EMC经典整改经典对策

合集下载

_EMC_整改常见措施

_EMC_整改常见措施

_EMC_整改常见措施EMC整改常见措施EMC(Electromagnetic Compatibility,电磁兼容性)是指电子设备在特定的电磁环境中,能够正常工作而不对周围的电子设备或电磁环境产生不可接受的干扰。

为了确保产品符合EMC标准,需要采取一系列的整改措施。

下面是一些常见的EMC整改措施,以帮助您满足EMC要求。

1. 设计阶段的整改措施:- 电路设计:合理布局电路,减少电磁辐射和敏感度。

使用屏蔽和滤波器来降低电磁辐射和抑制干扰。

- 接地设计:确保良好的接地,减少接地回路的电阻和电感,提高抗干扰能力。

- 信号线布线:避免信号线与电源线、高功率线路等相交或平行布线,减少互相干扰。

- 散热设计:合理设计散热系统,减少电子设备过热引起的干扰。

- PCB设计:采用多层板设计,合理布局和连接,减少电磁辐射和敏感度。

- 地域选择:选择电磁环境较好的地域进行产品测试和生产。

2. 材料选择的整改措施:- 屏蔽材料:选择具有良好屏蔽性能的材料,如金属屏蔽罩、导电涂层等,减少电磁辐射和敏感度。

- 滤波器:选择合适的滤波器,用于抑制干扰信号和滤除噪声。

- 导电胶水:使用导电胶水固定电子元件,提高接地效果。

3. 测试和验证的整改措施:- 辐射测试:使用EMC测试设备对产品进行辐射测试,确保产品在规定的频率范围内的电磁辐射水平符合标准要求。

- 敏感度测试:使用EMC测试设备对产品进行敏感度测试,确保产品在规定的电磁环境下能正常工作。

- 抗干扰测试:使用EMC测试设备对产品进行抗干扰测试,确保产品能在干扰环境下正常工作。

- 标准符合性验证:对产品进行全面的标准符合性验证,确保产品满足EMC 标准要求。

4. 文档整改措施:- EMC测试报告:编写详细的EMC测试报告,包括测试方法、测试结果和结论,以便于后续的整改和验证。

- EMC设计指南:编写EMC设计指南,指导产品设计和开发人员在设计阶段遵循EMC要求。

总结:以上是一些常见的EMC整改措施,通过合理的电路设计、材料选择、测试和验证以及文档整改,可以提高产品的电磁兼容性,确保产品在电磁环境中的正常工作并减少对周围设备的干扰。

EMC整改对策实例

EMC整改对策实例

EMC整改对策实例EMC问题整改对策实例:1.完善设计阶段的EMC考虑:在产品设计阶段,需要充分考虑EMC因素,采取相应的措施来降低电磁辐射和提高抗干扰能力:(1)合理布局:合理布置线路和电磁元件,将不同频率、功率的电路和元件分开,避免相互干扰;(2)优化接地:合理设计接地方案,减少接地回路的阻抗,降低共模电流和电压;(3)屏蔽设计:采用合适的屏蔽措施,如屏蔽罩、屏蔽屏、屏蔽壳等,避免电磁波的辐射和入侵;(4)EMC滤波器:在输入和输出端口使用合适的滤波器,抑制高频干扰和共模电流;(5)散热设计:合理设计散热系统,降低温升,减少电磁辐射。

2.加强制造过程的EMC控制:在产品制造过程中,需要加强对EMC方面的控制,保证产品的一致性和稳定性:(1)严格执行规范:制定并严格执行EMC相关的制造规范和标准,确保产品符合要求;(2)质量检测:建立完善的质量检测流程,对产品进行EMC性能的全面测试和验证;(3)防静电措施:加强防静电措施,避免静电对电子设备的损害和干扰;(4)物料管理:严格管理物料采购和入库,确保物料的质量和电磁兼容性;(5)培训教育:对制造人员进行EMC相关知识的培训,提高整体素质和意识。

3.强化测试验证环节:在产品生产完成后,需要进行EMC性能的测试和验证,确保符合相应的标准和要求:(1)EMC测试设备:建立适当的EMC测试设备和实验室,进行电磁兼容性测试;(2)EMC测试方法:使用合适的测试方法和标准进行测试,如辐射测试、传导测试等;(3)数据分析:对测试数据进行统计和分析,及时发现问题和异常,采取相应的整改措施;(4)测试记录:建立完善的测试记录和档案,追溯产品的EMC性能和改进历程;(5)持续改进:根据测试结果和数据分析,不断优化设计和整改措施,提高产品的EMC性能。

4.加强与供应商的合作和管理:在供应链管理过程中,需要与供应商建立良好的合作关系(1)供应商评估:评估供应商的质量管理体系和EMC能力,选择合适的供应商;(2)技术交流:与供应商进行技术交流和合作,共同解决EMC问题和提高性能;(3)供应链管理:建立供应链管理体系,监控和管理供应商的质量和EMC能力;(4)供应商培训:对供应商进行EMC方面的培训和指导,提高其技术水平和认识;(5)合作改进:与供应商共同改进和优化产品设计和制造过程,提高整体EMC性能。

_EMC_整改常见措施

_EMC_整改常见措施

_EMC_整改常见措施EMC整改常见措施一、背景介绍电磁兼容性(Electromagnetic Compatibility,简称EMC)是指电子设备在电磁环境中能够正常工作,同时不对周围的其他设备或者系统产生不可接受的干扰。

在实际应用中,由于各种原因,电子设备可能会存在电磁兼容性问题,需要进行整改措施。

二、EMC整改常见措施1. 设备屏蔽设备屏蔽是一种常见的EMC整改措施,通过在设备外壳或者电路板上添加屏蔽材料,有效地阻隔电磁辐射和电磁感应。

屏蔽材料可以是金属盖板、金属屏蔽罩等,能够将电磁波反射、吸收或者散射,从而达到减少干扰的效果。

2. 地线设计地线设计是EMC整改中的关键措施之一。

良好的地线设计可以有效地抑制电磁辐射和电磁感应,减少电磁干扰。

在地线设计中,需要合理规划地线的走向和布局,确保地线的连接良好,并避免浮现地线回流、地线环路等问题。

3. 滤波器应用滤波器是一种常用的EMC整改措施,通过滤除电源线上的高频噪声,减少电磁辐射和电磁感应。

滤波器可以分为入线滤波器和出线滤波器,分别用于滤波电源输入端和输出端的电磁干扰。

合理选择并应用滤波器,可以有效地提高设备的抗干扰能力。

4. 等效电路仿真等效电路仿真是一种常见的EMC整改手段,通过建立设备的等效电路模型,分析电磁辐射和电磁感应的机理,预测设备在不同工作条件下的电磁兼容性。

通过仿真分析,可以找出设备中存在的电磁兼容性问题,并采取相应的措施进行整改。

5. 电磁屏蔽间隙控制电磁屏蔽间隙控制是一种常用的EMC整改措施,通过控制设备外壳或者电路板之间的间隙,减少电磁波的穿透和辐射。

合理设计和控制屏蔽间隙,可以有效地提高设备的抗干扰能力,减少电磁辐射和电磁感应。

6. 接地设计合理的接地设计是EMC整改中的重要措施之一。

通过良好的接地设计,可以减少电磁辐射和电磁感应,提高设备的抗干扰能力。

在接地设计中,需要注意接地回路的布局、接地电阻的选择和接地线的连接方式等方面。

_EMC_整改常见措施

_EMC_整改常见措施

_EMC_整改常见措施EMC整改常见措施一、背景介绍电磁兼容性(Electromagnetic Compatibility,简称EMC)是指在特定的电磁环境中,设备、系统或者产品能够在不产生或者接收到不可接受的电磁干扰的情况下正常工作的能力。

