ac﹣8a<0,所以②正确;
∵a>0及抛物线与x轴最多有一个交点,
∴x取任何值时,y≥0
∴当x=﹣1时,a﹣b+c≥0;
所以③正确;
当x=﹣2时,4a﹣2b+c≥0
a+b+c≥3b﹣3a
a+b+c≥3(b﹣a)
≥3
所以④正确.
故选:D.
2.解:令y=﹣2x2+8x﹣6=0,
即x2﹣4x+3=0,
解得x=1或3,
则点A(1,0),B(3,0),
由于将C1向右平移2个长度单位得C2,
则C2解析式为y=﹣2(x﹣4)2+2(3≤x≤5),
当y=x+m1与C2相切时,
令y=x+m1=y=﹣2(x﹣4)2+2,
即2x2﹣15x+30+m1=0,
△=﹣8m1﹣15=0,
解得m1=﹣,
当y=x+m2过点B时,
即0=3+m2,
m2=﹣3,
当﹣3<m<﹣时直线y=x+m与C1、C2共有3个不同的交点,故选:D.
3.解:∵函数y=x2﹣2x+b的图象与坐标轴有三个交点,如果b=0,那么此二次函数与两坐标轴的其中一个交点重合了,那么就只有2个交点,则于题意不符,
∴,
解得b<1且b≠0.
故选:A.
4.解:由图象知,抛物线与x轴交于(﹣1,0),对称轴为x=1,
∴抛物线与x轴的另一交点坐标为(3,0),
∵y<0时,函数的图象位于x轴的下方,
且当﹣1<x<3时函数图象位于x轴的下方,
∴当﹣1<x<3时,y<0.
故选:B.
5.解:∵对称轴是经过点(2,0)且平行于y轴的直线,
∴﹣=2,
解得:b=﹣4,
∴关于x的方程为x2﹣4x=5,
解得x1=﹣1,x2=5,
故选:D.
6.解:∵抛物线y=a(x﹣4)2﹣4(a≠0)的对称轴为直线x=4,
而抛物线在6<x<7这一段位于x轴的上方,
∴抛物线在1<x<2这一段位于x轴的上方,
∵抛物线在2<x<3这一段位于x轴的下方,
∴抛物线过点(2,0),
把(2,0)代入y=a(x﹣4)2﹣4(a≠0)得4a﹣4=0,解得a=1.
故选:A.
7.解:如图,当y=0时,﹣x2+x+6=0,解得x1=﹣2,x2=3,则A(﹣2,0),B(3,0),将该二次函数在x轴上方的图象沿x轴翻折到x轴下方的部分图象的解析式为y=(x+2)(x﹣3),
即y=x2﹣x﹣6(﹣2≤x≤3),
当直线•y=﹣x+m经过点A(﹣2,0)时,2+m=0,解得m=﹣2;
当直线y=﹣x+m与抛物线y=x2﹣x﹣6(﹣2≤x≤3)有唯一公共点时,方程x2﹣x﹣6=﹣x+m有相等的实数解,解得m=﹣6,
所以当直线y=﹣x+m与新图象有4个交点时,m的取值范围为﹣6<m<﹣2.
故选:D.
8.解:令y=0,则﹣x2+x+6=0,
解得:x1=12,x2=﹣3
∴A、B两点坐标分别为(12,0)(﹣3,0)
∵D为AB的中点,
∴D(4.5,0),
∴OD=4.5,
当x=0时,y=6,
∴OC=6,
∴CD==.
故选:D.
9.解:∵二次函数y=kx2﹣6x+3的图象与x轴有交点,
∴方程kx2﹣6x+3=0(k≠0)有实数根,
即△=36﹣12k≥0,k≤3,由于是二次函数,故k≠0,则k的取值范围是k≤3且k≠0.故选:D.
10.解:∵y=(x+a)(x+b),a≠b,
∴函数y=(x+a)(x+b)的图象与x轴有2个交点,
∴M=2,
∵函数y=(ax+1)(bx+1)=abx2+(a+b)x+1,
∴当ab≠0时,△=(a+b)2﹣4ab=(a﹣b)2>0,函数y=(ax+1)(bx+1)的图象与x轴有2个交点,即N=2,此时M=N;
当ab=0时,不妨令a=0,∵a≠b,∴b≠0,函数y=(ax+1)(bx+1)=bx+1为一次函数,与x轴有一个交点,即N=1,此时M=N+1;
综上可知,M=N或M=N+1.
