浙江省金华市金东区2021-2022学年中考数学押题试卷含解析
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2021-2022中考数学模拟试卷
考生请注意:
1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。
2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。
3.考生必须保证答题卡的整洁。
考试结束后,请将本试卷和答题卡一并交回。
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1.有一圆形苗圃如图1所示,中间有两条交叉过道AB ,CD ,它们为苗圃O 的直径,且AB ⊥CD .入口K 位于AD 中点,园丁在苗圃圆周或两条交叉过道上匀速行进.设该园丁行进的时间为x ,与入口K 的距离为y ,表示y 与x 的函数关系的图象大致如图2所示,则该园丁行进的路线可能是( )
A .A→O→D
B .C→A→O→ B
C .D→O→C
D .O→D→B→C
2.如图,每个小正方形的边长均为1,则下列图形中的三角形(阴影部分)与111A B C ∆相似的是( )
A .
B .
C .
D .
3.如图,Rt AOB 中,AB OB ⊥,且AB OB 3==,设直线x t =截此三角形所得阴影部分的面积为S ,则S 与t 之间的函数关系的图象为下列选项中的( )
A.B.C.D.
4.下列实数中,结果最大的是()
A.|﹣3| B.﹣(﹣π)C.7D.3
5.下列说法正确的是()
A.一个游戏的中奖概率是则做10次这样的游戏一定会中奖
B.为了解全国中学生的心理健康情况,应该采用普查的方式
C.一组数据8 , 8 , 7 , 10 , 6 , 8 , 9 的众数和中位数都是8
D.若甲组数据的方差S=" 0.01" ,乙组数据的方差s=0 .1 ,则乙组数据比甲组数据稳定
6.《语文课程标准》规定:7﹣9年级学生,要求学会制订自己的阅读计划,广泛阅读各种类型的读物,课外阅读总量不少于260万字,每学年阅读两三部名著.那么260万用科学记数法可表示为()
A.26×105B.2.6×102C.2.6×106D.260×104
7.下列说法:
①四边相等的四边形一定是菱形
②顺次连接矩形各边中点形成的四边形一定是正方形
③对角线相等的四边形一定是矩形
④经过平行四边形对角线交点的直线,一定能把平行四边形分成面积相等的两部分
其中正确的有()个.
A.4 B.3 C.2 D.1
8.下列说法中,正确的是( )
A.两个全等三角形,一定是轴对称的
B.两个轴对称的三角形,一定是全等的
C.三角形的一条中线把三角形分成以中线为轴对称的两个图形
D.三角形的一条高把三角形分成以高线为轴对称的两个图形
9.如图,直线m∥n,∠1=70°,∠2=30°,则∠A等于()
A.30°B.35°C.40°D.50°
10.数轴上分别有A、B、C三个点,对应的实数分别为a、b、c且满足,|a|>|c|,b•c<0,则原点的位置()
A.点A的左侧B.点A点B之间
C.点B点C之间D.点C的右侧
二、填空题(共7小题,每小题3分,满分21分)
11.如图,△ABC中,AB=6,AC=4,AD、AE分别是其角平分线和中线,过点C作CG⊥AD于F,交AB于G,连接EF,则线段EF的长为_____.
12.已知关于x,y的二元一次方程组
23
21
x y k
x y
+=
⎧
⎨
+=-
⎩
的解互为相反数,则k的值是_________.
13.大型纪录片《厉害了,我的国》上映25天,累计票房约为402700000元,成为中国纪录电影票房冠军.402700000用科学记数法表示是________.
14.若一段弧的半径为24,所对圆心角为60°,则这段弧长为____.
15.如图,在平面直角坐标系中,点P的坐标为(0,4),直线y=3
4
x-3与x轴、y轴分别交于点A、B,点M是直
线AB上的一个动点,则PM的最小值为________.