为了确保设备的正常运行,避免电磁干扰对其他设备或者系统造成影响,需要进行EMC整改。

二、EMC整改的目的EMC整改的目的是消除或者减少设备、系统或者产品在电磁环境中的电磁干扰,提高其电磁兼容性,确保其正常工作并符合相关标准和规定。

三、EMC整改常见措施1. 设备屏蔽通过在设备或者系统中增加屏蔽结构,如金属外壳、屏蔽罩等,来阻挡电磁波的传播,减少电磁辐射和接收到的干扰信号。

2. 滤波器的应用在设备的电源输入端或者信号输入输出端增加适当的滤波器,用于滤除电源线上的高频噪声和信号线上的干扰信号,保证设备的正常工作。

3. 地线设计合理设计设备的地线系统,确保设备的接地良好,并避免接地回路中浮现过大的回流电流,减少电磁辐射和接收到的干扰信号。

4. 电磁屏蔽室对于特殊要求的设备或者系统,可以建立电磁屏蔽室,将设备置于屏蔽室中进行测试和调试,避免电磁干扰对外界的影响。

5. 线缆布线合理规划设备的线缆布线,避免线缆之间的交叉干扰和电磁辐射,采用屏蔽线缆或者增加线缆的距离来降低干扰。

6. 抑制电磁辐射通过合理的电路设计和信号处理,减少电路中的高频振荡和电磁辐射,降低设备对外界的电磁干扰。

7. 抑制电磁感应通过合理的电路设计和信号处理,减少设备对外界电磁场的感应,降低设备对外界电磁干扰的敏感度。

8. 场强测量和测试进行EMC整改后,需要进行场强测量和测试,验证设备的电磁兼容性是否符合要求,并对不符合要求的地方进行进一步的优化和调整。

9. 电磁兼容性培训对设备的操作人员进行电磁兼容性培训,提高其对电磁干扰和电磁辐射的认识,加强设备的正确使用和维护,减少电磁干扰的发生。

四、EMC整改的效果评估EMC整改后,需要对设备进行效果评估,包括电磁辐射和电磁感应的测试,验证整改措施的有效性,并根据测试结果进行进一步的优化和改进。

_EMC_整改常见措施

_EMC_整改常见措施

_EMC_整改常见措施EMC整改常见措施引言概述:电磁兼容性(Electromagnetic Compatibility,简称EMC)是指电子设备在电磁环境中正常工作而不对周围环境产生电磁干扰,同时也不受到外界电磁干扰的能力。

为了保证设备的正常运行和避免电磁干扰对其他设备和环境造成影响,EMC整改措施变得至关重要。

本文将介绍EMC整改的常见措施。

一、设备屏蔽措施1.1 金属屏蔽金属屏蔽是一种常见的EMC整改措施,通过在设备外壳或电路板上覆盖金属屏蔽层来阻隔电磁辐射和接收外界干扰。

金属屏蔽可以有效地减少电磁泄漏和辐射,从而提高设备的抗干扰能力。

1.2 导电涂层导电涂层也是一种常用的EMC整改手段,它可以在设备表面形成一层导电膜,从而提高设备的屏蔽性能。

导电涂层可以有效地吸收电磁波并将其导向地面,减少电磁辐射和干扰。

1.3 电磁屏蔽隔离间隔电磁屏蔽隔离间隔是指在设备内部设置屏蔽隔离结构,将不同功能模块或电路板之间的电磁干扰互相隔离。

通过合理设计隔离结构,可以有效地减少电磁干扰的传导和辐射,提高设备的EMC性能。

二、滤波器应用2.1 输入滤波器输入滤波器是一种常见的EMC整改措施,它可以在电源输入端设置滤波电路,用于抑制电源线上的高频噪声和干扰信号。

输入滤波器可以有效地减少电源线对设备的电磁干扰,提高设备的EMC性能。

2.2 输出滤波器输出滤波器是一种常用的EMC整改手段,它可以在设备输出端设置滤波电路,用于抑制设备输出线上的高频噪声和干扰信号。

输出滤波器可以有效地减少设备对外界的电磁干扰,提高设备的EMC性能。

2.3 通信滤波器通信滤波器是一种专门用于抑制通信信号干扰的滤波器,它可以在通信接口处设置滤波电路,用于过滤掉通信线路上的高频噪声和干扰信号。

通信滤波器可以有效地提高设备的通信质量和抗干扰能力。

三、接地和屏蔽3.1 设备接地设备接地是一种常用的EMC整改手段,通过合理设置设备的接地系统,将设备的电磁泄漏和干扰信号导向地面。

_EMC_整改常见措施

_EMC_整改常见措施

_EMC_整改常见措施EMC整改常见措施一、背景介绍电磁兼容性(Electromagnetic Compatibility,简称EMC)是指电子设备在电磁环境中正常工作,不产生或者不受到电磁干扰的能力。

为了保证设备的EMC,当发现设备存在电磁干扰问题时,需要采取相应的整改措施,以确保设备符合相关的EMC标准。

二、整改目标整改的目标是消除或者降低设备的电磁干扰,使其符合EMC标准要求。

具体目标包括:1. 减少设备产生的电磁辐射水平。

2. 提高设备的抗干扰能力,使其能够正常工作而不受到外部电磁干扰的影响。

3. 降低设备对周围环境和其他设备的电磁干扰水平,避免对其他设备的正常运行造成影响。

三、常见整改措施1. 优化电路设计:- 采用合适的滤波器和抑制器,降低电磁辐射水平。

- 优化地线布局,减少回流路径的电磁辐射。

- 采用屏蔽措施,避免电磁泄漏和干扰。

- 合理选择元器件,避免元器件自身的电磁干扰。

2. 优化PCB布局:- 合理布置元器件,减少信号线和电源线的交叉和共用。

- 增加地线和电源线的宽度,降低电阻和电感,减少电磁干扰。

- 采用合适的层次分布,将信号层和电源层分离,减少电磁干扰。

3. 优化接地系统:- 设计合理的接地系统,确保良好的接地连接。

- 减少接地回流路径的长度,降低电磁辐射。

- 采用分离接地和信号层的设计,减少接地回流路径上的干扰。

4. 优化电源系统:- 使用滤波器和稳压器,减少电源的噪声和干扰。

- 提供足够的电源容量,避免电源过载引起的干扰。

- 采用电源隔离措施,避免共模干扰。

5. 优化外壳设计:- 采用合适的屏蔽材料和结构,减少外界电磁干扰对设备的影响。

- 设计合理的接地结构,确保外壳的接地效果良好。

6. 优化线缆布线:- 使用屏蔽线缆,减少电磁辐射和干扰。

- 避免线缆过长,减少电磁波损耗和干扰。

7. 优化测试和验证:- 进行EMC测试,确保设备符合相关标准要求。

- 进行抗干扰测试,验证设备的抗干扰能力。

_EMC_整改常见措施

_EMC_整改常见措施

_EMC_整改常见措施标题:EMC整改常见措施引言概述:电磁兼容性(Electromagnetic Compatibility,EMC)是指电子设备在电磁环境中能够正常工作而不对周围环境和其他设备造成干扰的能力。