故选:C.
另一解法:∵a≠b,
∴抛物线y=(x+a)(x+b)与x轴有两个交点,
∴M=2,
又∵函数y=(ax+1)(bx+1)的图象与x轴有N个交点,
而y=(ax+1)(bx+1)=abx2+(a+b)x+1,它至多是一个二次函数,至多与x轴有两个交点,
∴N≤2,
∴N≤M,
∴不可能有M=N﹣1,
故排除A、B、D,
故选:C.
11.解:抛物线y=ax2+2ax+m的对称轴为直线x=﹣=﹣1,
而抛物线与x轴的一个交点坐标为(2,0),
∴抛物线与x轴的另一个交点坐标为(﹣4,0),
∵a<0,
∴抛物线开口向下,
∴当x<﹣4或x>2时,y<0.
故选:A.
12.解:∵y=x2+bx+3的对称轴为直线x=1,
∴b=﹣2,
∴y=x2﹣2x+3,
∴一元二次方程x2+bx+3﹣t=0的实数根可以看做y=x2﹣2x+3与函数y=t的有交点,
∵方程在﹣1<x<4的范围内有实数根,
当x=﹣1时,y=6;
当x=4时,y=11;
函数y=x2﹣2x+3在x=1时有最小值2;
∴2≤t<11.
故选:A.
13.解:∵关于x的一元二次方程ax2﹣3x﹣1=0的两个不相等的实数根∴△=(﹣3)2﹣4×a×(﹣1)>0,
解得:a>
设f(x)=ax2﹣3x﹣1,如图,
∵实数根都在﹣1和0之间,
∴﹣1,
∴a,
且有f(﹣1)<0,f(0)<0,
即f(﹣1)=a×(﹣1)2﹣3×(﹣1)﹣1<0,f(0)=﹣1<0,解得:a<﹣2,
∴<a<﹣2,
故答案为:<a<﹣2.
14.解:∵y=ax2+(a2﹣1)x﹣a=(ax﹣1)(x+a),∴当y=0时,x1=,x2=﹣a,
∴抛物线与x轴的交点为(,0)和(﹣a,0).
∵抛物线与x轴的一个交点的坐标为(m,0)且2<m<3,∴当a>0时,2<<3,解得<a<;
当a<0时,2<﹣a<3,解得﹣3<a<﹣2.
故答案为:<a<或﹣3<a<﹣2.
15.解:令x=0,得到x=c,
∴C(0,c),
∵D(m,c),得函数图象的对称轴是x=,
设A点坐标为(x,0),由A、B关于对称轴x=,得=,
解得x=﹣2,
即A点坐标为(﹣2,0),
故答案为:(﹣2,0).
16.解:∵对称轴为直线x=2的抛物线y=ax2+bx+c(a≠0)与x轴相交于A、B两点,∴A、B两点关于直线x=2对称,
∵点A的坐标为(﹣2,0),
∴点B的坐标为(6,0),
AB=6﹣(﹣2)=8.
故答案为:8.
17.解:(1)当m﹣1=0时,m=1,函数为一次函数,解析式为y=2x+1,与x轴交点坐标为(﹣,0);与y轴交点坐标(0,1).符合题意.
(2)当m﹣1≠0时,m≠1,函数为二次函数,与坐标轴有两个交点,则过原点,且与x 轴有两个不同的交点,
于是△=4﹣4(m﹣1)m>0,
解得,(m﹣)2<,
解得m<或m>.
将(0,0)代入解析式得,m=0,符合题意.
(3)函数为二次函数时,还有一种情况是:与x轴只有一个交点,与y轴交于交于另一点,
这时:△=4﹣4(m﹣1)m=0,
解得:m=.
故答案为:1或0或.
18.解:令y=0,则kx2+2x﹣1=0.
∵关于x的函数y=kx2+2x﹣1与x轴仅有一个公共点,
∴关于x的方程kx2+2x﹣1=0只有一个根.
①当k=0时,2x﹣1=0,即x=,∴原方程只有一个根,∴k=0符合题意;
②当k≠0时,△=4+4k=0,
解得,k=﹣1.
综上所述,k=0或﹣1.
故答案为:0或﹣1.