16.某中学数学教研组有25名教师,将他们分成三组,在38~45(岁)组内有8名教师,那么这个小组的频率是_______。
17.如图所示,某办公大楼正前力有一根高度是15米的旗杆ED,从办公楼顶点A测得族杆顶端E的俯角α是45°,旗杆底端D到大楼前梯坎底端C的距离DC是20米,梯坎坡长BC是13米,梯坎坡度i=1:2.4,则大楼AB的高度的为_____米.
三、解答题(共7小题,满分69分)
18.(10分)某商店老板准备购买A、B两种型号的足球共100只,已知A型号足球进价每只40元,B型号足球进价每只60元.
(1)若该店老板共花费了5200元,那么A、B型号足球各进了多少只;
(2)若B型号足球数量不少于A型号足球数量的2
3
,那么进多少只A型号足球,可以让该老板所用的进货款最少?
19.(5分)如图,已知BD是△ABC的角平分线,点E、F分别在边AB、BC上,ED∥BC,EF∥AC.求证:BE=CF.
20.(8分)某商场购进一批30瓦的LED灯泡和普通白炽灯泡进行销售,其进价与标价如下表:
LED灯泡
普通白炽灯
泡
进价(元)45 25
标价(元)60 30
(1)该商场购进了LED灯泡与普通白炽灯泡共300个,LED灯泡按标价进行销售,而普通白炽灯泡打九折销售,当销售完这批灯泡后可获利3200元,求该商场购进LED灯泡与普通白炽灯泡的数量分别为多少个?
(2)由于春节期间热销,很快将两种灯泡销售完,若该商场计划再次购进这两种灯泡120个,在不打折的情况下,请问如何进货,销售完这批灯泡时获利最多且不超过进货价的30%,并求出此时这批灯泡的总利润为多少元?
21.(10分)如图,二次函数y=ax2+2x+c的图象与x轴交于点A(﹣1,0)和点B,与y轴交于点C(0,3).
(1)求该二次函数的表达式;
(2)过点A的直线AD∥BC且交抛物线于另一点D,求直线AD的函数表达式;
(3)在(2)的条件下,请解答下列问题:
①在x轴上是否存在一点P,使得以B、C、P为顶点的三角形与△ABD相似?若存在,求出点P的坐标;若不存在,请说明理由;
②动点M以每秒1个单位的速度沿线段AD从点A向点D运动,同时,动点N以每秒13
5
个单位的速度沿线段DB
从点D向点B运动,问:在运动过程中,当运动时间t为何值时,△DMN的面积最大,并求出这个最大值.
22.(10分)“中国制造”是世界上认知度最高的标签之一,因此,我县越来越多的群众选择购买国产空调,已知购买1台A型号的空调比1台B型号的空调少200元,购买2台A型号的空调与3台B型号的空调共需11200元,求A、B两种型号的空调的购买价各是多少元?
23.(12分)手机下载一个APP、缴纳一定数额的押金,就能以每小时0.5到1元的价格解锁一辆自行车任意骑行,共享单车为解决市民出行的“最后一公里”难题帮了大忙,人们在享受科技进步、共享经济带来的便利的同时,随意停放、加装私锁、推车下河、大卸八块等毁坏共享单车的行为也层出不穷•某共享单车公司一月投入部分自行车进入市场,一月底发现损坏率不低于10%,二月初又投入1200辆进入市场,使可使用的自行车达到7500辆.一月份该公司投入市场的自行车至少有多少辆?二月份的损坏率为20%,进入三月份,该公司新投入市场的自行车比二月份增长4a%,
由于媒体的关注,毁坏共享单车的行为点燃了国民素质的大讨论,三月份的损坏率下降为1
4
a%,三月底可使用的自
行车达到7752辆,求a的值.
24.(14分)某商场购进甲、乙两种商品,甲种商品共用了2000元,乙种商品共用了2400元
.已知乙种商品每件进价比甲种商品每件进价多8元,且购进的甲、乙两种商品件数相同.