在实际应用中,由于各种因素的影响,电子设备可能出现EMC问题,需要进行整改措施。

本文将介绍EMC整改的常见措施,帮助读者更好地解决EMC问题。

一、电路设计方面的整改措施1.1 优化PCB布局:合理布局电路板上的元器件,减少信号线长度,减小回路面积,降低电磁辐射。

1.2 使用屏蔽罩:对容易产生电磁辐射的元器件或电路进行屏蔽,减少电磁波的辐射和传播。

1.3 降低电路噪声:采取滤波、隔离等措施,减少电路中的噪声干扰,提高电路的抗干扰能力。

二、外壳设计方面的整改措施2.1 选择合适的外壳材料:外壳材料应具有良好的屏蔽性能,能够有效阻挡电磁波的传播。

2.2 设计合理的接地结构:外壳的接地结构应设计合理,确保外壳与地线连接良好,减少接地回路的阻抗。

2.3 添加滤波器:在外壳上添加滤波器,对进出的电磁波进行滤波处理,降低外壳内的电磁辐射水平。

三、电源线设计方面的整改措施3.1 优化电源线布局:电源线应尽量远离信号线,减少电磁干扰的可能性。

3.2 使用滤波器:在电源线上添加滤波器,减少电源线传导的电磁干扰。

3.3 稳定电源供应:确保电源供应稳定,避免电源波动引起的电磁干扰。

四、设备测试方面的整改措施4.1 进行辐射测试:对设备进行辐射测试,检测设备的电磁辐射水平,及时发现问题并进行整改。

4.2 进行传导测试:对设备进行传导测试,检测设备的电磁传导水平,找出潜在的干扰源。

4.3 进行整体测试:对整个设备进行综合测试,验证设备的整体电磁兼容性,确保设备符合相关标准要求。

五、软件设计方面的整改措施5.1 优化软件编程:减少软件中的电磁辐射源,降低软件对电磁兼容性的影响。

5.2 添加滤波算法:在软件中添加滤波算法,对输入输出信号进行滤波处理,减少电磁干扰。

EMC整改常用对策

EMC整改常用对策

EMC整改常用对策1.加强科学管理:EMC整改需要建立一套科学的管理制度和流程,明确责任和权限。

要制定详细的工作程序和操作规范,并对员工进行培训,确保每个人都清楚自己的职责和任务。

2.引进先进设备:EMC整改需要投入资金引进先进的设备和技术,提高生产环境的安全性和稳定性。

同时,要定期检查设备和设施的状态,及时进行维修和更换,确保其正常运行。

3.定期监测:要定期进行EMC监测和评估,发现问题及时处理。

可以借助专业机构进行监测,确保监测结果的客观性和可靠性。

同时,还要建立监测档案,便于日后查阅和分析。

4.强化培训:要对员工进行定期培训,提高他们的EMC意识和技能。

培训内容可以包括EMC的基本知识、操作规范和应急处理等方面,使员工能够正确使用设备和工具,降低事故发生的可能性。

6.提高安全意识:要加强员工的安全教育和安全意识培养,让员工充分意识到EMC的重要性和可能的风险。

可以通过开展安全培训、组织安全讲座、设立安全奖励等方式,增强员工的安全意识和责任感。

7.严格执行相关规定:要严格执行相关的法律法规和标准要求,确保企业的EMC符合法律法规和标准要求。

同时,要加强与相关部门的沟通和协作,及时了解最新的法规和标准要求,确保企业的EMC工作与时俱进。

8.加强沟通与合作:EMC整改需要多部门的协调和合作,要加强内外部的沟通与合作。

与监管部门和专业机构保持良好的合作关系,可以获得更多的技术支持和帮助。

同时,要加强内部各部门的沟通与协作,形成合力,共同推进EMC整改工作的开展。

9.建立长效机制:整改工作不能一劳永逸,要建立长效机制,不断加强和改进。

要定期评估整改效果和工作进展,及时进行调整和改进。

同时,要建立EMC的长期管理机制,确保EMC工作的持续性和稳定性。

通过以上的常用对策,可以有效提高企业的EMC水平和安全性,降低EMC风险的发生概率,保障企业的生产经营安全。

同时,也要根据具体情况进行调整和完善,确保对策的有效性和灵活性。

_EMC_整改常见措施

_EMC_整改常见措施

_EMC_整改常见措施EMC整改常见措施一、背景介绍电磁兼容性(Electromagnetic Compatibility,简称EMC)是指电子设备在特定的电磁环境下,能够正常工作并与其他设备共存的能力。

在实际应用中,往往会出现电磁辐射、抗干扰等问题,需要采取相应的整改措施来保证设备的正常运行。

二、常见的EMC整改措施1. 设计合理的电磁屏蔽结构:通过使用合适的屏蔽材料、设计合理的屏蔽结构,可以有效地减少电磁辐射和电磁干扰。

例如,在电子产品的外壳和电路板之间添加屏蔽罩,以阻隔电磁波的传播。

2. 优化电路布局:合理的电路布局可以减少电磁辐射和抗干扰能力。

通过减少信号线的长度、增加信号线之间的间距、避免信号线与电源线的交叉等方式,可以降低电磁辐射和干扰。

3. 选择合适的滤波器:滤波器是一种常用的EMC整改措施,可以用来滤除电源线上的高频噪声,提高设备的抗干扰能力。

根据实际情况选择合适的滤波器类型和参数,可以有效地减少电磁干扰。

4. 加强接地措施:良好的接地系统能够有效地降低电磁辐射和抗干扰能力。

通过增加接地导线的截面积、减小接地回路的阻抗、合理布置接地点等方式,可以提高接地系统的效果。

5. 使用屏蔽电缆和连接器:在高频信号传输过程中,使用屏蔽电缆和连接器可以有效地减少电磁辐射和干扰。

通过选择合适的屏蔽材料和设计合理的连接方式,可以提高电缆和连接器的抗干扰能力。

6. 合理选择元器件:在设计电子设备时,选择合适的元器件也是一种重要的EMC整改措施。

例如,选择低电磁辐射的元器件、抗干扰能力强的元器件等,可以提高整个系统的EMC性能。

7. 进行EMC测试和评估:在整改措施实施完成后,进行EMC测试和评估是必不可少的。

通过对设备进行电磁兼容性测试,可以评估整改措施的有效性,并对不合格的地方进行进一步的改进。

三、总结EMC整改是保障电子设备正常运行的重要环节。

通过合理的电磁屏蔽结构、优化电路布局、选择合适的滤波器、加强接地措施、使用屏蔽电缆和连接器、合理选择元器件以及进行EMC测试和评估等措施,可以有效地提高设备的电磁兼容性,减少电磁辐射和抗干扰能力,保证设备的正常运行。

_EMC_整改常见措施

_EMC_整改常见措施

_EMC_整改常见措施EMC整改常见措施一、背景介绍电磁兼容性(Electromagnetic Compatibility,简称EMC)是指电子设备在电磁环境中能够正常工作,同时不对周围环境和其他设备造成干扰的能力。