19.解:∵抛物线y=x2﹣6x+m与x轴没有交点,
∴△=b2﹣4ac<0,
∴(﹣6)2﹣4×1•m<0,
解得m>9,
∴m的取值范围是m>9.
故答案为:m>9.
20.解:关于x的一元二次方程a(x﹣1)2+c=b﹣bx变形为a(x﹣1)2+b(x﹣1)+c=0,因为抛物线y=ax2+bx+c经过点A(﹣3,0)、B(4,0),
所以方程ax2+bx+c的解为x1=﹣3,x2=4,
对于方程a(x﹣1)2+b(x﹣1)+c=0,则x﹣1=﹣3或x﹣1=4,解得x=﹣2或x=5,所以一元二方程a(x﹣1)2+b(x﹣1)+c=0的解为x1=﹣2,x2=5.
故答案为x1=﹣2,x2=5.
21.解:∵二次函数y=kx2﹣7x﹣7的图象和x轴有交点,
∴,
∴k≥﹣且k≠0.
故答案为k≥﹣且k≠0.
22.解:①∵(﹣1,0),(3,0)和(0,3)坐标都满足函数y=|x2﹣2x﹣3|,∴①是正确的;
②从图象可知图象具有对称性,对称轴可用对称轴公式求得是直线x=1,因此②也是正
确的;
③根据函数的图象和性质,发现当﹣1≤x≤1或x≥3时,函数值y随x值的增大而增大,
因此③也是正确的;
④函数图象的最低点就是与x轴的两个交点,根据y=0,求出相应的x的值为x=﹣1
或x=3,因此④也是正确的;
⑤从图象上看,当x<﹣1或x>3,函数值要大于当x=1时的y=|x2﹣2x﹣3|=4,因此
⑤是不正确的;
故答案是:4
23.解:∵二次函数y=kx2﹣6x+3的图象与x轴有交点,
∴b2﹣4ac=36﹣4×k×3=36﹣12k≥0,且k≠0,
解得:k≤3,且k≠0,
则k的取值范围是k≤3,且k≠0,
故答案为:k≤3,且k≠0.
24.解:∵抛物线y=ax2+bx+c经过(0,3)、(2,3)两点,∴对称轴x==1;
点(﹣1,0)关于对称轴对称点为(3,0),
因此它的图象与x轴的另一个交点坐标是(3,0).
故答案为:(3,0).
25.解:当y=0时,x2+mx=0,解得x1=0,x2=﹣m,则A(﹣m,0),∵点A关于点B的对称点为A′,点A′的横坐标为1,
∴点A的坐标为(﹣1,0),
∴抛物线解析式为y=x2+x,
当x=1时,y=x2+x=2,则A′(1,2),
当y=2时,x2+x=2,解得x1=﹣2,x2=1,则C(﹣2,2),
∴A′C的长为1﹣(﹣2)=3.
故答案为3.
26.解:y=x2﹣4x+n中,a=1,b=﹣4,c=n,
b2﹣4ac=16﹣4n=0,
解得n=4.
故答案是:4.
27.解:∵抛物线y=(k﹣1)x2﹣x+1与x轴有交点,
∴△=(﹣1)2﹣4×(k﹣1)×1≥0,解得k≤,
又∵k﹣1≠0,
∴k≠1,
∴k的取值范围是k≤且k≠1;
故答案为:k≤且k≠1.
28.解:观察图象可知,抛物线y=﹣x2+bx+c与x轴的一个交点为(1,0),对称轴为x=﹣1,
∴抛物线与x轴的另一交点坐标为(﹣3,0),
∴一元二次方程2x2﹣4x+m=0的解为x1=1,x2=﹣3.
故本题答案为:x1=1,x2=﹣3.