1
()求甲、乙两种商品的每件进价;
2
()该商场将购进的甲、乙两种商品进行销售,甲种商品的销售单价为60元,乙种商品的销售单价为88元,销售过程中发现甲种商品销量不好,商场决定:甲种商品销售一定数量后,将剩余的甲种商品按原销售单价的七折销售;乙种商品销售单价保持不变
.要使两种商品全部售完后共获利不少于2460元,问甲种商品按原销售单价至少销售多少
件?
参考答案
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1、B
【解析】
【分析】观察图象可知园丁与入口K 的距离先减小,然后再增大,但是没有到过入口的位置,据此逐项进行分析即可得.
【详解】A. A→O→D ,园丁与入口的距离逐渐增大,逐渐减小,不符合;
B. C→A→O→ B ,园丁与入口的距离逐渐减小,然后又逐渐增大,符合;
C. D→O→C ,园丁与入口的距离逐渐增大,不符合;
D. O→D→B→C ,园丁与入口的距离先逐渐变小,然后再逐渐变大,再逐渐变小,不符合,
故选B.
【点睛】本题考查了动点问题的函数图象,看懂图形,认真分析是解题的关键.
2、B
【解析】
根据相似三角形的判定方法一一判断即可.
【详解】
解:因为111A B C 中有一个角是135°,选项中,有135°角的三角形只有B ,且满足两边成比例夹角相等,
故选:B .
【点睛】
本题考查相似三角形的性质,解题的关键是学会利用数形结合的思想解决问题,属于中考常考题型.
3、D
【解析】
Rt △AOB 中,AB ⊥OB ,且AB=OB=3,所以很容易求得∠AOB=∠A=45°;再由平行线的性质得出∠OCD=∠A ,即∠AOD=∠OCD=45°,进而证明OD=CD=t ;最后根据三角形的面积公式,解答出S 与t 之间的函数关系式,由函数解析式来选择图象.
【详解】
解:∵Rt△AOB中,AB⊥OB,且AB=OB=3,∴∠AOB=∠A=45°,
∵CD⊥OB,
∴CD∥AB,
∴∠OCD=∠A,
∴∠AOD=∠OCD=45°,
∴OD=CD=t,
∴S△OCD=1
2
×OD×CD=
1
2
t2(0≤t≤3),即S=
1
2
t2(0≤t≤3).
故S与t之间的函数关系的图象应为定义域为[0,3],开口向上的二次函数图象;
故选D.
【点睛】
本题主要考查的是二次函数解析式的求法及二次函数的图象特征,解答本题的关键是根据三角形的面积公式,解答出S与t之间的函数关系式,由函数解析式来选择图象.
4、B
【解析】
正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小,据此判断即可.
【详解】
根据实数比较大小的方法,可得
<|-3|=3<-(-π),
所以最大的数是:-(-π).
故选B.
【点睛】
此题主要考查了实数大小比较的方法,及判断无理数的范围,要熟练掌握,解答此题的关键是要明确:正实数>0>负实数,两个负实数绝对值大的反而小.
5、C
【解析】
众数,中位数,方差等概念分析即可.
【详解】
A、中奖是偶然现象,买再多也不一定中奖,故是错误的;
B 、全国中学生人口多,只需抽样调查就行了,故是错误的;
C 、这组数据的众数和中位数都是8,故是正确的;
D 、方差越小越稳定,甲组数据更稳定,故是错误.故选C.
【点睛】
考核知识点:众数,中位数,方差.
6、C
【解析】
科学记数法的表示形式为n a 10⨯的形式,其中1a 10≤<,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移
动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值1>时,n 是正数;当原数的绝对值1<时,n 是负数.
【详解】
260万=2600000=62.610⨯.
故选C .
【点睛】
此题考查科学记数法的表示方法.科学记数法的表示形式为n a 10⨯的形式,其中1a 10≤<,n 为整数,表示时关键要正确确定a 的值以及n 的值.