EMC问题的存在会导致设备之间的相互干扰,甚至影响其正常运行。

因此,为了保证设备的正常工作和电磁环境的稳定,需要进行EMC整改。

二、EMC整改的目的EMC整改的目的是通过采取一系列措施,消除或者降低设备之间的电磁干扰,确保设备的正常运行和电磁环境的稳定。

具体措施如下:1. 设备外壳屏蔽在EMC整改过程中,可以通过在设备外壳上添加屏蔽层来减少电磁辐射和接收到的干扰信号。

屏蔽层可以采用金属材料,如铝或者铜,来提供良好的屏蔽效果。

2. 电磁波滤波器的使用电磁波滤波器是一种用于滤除电磁波中特定频率成份的设备。

在EMC整改中,可以根据设备的工作频率和电磁辐射特点选择合适的滤波器。

滤波器的使用可以有效地降低电磁干扰和抑制电磁辐射。

3. 地线和屏蔽线的优化地线和屏蔽线是EMC整改中重要的一环。

通过优化设备的地线和屏蔽线布局,可以减少电磁干扰的传导和辐射。

合理的地线和屏蔽线布局可以有效地提高设备的抗干扰能力。

4. 电磁辐射测试和测量EMC整改过程中,需要进行电磁辐射测试和测量,以评估设备的辐射水平和干扰程度。

通过测试和测量,可以确定设备存在的问题,并采取相应的措施进行整改。

5. 电磁兼容性设计优化在设备的设计阶段,应该考虑到EMC问题,采取相应的设计优化措施。

例如,合理选择元器件,优化电路布局,增加滤波电路等,以提高设备的电磁兼容性。

6. 可靠性测试和验证EMC整改后,还需要进行可靠性测试和验证,以确保设备在各种工作条件下仍然具备良好的电磁兼容性。

通过可靠性测试和验证,可以评估设备的抗干扰能力和稳定性。

三、总结EMC整改是保证设备正常工作和电磁环境稳定的重要环节。

通过采取一系列措施,如设备外壳屏蔽、电磁波滤波器的使用、地线和屏蔽线的优化、电磁辐射测试和测量、电磁兼容性设计优化以及可靠性测试和验证,可以消除或者降低设备之间的电磁干扰,确保设备的正常运行。

EMC整改常用对策

EMC整改常用对策

EMC整改常用对策
1.制定整改计划:首先要制定整改计划,明确整改目标、范围、时间节点和责任人,确保整改工作有条不紊地进行。

2.成立整改小组:成立专门的整改小组,由该企业内相关部门的负责人和专职人员组成,制定整改方案并负责具体的整改工作。

3.形成问题清单:对企业内存在的问题进行全面梳理和分析,形成问题清单,逐一列出待整改的问题,明确整改重点和优先级。

4.分析问题根因:针对问题清单中列出的问题,进行深入分析,找出问题的根本原因,以便后续制定具体的整改对策。

5.制定整改方案:根据问题清单和问题根因分析的结果,制定相应的整改方案,并明确整改的具体措施和时间节点。

6.加强管理体制建设:完善企业的内部管理体制,明确各级职责和权限,加强部门间的协调合作,提高组织效能。

7.强化员工培训:通过开展员工培训,提升员工的技术水平和专业素质,增强员工的责任意识和服务意识,培养员工对整改工作的积极参与态度。

8.加强绩效评估:建立并完善绩效评估机制,明确评估指标和标准,对整改工作进行定期评估,并对评估结果进行激励和奖励。

10.建立监督机制:建立内部监督和检查机制,对整改过程进行监督和检查,确保整改工作的质量和进度。

11.建立管理创新机制:鼓励员工提出创新建议和改进方案,建立奖励制度,激发员工的创造潜能,推动企业的管理创新和发展。

12.持续改进:EMC整改是一个持续不断的过程,企业需要不断总结经验,改进工作方法,推动工作质量的不断提高。

以上是EMC整改常用的对策,企业可以根据自身情况合理选择和组合相应的对策,以实现整改目标和提升企业综合竞争力。

_EMC_整改常见措施

_EMC_整改常见措施

_EMC_整改常见措施EMC(Electromagnetic Compatibility)是指电磁兼容性,是指电子设备在电磁环境中能够正常工作而不对周围的电磁环境产生不可接受的干扰。

在现代社会中,电子设备的使用越来越广泛,因此保证电子设备的EMC是至关重要的。

本文将介绍一些常见的EMC整改措施。

一、提高电磁兼容性的设计原则1.1 电磁兼容性设计的整体思路在电子设备的设计过程中,应该从一开始就将EMC考虑进去。

这意味着在设计阶段就要尽量减少电磁辐射和敏感性,采用一些合适的电路布局和线路设计,以降低电磁干扰的发生和传播。

1.2 电磁兼容性的电路设计在电路设计中,应该采用一些抑制电磁干扰的措施,如使用滤波器、隔离器和屏蔽等。

此外,还应该合理选择元器件,尽量选择具有较低辐射和敏感性的元器件,以减少电磁干扰的可能性。

1.3 电磁兼容性的线路布局在线路布局中,应该避免电磁辐射源和敏感器件之间的靠近,尽量采用分离布局。

此外,还应该合理规划地线和电源线的走向,减少互相干扰的可能。

二、屏蔽措施2.1 金属屏蔽金属屏蔽是一种常见的屏蔽措施,通过在电子设备周围添加金属外壳,来阻挡电磁波的传播。

金属外壳应该具有良好的导电性能,并且与设备的地线连接良好,以确保电磁波能够有效地通过外壳排放。

2.2 电磁屏蔽材料除了金属屏蔽外,还可以使用电磁屏蔽材料来进行屏蔽。

电磁屏蔽材料通常是由导电材料制成,具有良好的屏蔽效果。

在设计中,可以在敏感器件周围添加电磁屏蔽材料,以减少电磁干扰的影响。

2.3 磁屏蔽磁屏蔽是一种专门用于屏蔽磁场的措施。

可以在电子设备的敏感器件周围添加磁屏蔽材料,以减少外部磁场的干扰。

磁屏蔽材料通常是由具有高导磁性能的材料制成,如铁、镍等。

三、滤波器的应用3.1 电源滤波器电源滤波器是一种用于减少电源线上的电磁干扰的装置。

它能够滤除电源线上的高频噪声,保证电子设备的稳定工作。

在设计中,应该根据设备的需求选择适当的电源滤波器。

_EMC_整改常见措施

_EMC_整改常见措施

_EMC_整改常见措施EMC整改常见措施一、背景介绍电磁兼容性(Electromagnetic Compatibility,简称EMC)是指在电子设备、系统或者系统之间,能够在不产生不可接受的电磁干扰的情况下,正常运行的能力。