29.解:①把y=m+2代入y=﹣x2+2x+m+1中,得x2﹣2x+1=0,∵△=4﹣4=0,∴此方程两个相等的实数根,则抛物线y=﹣x2+2x+m+1与直线y=m+2有且只有一个交点,故此小题结论正确;
②∵抛物线的对称轴为x=1,∴点P(2,y3)关于x=1的对称点为P′(0,y3),∵a
=﹣1<0,∴当x<1时,y随x增大而增大,又∵﹣2<0<,点M(﹣2,y1)、点N (,y2)、点P′(0,y3)在该函数图象上,∴y2>y3>y1,故此小题结论错误;
③将该抛物线向左平移2个单位,再向下平移2个单位,抛物线的解析式为:y=﹣(x+2)
2+2(x+2)x+m+1﹣2,即y=﹣(x+1)2+m,故此小题结论正确;
④当m=1时,抛物线的解析式为:y=﹣x2+2x+2,∴A(0,2),C(2,2),B(1,3),
作点B关于y轴的对称点B′(﹣1,3),作C点关于x轴的对称点C′(2,﹣2),连接B′C′,与x轴、y轴分别交于D、E点,如图,
则BE+ED+CD+BC=B′E+ED+C′D+BC=B′C′+BC,根据两点之间线段最短,知B′C′最短,而BC的长度一定,∴此时,四边形BCDE周长=B′C′+BC最小,为:
,故此小题结论正确;
故答案为:①③④.
30.解:分为两种情况:
①如图,当C在B的左侧时,
∵B,C是线段AD的三等分点,
∴AC=BC=BD,
由题意得:AC=BD=m,
当y=0时,x2+2x﹣3=0,
(x﹣1)(x+3)=0,
x1=1,x2=﹣3,
∴A(﹣3,0),B(1,0),
∴AB=3+1=4,
∴AC=BC=2,
∴m=2,
②同理,当C在B的右侧时,AB=BC=CD=4,
∴m=AB+BC=4+4=8,
故答案为:2或8.
31.(1)证明:①当k=0时,方程为x+2=0,所以x=﹣2,方程有实数根,
②当k≠0时,∵△=(2k+1)2﹣4k×2=(2k﹣1)2≥0,即△≥0,
∴无论k取任何实数时,方程总有实数根;
(2)解:令y=0,则kx2+(2k+1)x+2=0,
解关于x的一元二次方程,得x1=﹣2,x2=﹣,
∵二次函数的图象与x轴两个交点的横坐标均为整数,且k为正整数,∴k=1.
∴该抛物线解析式为y=x2+3x+2,
由图象得到:当y1>y2时,a>1或a<﹣4.
(3)依题意得kx2+(2k+1)x+2﹣y=0恒成立,即k(x2+2x)+x﹣y+2=0恒成立,则,
解得或.
所以该抛物线恒过定点(0,2)、(﹣2,0).
32.解:(1)∵如图,二次函数的图象与x轴交于A(﹣3,0)和B(1,0)两点,∴对称轴是x==﹣1.
又点C(0,3),点C、D是二次函数图象上的一对对称点,
∴D(﹣2,3);
(2)设二次函数的解析式为y=ax2+bx+c(a≠0,a、b、c常数),
根据题意得,
解得,
所以二次函数的解析式为y=﹣x2﹣2x+3;
(3)如图,一次函数值大于二次函数值的x的取值范围是x<﹣2或x>1.
33.解:(1)设y=0
∴0=ax2+bx﹣(a+b)
∵△=b2﹣4•a[﹣(a+b)]=b2+4ab+4a2=(2a+b)2≥0∴方程有两个不相等实数根或两个相等实根.
∴二次函数图象与x轴的交点的个数有两个或一个
(2)当x=1时,y=a+b﹣(a+b)=0
∴抛物线不经过点C
把点A(﹣1,4),B(0,﹣1)分别代入得
解得
∴抛物线解析式为y=3x2﹣2x﹣1
(3)当x=2时
m=4a+2b﹣(a+b)=3a+b>0①
∵a+b<0
∴﹣a﹣b>0②
①②相加得:
2a>0
∴a>0
34.解:(1)抛物线y=﹣x2+1的勾股点的坐标为(0,1);
(2)抛物线y=ax2+bx过原点,即点A(0,0),
如图,作PG⊥x轴于点G,
∵点P的坐标为(1,),
∴AG=1、PG=,P A===2,∵tan∠P AB==,
∴∠P AG=60°,
在Rt△P AB中,AB===4,
∴点B坐标为(4,0),
设y=ax(x﹣4),
将点P(1,)代入得:a=﹣,
∴y=﹣x(x﹣4)=﹣x2+x;
(3)①当点Q在x轴上方时,由S△ABQ=S△ABP知点Q的纵坐标为,
则有﹣x2+x=,
解得:x1=3,x2=1(不符合题意,舍去),
∴点Q的坐标为(3,);
②当点Q在x轴下方时,由S△ABQ=S△ABP知点Q的纵坐标为﹣,
则有﹣x2+x=﹣,
解得:x1=2+,x2=2﹣,
∴点Q的坐标为(2+,﹣)或(2﹣,﹣);
综上,满足条件的点Q有3个:(3,)或(2+,﹣)或(2﹣,﹣).35.解:(1)∵y=mx2﹣2mx+m﹣1=m(x﹣1)2﹣1,
∴抛物线顶点坐标(1,﹣1).
