杜集区第一中学校2018-2019学年高二上学期第二次月考试卷数学

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

杜集区第一中学校2018-2019学年高二上学期第二次月考试卷数学
班级__________ 姓名__________ 分数__________
一、选择题
1. 某几何体的三视图如图所示,且该几何体的体积是,则正视图中的x 的值是( )
A .2
B .
C .
D .3
2. 设x ∈R ,则“|x ﹣2|<1”是“x 2+x ﹣2>0”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充要条件 D .既不充分也不必要条件
3. 设集合{}|||2A x R x =∈≤,{}|10B x Z x =∈-≥,则A B =( )
A.{}|12x x <≤
B.{}|21x x -≤≤
C. {}2,1,1,2--
D. {}1,2
【命题意图】本题考查集合的概念,集合的运算等基础知识,属送分题.
4. 设函数f (x )=,则f (1)=( )
A .0
B .1
C .2
D .3
5. 设()f x 是奇函数,且在(0,)+∞内是增函数,又(3)0f -=,则()0x f x ⋅<的解集是( ) A .{}|303x x x -<<>或 B . {}
|3003x x x -<<<<或
C .{}|33x x x <->或
D . {}|303x x x <-<<或
6. 在△ABC 中,sinB+sin (A ﹣B )=sinC 是sinA=的( )
A .充分非必要条件
B .必要非充分条件
C .充要条件
D .既不充分也非必要条件
7. △ABC 的三内角A ,B ,C 所对边长分别是a ,b ,c ,设向量

,若
,则角B 的大小为( )
A .
B .
C .
D .
8. 已知实数x ,y 满足,则目标函数z=x ﹣y 的最小值为( )
A .﹣2
B .5
C .6
D .7
9. 若函数()()22f x x πϕϕ⎛
⎫=+< ⎪⎝
⎭的图象关于直线12x π=对称,且当
12172123x x π
π⎛⎫∈-- ⎪⎝⎭
,,,12x x ≠时,()()12f x f x =,则()12f x x +等于( )
A
B D 10.某几何体的三视图如图所示,其中正视图是腰长为2的等腰三角形,俯视图是半径为 1的半圆,则其侧视图的面积是( )
A .
B .
C .1
D .
11.已知命题p :对任意()0x ∈+∞,,48log log x x <,命题:存在x ∈R ,使得tan 13x x =-,则下列命题为真命题的是( )
A .p q ∧
B .()()p q ⌝∧⌝
C .()p q ∧⌝
D .()p q ⌝∧ 12.下列语句所表示的事件不具有相关关系的是( )
A .瑞雪兆丰年
B .名师出高徒
C .吸烟有害健康
D .喜鹊叫喜
二、填空题
13.将一个半径为3和两个半径为1的球完全装入底面边长为6的正四棱柱容器中,则正四棱柱容器的高的最小值为 .
14. 设函数()x
f x e =,()ln
g x x m =+.有下列四个命题:
①若对任意[1,2]x ∈,关于x 的不等式()()f x g x >恒成立,则m e <;
②若存在0[1,2]x ∈,使得不等式00()()f x g x >成立,则2
ln 2m e <-;
③若对任意1[1,2]x ∈及任意2[1,2]x ∈,不等式12()()f x g x >恒成立,则ln 22
e
m <
-;
④若对任意1[1,2]x ∈,存在2[1,2]x ∈,使得不等式12()()f x g x >成立,则m e <. 其中所有正确结论的序号为 .
【命题意图】本题考查对数函数的性质,函数的单调性与导数的关系等基础知识,考查运算求解,推理论证能力,考查分类整合思想.
15.f (x )=x (x ﹣c )2在x=2处有极大值,则常数c 的值为 .
14.已知集合
,若3∈M ,5∉M ,则实数a 的取值范围是 .
16.设m 是实数,若x ∈R 时,不等式|x ﹣m|﹣|x ﹣1|≤1恒成立,则m 的取值范围是 .
17.已知f (x+1)=f (x ﹣1),f (x )=f (2﹣x ),方程f (x )=0在[0,1]内只有一个根x=,则f (x )=0在区间[0,2016]内根的个数 .
18.抛物线y 2=4x 上一点M 与该抛物线的焦点F 的距离|MF|=4,则点M 的横坐标x= .
三、解答题
19.设定义在(0,+∞)上的函数f (x )=ax++b (a >0)
(Ⅰ)求f (x )的最小值;
(Ⅱ)若曲线y=f (x )在点(1,f (1))处的切线方程为y=,求a ,b 的值.
20.(本小题满分12分)已知两点)0,1(1-F 及)0,1(2F ,点P 在以1F 、2F 为焦点的椭圆C 上,且1PF 、21F F 、 2PF 构成等差数列. (I )求椭圆C 的方程;
(II )设经过2F 的直线m 与曲线C 交于P Q 、两点,若2
2
2
11PQ F P FQ =+,求直线m 的方程.
21.已知x2﹣y2+2xyi=2i,求实数x、y的值.
22.设函数f(x)=1+(1+a)x﹣x2﹣x3,其中a>0.
(Ⅰ)讨论f(x)在其定义域上的单调性;
(Ⅱ)当x∈时,求f(x)取得最大值和最小值时的x的值.
23.斜率为2的直线l经过抛物线的y2=8x的焦点,且与抛物线相交于A,B两点,求线段AB的长.
24.已知函数f(x)=a x(a>0且a≠1)的图象经过点(2,).
(1)求a的值;
(2)比较f(2)与f(b2+2)的大小;
(3)求函数f(x)=a(x≥0)的值域.
杜集区第一中学校2018-2019学年高二上学期第二次月考试卷数学(参考答案)
一、选择题
1. 【答案】C
解析:由三视图可知:原几何体是一个四棱锥,其中底面是一个上、下、高分别为1、2、2的直角梯形,一条长为x 的侧棱垂直于底面.
则体积为=,解得x=.
故选:C .
2. 【答案】A
【解析】解:由“|x ﹣2|<1”得1<x <3,
由x 2
+x ﹣2>0得x >1或x <﹣2,
即“|x ﹣2|<1”是“x 2
+x ﹣2>0”的充分不必要条件,
故选:A .
3. 【答案】D 【解析】由绝对值的定义及||2x ≤,得22x -≤≤,则{}|22A x x =-≤≤,所以{}1,2A B =,故选D.
4. 【答案】D
【解析】解:∵f (x )=,
f (1)=f[f (7)]=f (5)=3. 故选:D .
5. 【答案】B 【解析】
试题分析:因为()f x 为奇函数且()30f -=,所以()30f =,又因为()f x 在区间()0,+∞上为增函数且()30f =,所以当()0,3x ∈时,()0f x <,当()3,x ∈+∞时,()0f x >,再根据奇函数图象关于原点对称
可知:当()3,0x ∈-时,()0f x >,当(),3x ∈-∞-时,()0f x <,所以满足()0x f x ⋅<的x 的取值范围是:()3,0x ∈-或()0,3x ∈。