在实际应用中,由于电子设备和系统之间的电磁干扰问题,需要进行EMC整改措施来保证设备和系统的正常运行。

二、EMC整改常见措施1. 设备和系统的地线设计在EMC整改中,地线的设计非常重要。

合理的地线设计可以有效地减少电磁干扰。

常见的地线设计措施包括:- 确保设备和系统的地线连接良好,地线电阻低。

- 使用合适的地线材料和规格,避免地线过长或者过细。

- 设备和系统的地线要与建造物的接地系统连接,确保接地的可靠性。

2. 电磁屏蔽措施电磁屏蔽是一种常见的EMC整改措施。

通过使用屏蔽材料或者屏蔽结构,可以有效地阻挠电磁波的传播和干扰。

常见的电磁屏蔽措施包括:- 在设备和系统的关键部位使用金属屏蔽罩或者屏蔽盒,阻挡电磁波的传播。

- 使用屏蔽材料对设备和系统进行包覆,减少电磁辐射和敏感度。

- 对电缆进行屏蔽处理,减少电磁波的干扰。

3. 滤波器的应用滤波器是一种常见的EMC整改措施,用于减少电磁干扰的传播和影响。

常见的滤波器包括:- EMI滤波器:用于减少电磁干扰的传输和辐射。

- ESD滤波器:用于防止静电放电引起的电磁干扰。

- EMI滤波电容器:用于滤除高频电磁干扰。

4. 设备和系统的布局优化在EMC整改中,合理的设备和系统布局可以减少电磁干扰的传播和影响。

常见的布局优化措施包括:- 设备和系统之间的间距要足够,避免相互之间的电磁干扰。

- 尽量避免设备和系统的电源线和信号线交叉布置,减少互相之间的干扰。

- 合理安排设备和系统的电源线和信号线的走向,避免长线和短线之间的干扰。

5. 电磁辐射测试和认证EMC整改的最终目的是确保设备和系统符合相关的电磁辐射标准和要求。

因此,进行电磁辐射测试和认证是必要的措施。

_EMC_整改常见措施

_EMC_整改常见措施

_EMC_整改常见措施EMC整改常见措施一、背景介绍电磁兼容性(Electromagnetic Compatibility,简称EMC)是指电子设备在特定的电磁环境中,能够以预期的方式正常工作,同时不对周围的其他电子设备和系统造成无法接受的干扰。

在实际应用中,由于电子设备的复杂性和电磁环境的多变性,EMC问题成为制约电子设备性能和可靠性的重要因素。

为了解决EMC问题,需要采取一系列的整改措施。

二、EMC整改常见措施1. 设计合理的电路布局:- 采用合理的电路布局,避免信号线和电源线交叉布线,减少电磁干扰的可能性。

- 使用屏蔽罩或者屏蔽板来隔离敏感电路和外部电磁场,降低干扰水平。

2. 选择合适的滤波器:- 在电源线和信号线上安装合适的滤波器,可以有效地抑制电磁噪声和干扰信号的传播。

- 滤波器的选择应根据实际情况和需求来确定,包括频率范围、衰减特性和电源容量等。

3. 优化地线设计:- 合理设计地线系统,确保设备的接地电阻低,并保证地线的连续性和稳定性。

- 减少地线回路的面积,避免形成大的地线环路,从而减小电磁辐射和接收的干扰。

4. 采用合适的屏蔽材料:- 使用合适的屏蔽材料来包围敏感电路和设备,以减少电磁辐射和接收的干扰。

- 屏蔽材料的选择应根据频率范围、屏蔽效果和成本等因素进行评估和比较。

5. 合理选择和布置天线:- 在无线通信设备中,合理选择和布置天线可以减少电磁波辐射和接收的干扰。

- 天线的选择应考虑频率范围、增益、方向性和天线阻抗等因素。

6. 进行电磁兼容性测试:- 在产品开辟的各个阶段进行电磁兼容性测试,包括辐射测试和传导测试。

- 根据测试结果,及时发现和解决存在的EMC问题,确保产品符合相关标准和要求。

7. 加强人员培训和意识:- 通过培训和教育,提高工程师和技术人员的电磁兼容性意识和知识水平。

- 建立健全的EMC管理制度,加强对EMC整改措施的执行和监督。

8. 定期进行EMC维护:- 建立定期的EMC维护计划,对已投入使用的设备进行定期检查和维护。

_EMC_整改常见措施

_EMC_整改常见措施

_EMC_整改常见措施EMC整改常见措施引言概述:电磁兼容性(EMC)是指电子设备在电磁环境中能够正常工作而不造成对其他设备的干扰或者受到其他设备干扰的能力。

在电子产品的研发和生产过程中,EMC问题是一个重要的考虑因素。

本文将介绍一些常见的EMC整改措施,以匡助企业提高产品的EMC性能。

一、电路设计方面的整改措施:1.1 电磁屏蔽设计:通过在电路板上添加屏蔽罩、屏蔽片等材料,减少电磁波的辐射和接收,从而降低干扰。

1.2 地线设计:合理规划地线布局,减少地线回流路径的长度,降低徊流电流的干扰。

1.3 滤波器的应用:在电路中添加适当的滤波器,可以有效地抑制高频噪声,减少干扰。

二、电源设计方面的整改措施:2.1 电源滤波:在电源输入端添加滤波器,过滤掉电源线上的高频噪声,减少对其他设备的干扰。

2.2 电源隔离:使用适当的隔离电源设计,可以减少共模干扰,提高EMC性能。

2.3 电源线的布局:合理规划电源线的布局,减少电源线的长度和交叉,降低电源线的辐射和接收。

三、外壳设计方面的整改措施:3.1 金属外壳:使用金属外壳可以提供较好的屏蔽效果,减少电磁波的辐射和接收。

3.2 金属接地:确保外壳与地线的良好连接,以提供有效的屏蔽和接地。

3.3 过滤器的应用:在外壳上添加合适的滤波器,可以进一步减少辐射和接收的电磁波。

四、布线设计方面的整改措施:4.1 信号线与电源线的隔离:尽量避免信号线和电源线的交叉,减少信号线受到电源线干扰的可能性。

4.2 信号线的长度控制:合理控制信号线的长度,减少信号线的辐射和接收。

4.3 差模信号的使用:在传输敏感信号时,使用差模信号传输可以有效地抑制共模干扰。

五、测试和验证方面的整改措施:5.1 EMC测试:在产品开辟的各个阶段进行EMC测试,及时发现和解决潜在的EMC问题。

5.2 技术规范遵循:遵循相关的EMC技术规范和标准,确保产品的EMC性能符合要求。

5.3 故障分析和优化:对于浮现EMC问题的产品,进行故障分析和优化,找出问题的根源并采取相应的措施进行改进。

_EMC_整改常见措施

_EMC_整改常见措施

_EMC_整改常见措施EMC整改常见措施一、背景介绍电磁兼容性(Electromagnetic Compatibility,简称EMC)是指在电子设备中,各种电子设备能够在电磁环境中共存并正常工作的能力。