(2)①∵m=1,
∴抛物线为y=x2﹣2x,
令y=0,得x=0或2,不妨设A(0,0),B(2,0),
∴线段AB上整点的个数为3个.
②如图所示,抛物线在点A,B之间的部分与线段AB所围成的区域内(包括边界)恰有
6个整点,
∴点A在(﹣1,0)与(﹣2,0)之间(包括(﹣1,0)),
当抛物线经过(﹣1,0)时,m=,
当抛物线经过点(﹣2,0)时,m=,
∴m的取值范围为<m≤.
36.(1)证明:∵△=(k﹣5)2﹣4(1﹣k)=k2﹣6k+21=(k﹣3)2+12>0,∴无论k为何值,方程总有两个不相等实数根;
(2)解:∵二次函数y=x2+(k﹣5)x+1﹣k的图象不经过第三象限,二次项系数a=1,∴抛物线开口方向向上,
∵△=(k﹣3)2+12>0,
∴抛物线与x轴有两个交点,
设抛物线与x轴的交点的横坐标分别为x1,x2,
∴x1+x2=5﹣k>0,x1•x2=1﹣k≥0,
解得k≤1,
即k的取值范围是k≤1;
(3)解:设方程的两个根分别是x1,x2,
根据题意,得(x1﹣3)(x2﹣3)<0,
即x1•x2﹣3(x1+x2)+9<0,
又x1+x2=5﹣k,x1•x2=1﹣k,
代入得,1﹣k﹣3(5﹣k)+9<0,
解得k<.
则k的最大整数值为2.
37.解:(1)当x=0时,y=0;当x=1时,y=0;
∴二次函数经过点(0,0),(1,0),
∴x1=0,x2=1,
∴y═x(x﹣1)=x2﹣x,
当x=时,y=﹣,
∴乙说的不对;
(2)对称轴为x=,
当x=时,y=﹣是函数的最小值;
(3)二次函数的图象经过(0,m)和(1,n)两点,
∴m=x1x2,n=1﹣x1﹣x2+x1x2,
∴mn=[﹣][﹣]
∵0<x1<x2<1,
∴0<﹣≤,0<﹣≤,∵x1≠x2,
∴m与n不能同时取到,
∴0<mn<.
38.解:(1)由x2﹣4=0得,x1=﹣2,x2=2,
∵点A位于点B的左侧,
∴A(﹣2,0),
∵直线y=x+m经过点A,
∴﹣2+m=0,
解得,m=2,
∴点D的坐标为(0,2),
∴AD==2;
(2)设新抛物线对应的函数表达式为:y=x2+bx+2,
y=x2+bx+2=(x+)2+2﹣,
则点C′的坐标为(﹣,2﹣),
∵CC′平行于直线AD,且经过C(0,﹣4),
∴直线CC′的解析式为:y=x﹣4,
∴2﹣=﹣﹣4,
解得,b1=﹣4,b2=6,
∴新抛物线对应的函数表达式为:y=x2﹣4x+2或y=x2+6x+2.39.(1)证明:由题意可得:
△=(1﹣5m)2﹣4m×(﹣5)
=1+25m2﹣10m+20m
=25m2+10m+1
=(5m+1)2≥0,
故无论m为任何非零实数,此方程总有两个实数根;
(2)解:mx2+(1﹣5m)x﹣5=0,
(x﹣5)(mx+1)=0,
解得:x1=﹣,x2=5,
由|x1﹣x2|=6,
得|﹣﹣5|=6,
解得:m=1或m=﹣;
(3)解:由(2)得,当m>0时,m=1,
此时抛物线为y=x2﹣4x﹣5,其对称轴为:x=2,
由题已知,P,Q关于x=2对称,
∴=2,即2a=4﹣n,
∴4a2﹣n2+8n=(4﹣n)2﹣n2+8n=16。

相关文档
最新文档