7、C
【解析】
∵四边相等的四边形一定是菱形,∴①正确;
∵顺次连接矩形各边中点形成的四边形一定是菱形,∴②错误;
∵对角线相等的平行四边形才是矩形,∴③错误;
∵经过平行四边形对角线交点的直线,一定能把平行四边形分成面积相等的两部分,∴④正确;
其中正确的有2个,故选C .
考点:中点四边形;平行四边形的性质;菱形的判定;矩形的判定与性质;正方形的判定.
8、B
【解析】根据轴对称图形的概念对各选项分析判断即可得解.
解:A. 两个全等三角形,一定是轴对称的错误,三角形全等位置上不一定关于某一直线对称,故本选项错误;
B. 两个轴对称的三角形,一定全等,正确;
C. 三角形的一条中线把三角形分成以中线为轴对称的两个图形,错误;
D. 三角形的一条高把三角形分成以高线为轴对称的两个图形,错误.
故选B.
9、C
【解析】
试题分析:已知m∥n,根据平行线的性质可得∠3=∠1=70°.又因∠3是△ABD的一个外角,可得∠3=∠2+∠A.即∠A=∠3-∠2=70°-30°=40°.故答案选C.
考点:平行线的性质.
10、C
【解析】
分析:
根据题中所给条件结合A、B、C三点的相对位置进行分析判断即可.
详解:
A选项中,若原点在点A的左侧,则a c
<,这与已知不符,故不能选A;
B选项中,若原点在A、B之间,则b>0,c>0,这与b·c<0不符,故不能选B;
C选项中,若原点在B、C之间,则a c
>且b·c<0,与已知条件一致,故可以选C;
D选项中,若原点在点C右侧,则b<0,c<0,这与b·c<0不符,故不能选D.
故选C.
点睛:理解“数轴上原点右边的点表示的数是正数,原点表示的是0,原点左边的点表示的数是负数,距离原点越远的点所表示的数的绝对值越大”是正确解答本题的关键.
二、填空题(共7小题,每小题3分,满分21分)
11、1
【解析】
在△AGF和△ACF中,
{GAF CAF AF AF AFG AFC
∠=∠
=
∠=∠
,
∴△AGF≌△ACF,
∴AG=AC=4,GF=CF,
则BG=AB−AG=6−4=2.
又∵BE=CE ,
∴EF 是△BCG 的中位线,
∴EF=12
BG=1. 故答案是:1.
12、-1
【解析】
∵关于x ,y 的二元一次方程组23{
+2=1①②+=-x y k x y 的解互为相反数, ∴x=-y ③,
把③代入②得:-y+2y=-1,
解得y=-1,所以x=1,
把x=1,y=-1代入①得2-3=k ,
即k=-1.
故答案为-1
13、4.027810⨯
【解析】
分析:科学记数法的表示形式为a ×
10n 的形式,其中1≤|a |<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数.
详解:4 0270 0000用科学记数法表示是4.027×
1. 故答案为4.027×1.
点睛:本题考查了科学记数法的表示方法.科学记数法的表示形式为a ×
10n 的形式,其中1≤|a |<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.
14、8π
【解析】
试题分析:∵弧的半径为24,所对圆心角为60°,
∴弧长为l=
=8π. 故答案为8π.
【考点】弧长的计算.
15、28 5
【解析】
认真审题,根据垂线段最短得出PM⊥AB时线段PM最短,分别求出PB、OB、OA、AB的长度,利用△PBM∽△ABO,即可求出本题的答案
【详解】
解:如图,过点P作PM⊥AB,则:∠PMB=90°,
当PM⊥AB时,PM最短,
因为直线y=3
4
x﹣3与x轴、y轴分别交于点A,B,
可得点A的坐标为(4,0),点B的坐标为(0,﹣3),在Rt△AOB中,AO=4,BO=3,22
345
+=,∵∠BMP=∠AOB=90°,∠B=∠B,PB=OP+OB=7,
∴△PBM∽△ABO,
∴PB PM AB AO
=,
即:7
54
PM =,
所以可得:PM=28
5
.