EMC问题的存在可能导致电子设备之间的相互干扰,甚至对人体健康和环境造成潜在风险。

因此,为了确保电子设备的正常运行和人体健康的安全,需要采取一系列的整改措施来解决EMC问题。

二、EMC整改常见措施1. 设备屏蔽设备屏蔽是一种常见的EMC整改措施,通过在电子设备内部或者外部添加屏蔽材料或者屏蔽结构,阻挡或者减少电磁辐射的传播和干扰。

例如,在电子设备的外壳上添加金属屏蔽罩,可以有效地屏蔽电磁波的辐射和接收,降低干扰。

2. 地线设计良好的地线设计是EMC整改中的重要环节。

地线的作用是提供电子设备的电流回路,减少电磁辐射和接收的干扰。

合理的地线布局和连接可以有效地降低电磁辐射和接收的干扰。

例如,使用大面积的地面层、规划合理的地线走向、减少地线的长度等措施。

3. 滤波器安装滤波器的安装是一种常见的EMC整改措施,可以用于减少电子设备中电源线上的电磁干扰。

滤波器可以通过滤除高频噪声,使电源线上的电压和电流波形更加平滑,降低干扰。

例如,安装电源线滤波器、信号线滤波器等。

4. 电磁隔离电磁隔离是一种常见的EMC整改措施,通过隔离和分离电子设备之间的电磁辐射和接收,减少干扰。

例如,在电子设备之间设置隔离屏蔽墙、隔离屏蔽罩等,使电磁波无法直接传播和干扰其他设备。

5. 接地设计良好的接地设计是EMC整改中的重要环节,可以有效地降低电磁辐射和接收的干扰。

合理的接地设计可以确保设备的接地电阻低,提供良好的电流回路,减少干扰。

例如,使用低阻抗的接地线、规划合理的接地网等。

6. 电磁波屏蔽电磁波屏蔽是一种常见的EMC整改措施,通过在电子设备周围设置屏蔽结构或者屏蔽材料,阻挡或者减少电磁波的传播和干扰。

例如,在电磁辐射较强的区域周围设置金属屏蔽板,可以有效地屏蔽电磁波的辐射和接收,降低干扰。

_EMC_整改常见措施

_EMC_整改常见措施

_EMC_整改常见措施EMC整改常见措施一、背景介绍电磁兼容性(Electromagnetic Compatibility,简称EMC)是指电子设备在共存工作时,不对周围的设备和系统产生任何不良影响,同时也不受周围设备和系统的不良影响。

为了确保产品的电磁兼容性,需要采取一系列的整改措施。

二、常见的EMC整改措施1. 设计阶段的整改措施在产品设计阶段,可以采取以下措施来提高电磁兼容性:- 电磁兼容性设计指南:根据相关的电磁兼容性设计指南,如IEC 61000系列标准,对产品进行设计,确保满足相关要求。

- 电磁屏蔽:采用合适的屏蔽材料和结构,减少电磁泄漏和干扰。

- 接地和接地回路:合理设计接地系统和接地回路,减少电磁干扰。

- 滤波器:使用合适的滤波器来抑制电源线上的高频噪声。

- 电磁辐射:通过合适的线路布局和屏蔽来减少电磁辐射。

- 电磁敏感性:增加产品的电磁抗扰度,减少对外界电磁干扰的敏感性。

2. 生产阶段的整改措施在产品生产阶段,可以采取以下措施来提高电磁兼容性:- 严格控制生产工艺:确保产品在生产过程中的电磁兼容性符合相关要求。

- 质量控制:建立质量控制体系,对产品进行全面的电磁兼容性测试和检验,确保产品质量符合标准要求。

- 整改测试:在生产过程中,对存在电磁兼容性问题的产品进行整改测试,并采取相应的整改措施。

- 过程控制:对生产过程中可能导致电磁干扰的环节进行严格控制,避免产生不良影响。

3. 使用阶段的整改措施在产品使用阶段,可以采取以下措施来提高电磁兼容性:- 增加屏蔽:对产品周围的电磁干扰源进行屏蔽,减少对产品的影响。

- 环境控制:控制产品使用环境中的电磁干扰源,减少对产品的干扰。

- 电磁兼容性测试:定期对产品进行电磁兼容性测试,确保产品的电磁兼容性符合要求。

- 故障排除:对出现电磁干扰问题的产品进行故障排除,找出问题原因并采取相应的整改措施。

三、整改效果评估为了评估整改措施的效果,可以进行以下评估:- 电磁兼容性测试:通过对整改后的产品进行电磁兼容性测试,评估产品是否符合相关标准要求。

_EMC_整改常见措施

_EMC_整改常见措施

_EMC_整改常见措施引言概述:EMC(Electromagnetic Compatibility)是指电子设备在电磁环境中正常工作,而不会对周围环境和其他设备产生电磁干扰。