故选B 。

考点:1.函数的奇偶性;2.函数的单调性。

6. 【答案】A
【解析】解:∵sinB+sin (A ﹣B )=sinC=sin (A+B ), ∴sinB+sinAcosB ﹣cosAsinB=sinAcosB+cosAsinB ,
∴sinB=2cosAsinB,
∵sinB≠0,
∴cosA=,
∴A=,
∴sinA=,
当sinA=,
∴A=或A=,
故在△ABC中,sinB+sin(A﹣B)=sinC是sinA=的充分非必要条件,
故选:A
7.【答案】B
【解析】解:若,
则(a+b)(sinB﹣sinA)﹣sinC(a+c)=0,
由正弦定理可得:(a+b)(b﹣a)﹣c(a+c)=0,
化为a2
+c2﹣b2=﹣ac,
∴cosB==﹣,
∵B∈(0,π),
∴B=,
故选:B.
【点评】本题考查了正弦定理与余弦定理的应用、向量数量积运算性质,考查了推理能力与计算能力,是一道基础题.
8.【答案】A
【解析】解:如图作出阴影部分即为满足约束条件的可行域,
由得A(3,5),
当直线z=x﹣y平移到点A时,直线z=x﹣y在y轴上的截距最大,即z取最小值,
即当x=3,y=5时,z=x﹣y取最小值为﹣2.
故选A .
9. 【答案】C 【




点:函数的图象与性质.
【方法点晴】本题主要考查函数的图象与性质,涉及数形结合思想、函数与方程思想、转化化归思想,考查逻辑推理能力、化归能力和计算能力,综合程度高,属于较难题型.首先利用数形结合思想和转化化归思想可得
()
2122k k π
π
ϕπ⨯
+=
+∈Z ,解得3π
ϕ=
,从而()23f x x π⎛
⎫+ ⎪⎝
⎭,再次利用数形结合思想和转化化归思想
可得()()()()1122x f x x f x ,,,关于直线1112x π=-对称,可得12116
x x π
+=-,从而
()
121133f x x ππ⎛⎫
+=-+= ⎪⎝⎭