16、0.1 【解析】
根据频率的求法:频率=
频数
数据总和
,即可求解.
【详解】
解:根据题意,38-45岁组内的教师有8名,
即频数为8,而总数为25;
故这个小组的频率是为8
25
=0.1;
故答案为0.1.【点睛】
本题考查频率、频数的关系,属于基础题,关键是掌握频率的求法:频率=
频数
数据总和
.
17、42
【解析】
延长AB交DC于H,作EG⊥AB于G,则GH=DE=15米,EG=DH,设BH=x米,则CH=2.4x米,在Rt△BCH中,BC=13米,由勾股定理得出方程,解方程求出BH=5米,CH=12米,得出BG、EG的长度,证明△AEG是等腰直角三角形,得出AG=EG=12+20=32(米),即可得出大楼AB的高度.
【详解】
延长AB交DC于H,作EG⊥AB于G,如图所示:
则GH=DE=15米,EG=DH,
∵梯坎坡度i=1:2.4,
∴BH:CH=1:2.4,
设BH=x米,则CH=2.4x米,
在Rt△BCH中,BC=13米,
由勾股定理得:x2+(2.4x)2=132,
解得:x=5,
∴BH=5米,CH=12米,
∴BG=GH-BH=15-5=10(米),EG=DH=CH+CD=12+20=32(米),
∵∠α=45°,
∴∠EAG=90°-45°=45°,
∴△AEG是等腰直角三角形,
∴AG=EG=32(米),
∴AB=AG+BG=32+10=42(米);
故答案为42
【点睛】
本题考查了解直角三角形的应用-坡度、俯角问题;通过作辅助线运用勾股定理求出BH,得出EG是解决问题的关键.
三、解答题(共7小题,满分69分)
18、(1)A型足球进了40个,B型足球进了60个;(2)当x=60时,y最小=4800元.
【解析】
(1)设A型足球x个,则B型足球(100-x)个,根据该店老板共花费了5200元列方程求解即可;
(2)设进货款为y元,根据题意列出函数关系式,根据B型号足球数量不少于A型号足球数量的2
3
求出x的取值范
围,然后根据一次函数的性质求解即可.
【详解】
解:(1)设A型足球x个,则B型足球(100-x)个, ∴ 40x +60(100-x)=5200 ,
解得:x=40 ,
∴100-x=100-40=60个,
答:A型足球进了40个,B型足球进了60个.(2)设A型足球x个,则B型足球(100-x)个,
100-x≥2
3 x,
解得:x≤60 ,
设进货款为y元,则y=40x+60(100-x)=-20x+6000 ,
∵k=-20,∴y随x的增大而减小,
∴当x=60时,y最小=4800元.
【点睛】
本题考查了一元一次方程的应用,一次函数的应用,仔细审题,找出解决问题所需的数量关系是解答本题的关键. 19、证明见解析.
【解析】
试题分析:先利用平行四边形性质证明DE=CF,再证明EB=ED,即可解决问题.
试题解析:∵ED∥BC,EF∥AC,∴四边形EFCD是平行四边形,∴DE=CF,∵BD平分∠ABC,∴∠EBD=∠DBC,
∵DE ∥BC ,∴∠EDB=∠DBC ,∴∠EBD=∠EDB ,∴EB=ED ,∴EB=CF .
考点:平行四边形的判定与性质.
20、(1)LED 灯泡与普通白炽灯泡的数量分别为200个和100个;(2)1 350元.
【解析】
1)设该商场购进LED 灯泡x 个,普通白炽灯泡的数量为y 个,利用该商场购进了LED 灯泡与普通白炽灯泡共300个和销售完这批灯泡后可以获利3200元列方程组,然后解方程组即可;
(2)设该商场购进LED 灯泡a 个,则购进普通白炽灯泡(120-a )个,这批灯泡的总利润为W 元,利用利润的意义得到W=(60-45)a+(30-25)(120-a )=10a+1,再根据销售完这批灯泡时获利最多且不超过进货价的30%可确定a 的范围,然后根据一次函数的性质解决问题.