然而,由于电磁环境的复杂性和电子设备的不断发展,EMC问题也日益突出。

为了解决EMC问题,常见的整改措施包括以下四个方面。

一、电磁屏蔽措施:1.1 使用金属屏蔽材料:金属屏蔽材料能够有效地吸收和反射电磁波,减少电磁辐射对周围环境和其他设备的干扰。

常见的金属屏蔽材料包括铁、铝、铜等。

1.2 设计合理的屏蔽结构:在电子设备的设计中,应合理设置屏蔽结构,将敏感部件与外界电磁干扰隔离开来。

例如,在电路板设计中,可以采用屏蔽罩、屏蔽盒等结构来保护电路。

1.3 优化接地系统:良好的接地系统可以有效地消除电磁干扰。

在设计电子设备时,应合理规划接地路线,减少接地电阻,提高接地效果。

二、滤波措施:2.1 使用滤波器:滤波器可以将电磁干扰滤除,保证电子设备的正常工作。

常见的滤波器包括低通滤波器、高通滤波器、带通滤波器等。

根据具体情况,选择合适的滤波器进行安装。

2.2 优化电源设计:合理设计电源系统,包括电源路线和电源滤波器,可以有效地抑制电磁干扰。

例如,在电源路线中添加电源滤波器,可以滤除电源路线上的高频噪声。

2.3 使用绕组滤波器:绕组滤波器是一种常见的滤波器,通过绕制特定的线圈来实现滤波效果。

在电子设备的设计中,可以合理使用绕组滤波器来减少电磁干扰。

三、地线设计:3.1 合理规划地线布局:在电子设备的设计中,应合理规划地线布局,减少地线之间的串扰。

地线的布线应尽量短,避免与其他信号线、电源线等交叉。

3.2 优化接地方式:选择合适的接地方式可以有效地减少电磁干扰。

常见的接地方式包括单点接地、多点接地、分层接地等。

根据具体情况,选择合适的接地方式进行设计。

3.3 使用地线屏蔽技术:地线屏蔽技术可以有效地减少地线之间的干扰。

在设计电子设备时,可以使用地线屏蔽技术来提高EMC性能。

_EMC_整改常见措施

_EMC_整改常见措施

_EMC_整改常见措施EMC(Electromagnetic Compatibility)是指电子设备在电磁环境中正常工作而不对周围电磁环境产生干扰的能力。

为了保证电子设备的EMC,需要采取一系列的整改措施。

以下是一些常见的EMC整改措施:1. 设计合理的电路板布局:合理的电路板布局可以减少电磁辐射和敏感性,减少电磁干扰的可能性。

布局时应注意将高频、高速信号线与低频、低速信号线分开布局,减少信号线之间的干扰。

2. 选择合适的滤波器:滤波器可以降低电磁辐射和敏感性,减少电磁干扰的传播。

根据设备的工作频率和干扰源的特点选择合适的滤波器,如低通滤波器、高通滤波器、带通滤波器等。

3. 使用合适的屏蔽材料:屏蔽材料可以阻挡电磁辐射和敏感性,减少电磁干扰的传播。

选择合适的屏蔽材料,如金属屏蔽罩、电磁屏蔽涂料等,用于包围敏感部件或者整个设备。

4. 加强接地措施:良好的接地可以减少电磁辐射和敏感性,提高设备的抗干扰能力。

接地时应采用低阻抗的接地方式,确保接地电阻小于规定值,并避免接地回路中浮现环路。

5. 控制电源线的辐射和敏感性:电源线是常见的电磁辐射和敏感性源,需要采取措施减少其干扰。

可以使用滤波器、屏蔽套等方式来控制电源线的辐射和敏感性。

6. 优化设备的电磁兼容性测试:在设备设计和创造过程中,进行电磁兼容性测试是必要的。

通过测试可以发现设备存在的问题,并及时采取相应的整改措施。

7. 加强人员培训和意识提升:EMC整改不仅仅是技术问题,也涉及人员的培训和意识提升。

需要加强对设计人员、创造人员和使用人员的培训,提高他们对EMC的认识和重视程度。

8. 遵守相关的EMC标准和法规:不同国家和地区有不同的EMC标准和法规,需要遵守并执行这些标准和法规。

例如,欧盟的CE认证、美国的FCC认证等,都是对设备EMC性能的要求。

综上所述,EMC整改常见措施包括合理的电路板布局、选择合适的滤波器、使用合适的屏蔽材料、加强接地措施、控制电源线的辐射和敏感性、优化设备的电磁兼容性测试、加强人员培训和意识提升,以及遵守相关的EMC标准和法规。

_EMC_整改常见措施

_EMC_整改常见措施

_EMC_整改常见措施EMC整改常见措施一、背景介绍电磁兼容性(Electromagnetic Compatibility,简称EMC)是指电子设备在特定的电磁环境中,能够在不产生不可接受的干扰或遭受不可接受的干扰的情况下正确运行的能力。

为了保证电子设备的EMC,需要采取一系列的整改措施。

二、常见EMC整改措施1. 设计合理的电路布局合理的电路布局是保证电子设备EMC的重要因素之一。

在设计过程中,应尽量避免信号线的交叉和平行走线,合理布置电源线和地线,减少电磁辐射和电磁感应。

2. 使用屏蔽材料和屏蔽技术屏蔽材料和技术可以有效地减少电磁辐射和电磁感应。

例如,在电子设备的外壳内部涂覆屏蔽漆、使用屏蔽罩等措施可以降低电磁辐射;在关键电路处使用屏蔽罩或屏蔽盖,可以减少电磁感应。

3. 优化电源设计电源是电子设备的重要组成部分,优化电源设计可以有效地提高设备的EMC。

例如,合理设计电源线的走向和布局,使用电源滤波器和稳压器等装置,可以减少电源线上的噪声和干扰。

4. 控制接地系统接地系统的设计和布局直接影响电子设备的EMC。

应采用合理的接地方式,减少接地回路的长度和面积,避免接地线与信号线、电源线等的交叉,以降低电磁干扰。

5. 使用抗干扰器件在电子设备的设计和制造过程中,应选用抗干扰性能良好的元器件。

例如,使用抗干扰性能好的滤波器、继电器、电容器等元器件,可以有效地降低电磁干扰。

6. 进行EMC测试和认证为了确保电子设备的EMC符合相关标准和要求,应进行EMC测试和认证。

通过测试和认证可以评估设备的电磁兼容性,并及时发现和解决潜在的问题。

7. 增加屏蔽接地在电子设备的设计和制造过程中,可以增加屏蔽接地来提高EMC。

屏蔽接地是指将设备的金属外壳与地线相连,形成一个低阻抗的接地回路,以减少电磁辐射和电磁感应。

8. 提高设备的抗干扰能力为了提高设备的抗干扰能力,可以采取一些措施。

例如,增加滤波电容、电感等元器件,提高设备的抗干扰能力;使用抗干扰性能好的电缆和连接器,减少电磁干扰。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

EMC整改对策实例标题:EMI快速诊断与对策2008-01-06 12:30:35EMI快速诊断与对策EMI FAST DIAGNOSIS AND COU NTERMEASURE深圳电子产品质量检测中心邓志新李思雄摘要文章主要介绍EMI快速诊断与对策,指出EMI改进的关键是EMI问题诊断,解决电磁兼容问题的根本办法,是进行电磁兼容设计。

EMI设计核心是紧紧围绕降低骚扰源频率f和减小高频电流环面积两大措施。

文章倡导人性化工作态度,作者认为,只要不断的学习和总结,EMC是逐渐“看得见和摸得着”的,是有规可循的。

关键词认证EMI 规律诊断对策设计Abstract I n this article, EMI fast diagnosis and countermeasure is introduced. EMI diagnosis is the key of EMI improvement, EMC design is the fundamentals of solving EMC problem. Th e core of EMC design is to take two measures-to reduce EMI source frequency and to reduce the acreage of high frequency current loop . Author sparkplug humanistic attitude to EMC,and author think that EMC will come into view and can be found out,a rule s hall be there to be useable. Keywords certification, EMI, rule, diagnosis, countermeasur e, design 电磁辐射骚扰的远场测量是指在半电波暗室或者EMC开阔场进行的测量,测量天线与被测物的距离一般为3米或3米以上,给出的结果是一张频谱图,即各个频率点的电磁辐射骚扰强度。

标准GB13837-1997(CISPR13)和GB4343-1995(CISPR14)规定,应分别测试EUT 外接连线,如电源线、AV线、耳机线、话筒线等线缆的骚扰功率。

传导骚扰是测试EUT运行过程中端口骚扰电压,包括电源端口、射频端口、天线端口、电信端口等。

如果被测设备有一个或者几个频率点的电磁骚扰超过了标准的限值,被测设备就不符合EMC标准要求。

如果设备没有通过EMC测试,我们从测量结果中,只能知道哪些频率点“超标”了,而这些频率的电磁骚扰是从哪里出来的,往往是工程师门最不容易发现、最难解决的问题。

EMI快速诊断方法就是针对EU T的原理,先推断引起EMI的原因和内部骚扰源可能是什么,再根据EMI产生的途径和机理,透过测试图,分析超差原因;必要时,辅以高频示波器或频谱仪,从频域到时域,寻找产生EMI问题的对应电路和器件;从而制定EMI對策。

在这里提供一些案例,通过解读测试图,把看不见、摸不着的EMI变得直观易懂,供大家参考。

关于电磁辐射骚扰场强或功率测试分析案例:辐射骚扰图1如右:样品为CRT显示器频率点35.4 MHz 附近, 30~45MHz之间大部分隆起超出限值,通常只有两个原因-开关电源电路或地线处置不良引起。

对策- 显示器使用带磁环类型的信号电缆和电源电缆, 电源输入端串接差模线圈,电源地线剪短就近接地。

辐射骚扰图2如右:样品为微型计算机(改进后)频率点100 MHz、366.24MHz等刚好符合GB9254-1998B级要求。

这是测试超差6dB后,机箱经过金属胶带密封处理后获得的测试结果。

象这种曲线底部未明显抬高,30 ~1000MHz频段有频率点超差现象,应该选择屏蔽较好的电缆和机箱。

使用带滤波器类型或带磁环的信号电缆和电源电缆, 电源输入端串接差模线圈,会有益处。

辐射骚扰图3如右:样品为微型计算机频率点35 MHz、70MHz、170.76 MHz等附近超差,既有频率低端隆起超出限值现象,由地线问题;也有30~1000MHz频段频率点超差现象,有屏蔽问题。