【详解】
(1)设该商场购进LED 灯泡x 个,普通白炽灯泡的数量为y 个.根据题意,得300(6045)(0.93025)3200x y x y +=⎧⎨-+⨯-=⎩
解得200100
x y =⎧⎨=⎩ 答:该商场购进LED 灯泡与普通白炽灯泡的数量分别为200个和100个.
(2)设该商场再次购进LED 灯泡a 个,这批灯泡的总利润为W 元.则购进普通白炽灯泡(120﹣a )个.根据题意得
W=(60﹣45)a+(30﹣25)(120﹣a )=10a+1.
∵10a+1≤[45a+25(120﹣a )]×30%,解得a≤75,
∵k=10>0,∴W 随a 的增大而增大,
∴a=75时,W 最大,最大值为1350,此时购进普通白炽灯泡(120﹣75)=45个.
答:该商场再次购进LED 灯泡75个,购进普通白炽灯泡45个,这批灯泡的总利润为1 350元.
【点睛】
本题考查了二元一次方程组和一次函数的应用,根据实际问题找到等量关系列方程组和建立一次函数模型,利用一次函数的性质和自变量的取值范围解决最值问题是解题的关键.
21、(1)y=﹣x 2+2x+3;(2)y=﹣x ﹣1;(3)P (3,05)或P (﹣4.5,0);当t=
2
时,S △MDN 的最大值为52. 【解析】
(1)把A (-1,0),C (0,3)代入y=ax 2+2x+c 即可得到结果;
(2)在y=-x 2+2x+3中,令y=0,则-x 2+2x+3=0,得到B (3,0),由已知条件得直线BC 的解析式为y=-x+3,由于AD ∥BC ,
设直线AD 的解析式为y=-x+b ,即可得到结论;
(3)①由BC ∥AD ,得到∠DAB=∠CBA ,全等只要当BC PB AD AB =或BC PB AB AD
=时,△PBC ∽△ABD ,解方程组223
1
y x x y x ⎧=-++⎨=--⎩得D (4,−5),求得AD =4,AB =
BC =设P 的坐标为(x ,0),代入比例式解得35x =或x =−4.5,即可得到3,05P ⎛⎫ ⎪⎝⎭
或P (−4.5,0); ②过点B 作BF ⊥AD 于F ,过点N 作NE ⊥AD 于E ,在Rt △AFB 中,∠BAF=45°,于是得到sin ∠BAF BF AB =
, 求得
4BF BD ===求得sin BF ADB BD ∠=== 由于,DM t DN ==,于是得
到12MDN S DM NE =⋅()1225t t =⋅215t =-+21()5t =--2
15522t ⎛⎫=--+ ⎪ ⎪⎝⎭,即可得到结果. 【详解】
(1)由题意知:023a c c =-+⎧⎨=⎩,
解得13a c =-⎧⎨=⎩
, ∴二次函数的表达式为223y x x =-++;
(2)在2y x 2x 3=-++ 中,令y =0,则2230x x -++=,
解得:121,3x x ,
=-= ∴B (3,0),
由已知条件得直线BC 的解析式为y =−x +3,
∵AD ∥BC ,
∴设直线AD 的解析式为y =−x +b ,
∴0=1+b ,
∴b =−1,
∴直线AD 的解析式为y =−x −1;
(3)①∵BC ∥AD ,
∴∠DAB =∠CBA , ∴只要当:BC PB AD AB =或BC PB AB AD
=时,△PBC ∽△ABD ,
解2231y x x y x ⎧=-++⎨=--⎩
得D (4,−5), ∴52,4,32AD AB BC ===,
设P 的坐标为(x ,0), 即323452x -=或323452
x -=, 解得35
x =或x =−4.5, ∴3,05
P ⎛⎫ ⎪⎝⎭或P (−4.5,0),
②过点B 作BF ⊥AD 于F ,过点N 作NE ⊥AD 于E ,
在Rt △AFB 中,45BAF ∠=,
∴sin ∠BAF BF AB
=, ∴2422,26BF BD ===, ∴22213sin 1326
BF ADB BD ∠=== ∵1352,DM t DN ==
, 又∵132132sin ,5
NE ADB NE t DN ∠===,
∴1,2
MDN S DM NE =⋅ ()
12
25
t t =⋅
215
t =-+
21(),5t =-- 2
15522t ⎛=--+ ⎝⎭
,
∴当2t =时,MDN S 的最大值为5
.2
【点睛】
属于二次函数的综合题,考查待定系数法求二次函数解析式,锐角三角形函数,相似三角形的判定与性质,二次函数的最值等,综合性比较强,难度较大.
22、A 、B 两种型号的空调购买价分别为2120元、2320元
【解析】
试题分析:根据题意,设出A 、B 两种型号的空调购买价分别为x 元、y 元,然后根据“已知购买1台A 型号的空调比1台B 型号的空调少200元,购买2台A 型号的空调与3台B 型号的空调共需11200元”,列出方程求解即可. 试题解析:设A 、B 两种型号的空调购买价分别为x 元、y 元,依题意得:200
2311200y x x y -=⎧⎨+=⎩
解得:21202320x y =⎧⎨=⎩
答:A 、B 两种型号的空调购买价分别为2120元、2320元
23、(1)7000辆;(2)a 的值是1.
【解析】
(1)设一月份该公司投入市场的自行车x 辆,根据损坏率不低于10%,可得不等量关系:一月初投入的自行车-一月底可用的自行车≥一月损坏的自行车列不等式求解;
(2)根据三月底可使用的自行车达到7752辆,可得等量关系为:(二月份剩余的可用自行车+三月初投入的自行车)×三月份的损耗率=7752辆列方程求解.
【详解】
解:(1)设一月份该公司投入市场的自行车x 辆,
x ﹣(7500﹣110)≥10%x ,
解得x ≥7000,
答:一月份该公司投入市场的自行车至少有7000辆;
(2)由题意可得,
[7500×(1﹣1%)+110(1+4a%)](1﹣
14
a%)=7752, 化简,得
a 2﹣250a+4600=0,
解得:a 1=230,a 2=1, ∵1%20%4a <,
解得a <80,
∴a=1,
答:a 的值是1.
【点睛】
本题考查了一元一次不等式和一元二次方程的实际应用,根据一月底的损坏率不低于10%找出不等量关系式解答(1)的关键;根据三月底可使用的自行车达到7752辆找出等量关系是解答(2)的关键.
24、()1 甲种商品的每件进价为40元,乙种商品的每件进价为48元;()2甲种商品按原销售单价至少销售20件.
【解析】
【分析】()1设甲种商品的每件进价为x 元,乙种商品的每件进价为(x+8))元.根据“某商场购进甲、乙两种商品,甲种商品共用了2000元,乙种商品共用了2400元.购进的甲、乙两种商品件数相同”列出方程进行求解即可; ()2设甲种商品按原销售单价销售a 件,则由“两种商品全部售完后共获利不少于2460元”列出不等式进行求解即可.
【详解】()1设甲种商品的每件进价为x 元,则乙种商品的每件进价为()x 8+元, 根据题意得,20002400x x 8
=+, 解得x 40=,
经检验,x 40=是原方程的解,
答:甲种商品的每件进价为40元,乙种商品的每件进价为48元;
()2甲乙两种商品的销售量为20005040
=, 设甲种商品按原销售单价销售a 件,则
()()()()6040a 600.74050a 8848502460-+⨯--+-⨯≥,
解得a 20≥,
答:甲种商品按原销售单价至少销售20件.
【点睛】本题考查了分式方程的应用,一元一次不等式的应用,弄清题意,找出等量关系列出方程,找出不等关系列出不等式是解题的关键.。