应该综合处理,选择屏蔽较好的电缆和机箱,使用带滤波器类型或带磁环类型的信号电缆和电源电缆, 电源输入端串接差模线圈。

值得一体的是,对于如果带电机的EUT,图3 如果频谱图和时域波形图都带有较多毛刺,须怀疑电机骚扰。

辐射骚扰图4如右:样品为CRT显示器(改进后)频率点45 MHz附近、70MHz-100 MHz频段等超差严重,分别超出限值8dB、12dB;既有频率低端隆起超出限值现象,也有30~1000MHz频段频率点超差现象,经检查,所有措施都已做足够,不得不怀疑CRT有问题,拆换后测试结果很好,如图4。

骚扰功率图5如右:样品为VCD播放机/AV电缆频率30~300MHz之间大部分频段隆起贴近或超出限值,曲线底部明显抬高,通常只有一个原因-地线处置不良引起。

此外,频率点135MHz测试超差较大,图中可见每隔27MHz就有一个高点, 该VCD播放机解码芯片正好使用27MHz晶振, 135MHz是27MHz的5倍频。

如果地线改善后,该频点仍然超差, 应减小晶振谐波辐射。

实际情况:AV电缆梅花接口在金属后壳安装处,未直接就近与金属后壳相连接地。

图5 对策:换用能够在安装处直接与金属后壳接地处理的AV梅花接口;频率点135MHz 平均值仍然超差5.6dB, 在如下图对应箭头所指位置使用磁珠,即晶振与解码芯片相连脚上,加串100MHz/1500Ω磁珠,测试结果通过。

骚扰功率图6如右:开关电源/输入电源线30~80 MHz之间大部分隆起超出限值, 30~300MHz之间全是开关电源典型频谱图,表明开关电源电路或地线处置不良。

经检查开关电源输入电源线地线只接了两个Y电容,并未与开关电源其它地相连;虽使用了共模线圈,图6 对策:开关电源输入电源线地线与初级其它地相连;电源输入端N端布线串接差模线圈,串接差模线圈前端电源输入L端与N端之间加接差模电容,差模线圈后L端与N端分别加一个到地共模电容。

处理后测试合格。

使用带磁环电源电缆测试效果更佳。

骚扰功率重新测试图如下图9。

图7 图8图9 图10 骚扰功率图10如右:样品为DVD播放机/AV电缆骚扰功率图11如右:样品为VCD播放机/ AV电缆图10:DVD播放机在30~300MHz之间有部分频段隆起贴近限值,应有接地处置方式可以改善。

图11 :VCD播放机骚扰功率测试曲线底部无明显抬高,表明地线处置良好。

图11 图10、图11是明显的晶振谐波频谱,从骚扰功率图中看出较大的超差频率点为135MHz、108MHz、50.8MHz、189MHz,以及谐波频谱间隔,结合样机时钟晶振频率为16.9344MHz、27MHz,显然,要想通过测试, 必须减小晶振谐波辐射。

整改时,减小VCD/DVD播放机晶振谐波辐射的主要措施有: 检查解码芯片供电电压是否合适、有无过高,过高则调低;解码芯片供电连脚上是否有小容量电容就近到地,无则加一个,另加一个电抗较小、阻抗较大的磁珠, 磁珠的阻抗在50 MHz以上越大越好;通过高頻示波器观察晶振波形是否接近正弦波,否则调整晶振下地电容;晶振与解码芯片相连脚上,加串电抗较小、阻抗较大的磁珠, 电抗增加不多情况下,磁珠的阻抗在50 MHz以上越大越好;检查解码芯片供电回路、解码芯片晶振时钟回路以及高速信号回路面积是否过大,晶振旁边布线回路面积是否过大,如果是,则须设法解决。

如果以上措施本来已落实部分,其余措施难以实施,这只能在输出线上串磁珠,套磁环。

这些措施可说都是权宜之计,生产工艺上会有困难,唯一办法只有作设计改动。

如果工程师设计时能考虑到以上问题,就不会有这些麻烦,就可以省时省力通过测试。

本案例足以说明,EMC工作的重点、重中之重就是EMC设计。

EMC设计就是在产品的设计过程中仔细预测各种可能发生的电磁兼容问题,从设计的一开始就采取各种措施,尽量采用电磁兼容设计规范,目标是使得样机完成后满足电磁兼容性要求。

稍后介绍EMC设计内容。

处理注入电源骚扰电压测试图要决:先看L/N两端是否对称,如对称,直接采用共摸电流抑制;如不对称,先给较大骚扰的一端先串接差模线圈,加接共模电容,再采用共摸电流抑制;根据产品电路原理和频谱图形,判明超差原因,是开关电源引起,还是晶振时钟(或其谐波)耦合引起,抑或是视频等高频电路泄漏引起,接地不良引起?再对症下药。

如果由于晶振时钟(或其谐波)和视频等高频电路泄漏引起注入电源骚扰电压超差,大多数情况可以推断其辐射骚扰也会超差。

注入电源骚扰电压案例:注入电源骚扰电压测试图12如右上,2.36MHz附近隆起, L/N两端非常相似。

对策:电源输入端串接共模线圈, L/N两端加接到地共模电容。

注入电源骚扰电压测试图13如右,0.15~1MHz开关电源引起超差。

对策:加大共模线圈磁环或加多共模线圈的线圈匝数, 共模线圈两端都加上落地Y电容即共模电容,Y电容容量适当加大。

图13 注入电源骚扰电压测试图14如右,非常明显,27MHz时钟信号耦合进电源网络,引起注入电源骚扰电压超差;可以推断其谐波辐射骚扰一般也会超差。

对策:把电源线及电源电路避开时钟信号产生和传输电路;使用带磁环的电源电缆;最主要的是采用减小VCD/DVD播放机晶振谐波辐射一样的主要措施。

图15为电视干线放大器电源线的骚扰功率测试图,输入信号711.25MHz/70dBuv, 电视干线放大器输出信号711.25MHz/100dBuv,端接屏蔽75Ω屏蔽标准负载。

标准限值为20d Bpw,图中限值为21.1 dBpw,加上吸收钳校准因子和电缆损耗, 超差达10 dBpw。

高频信号放大和传输设备最基本要求就是壳体和接口屏蔽以及输入、输出信号电缆和电源电缆的屏蔽和滤波措施。

检查EUT发现,壳体和接口屏蔽较好,电源电缆的滤波器安装在电路板,不是安装在输入孔上,更未使用效果较佳的穿孔滤波器。

对于700 MHz高频信号,出入电缆滤波措施不佳,屏蔽效能可损失30dB。

对策:使用效果较佳的输入电源滤波器,安装在输入口金属壳上。

关于FM收音天线端骚扰电压和辐射骚扰超出限值,只要考虑改善天线端和本振电路间的隔离以及减小本振信号强度即可;其它天线端和射频端骚扰电压是否超出限值,只取决于高频头、射频调制器的性能,与别的部分无关。

只要选购经过CCC或CQC认证的产品即可。

非间断性工作的样品,处于平稳常态时,测试中发现存在间隙性骚扰时,如果样品电源断开间隙性骚扰就消失,则该样品电路设计或连接可能存在故障。

先检查电路可能存在的故障。

相关文档
最新文档