10.【答案】B
【解析】解:由三视图知几何体的直观图是半个圆锥,
又∵正视图是腰长为2的等腰三角形,俯视图是半径为1的半圆,
∴半圆锥的底面半径为1,高为,
即半圆锥的侧视图是一个两直角边长分别为1和的直角三角形,
故侧视图的面积是,
故选:B.
【点评】本题考查的知识点是由三视图求体积和表面积,解决本题的关键是得到该几何体的形状.
11.【答案】D
【解析】
考点:命题的真假.
12.【答案】D
【解析】解:根据两个变量之间的相关关系,
可以得到瑞雪兆丰年,瑞雪对小麦有好处,可能使得小麦丰收,
名师出高徒也具有相关关系,
吸烟有害健康也具有相关关系,
故选D.
【点评】本题考查两个变量的线性相关关系,本题解题的关键是根据实际生活中两个事物之间的关系确定两个变量之间的关系,本题是一个基础题.
二、填空题
13.【答案】4+.
【解析】解:作出正四棱柱的对角面如图,
∵底面边长为6,∴BC=,
球O的半径为3,球O1的半径为1,
则,
在Rt△OMO1中,OO1=4,,
∴=,
∴正四棱柱容器的高的最小值为4+.
故答案为:4+.
【点评】本题考查球的体积和表面积,考查空间想象能力和思维能力,是中档题.
14.【答案】①②④
【解析】
15.【答案】6.
【解析】解:f(x)=x3﹣2cx2+c2x,f′(x)=3x2﹣4cx+c2,
f′(2)=0⇒c=2或c=6.若c=2,f′(x)=3x2﹣8x+4,
令f′(x)>0⇒x<或x>2,f′(x)<0⇒<x<2,
故函数在(﹣∝,)及(2,+∞)上单调递增,在(,2)上单调递减,
∴x=2是极小值点.故c=2不合题意,c=6.
故答案为6
【点评】考查学生利用导数研究函数极值的能力,会利用待定系数法求函数解析式.
16.【答案】[0,2].
【解析】解:∵|x﹣m|﹣|x﹣1|≤|(x﹣m)﹣(x﹣1)|=|m﹣1|,
故由不等式|x﹣m|﹣|x﹣1|≤1恒成立,可得|m﹣1|≤1,∴﹣1≤m﹣1≤1,
求得0≤m≤2,
故答案为:[0,2].
【点评】本题主要考查绝对值三角不等式,绝对值不等式的解法,函数的恒成立问题,体现了转化的数学思想,属于基础题.
17.【答案】2016.
【解析】解:∵f(x)=f(2﹣x),
∴f(x)的图象关于直线x=1对称,即f(1﹣x)=f(1+x).
∵f(x+1)=f(x﹣1),∴f(x+2)=f(x),
即函数f(x)是周期为2的周期函数,
∵方程f(x)=0在[0,1]内只有一个根x=,
∴由对称性得,f()=f()=0,
∴函数f(x)在一个周期[0,2]上有2个零点,
即函数f(x)在每两个整数之间都有一个零点,
∴f(x)=0在区间[0,2016]内根的个数为2016,
故答案为:2016.
18.【答案】3.
【解析】解:∵抛物线y2=4x=2px,
∴p=2,
由抛物线定义可知,抛物线上任一点到焦点的距离与到准线的距离是相等的,
∴|MF|=4=x+=4,
∴x=3,
故答案为:3.
【点评】活用抛物线的定义是解决抛物线问题最基本的方法.抛物线上的点到焦点的距离,叫焦半径.到焦点的距离常转化为到准线的距离求解.
三、解答题
19.【答案】
【解析】解:(Ⅰ)f (x )
=ax++b ≥
2+b=b+2
当且仅当ax=1(
x=)时,f (x )的最小值为b+2
(Ⅱ)由题意,曲线y=f (x )在点(1,f (1))处的切线方程为
y=,可得:
f (1)
=,∴
a+
+b=① f'(x )=a

,∴f ′(1)=a

=②
由①②得:a=2,b=﹣1
20.【答案】
【解析】【命题意图】本题考查椭圆标准方程和定义、等差数列、直线和椭圆的位置关系等基础知识,意在考查转化与化归的数学思想的运用和综合分析问题、解决问题的能力.
(II )①若m 为直线1=x ,代入
1342
2=+y x 得2
3±=y ,即)23 , 1(P ,)23 , 1(-Q 直接计算知29PQ =,2
25||||2121=+Q F P F ,222
11
PQ F P FQ ?,1=x 不符合题意 ; ②若直线m 的斜率为k ,直线m 的方程为(1)y k x =- 由⎪⎩
⎪⎨⎧-==+
)1(1342
2x k y y x 得0)124(8)43(2222=-+-+k x k x k
设11(,)P x y ,22(,)Q x y ,则2221438k k x x +=+,2
2214312
4k
k x x +-=⋅ 由222
11PQ F P FQ =+得,11
0F P FQ ? 即0)1)(1(2121=+++y y x x ,0)1()1()1)(1(2121=-⋅-+++x k x k x x
0)1())(1()1(2212212=+++-++k x x k x x k
代入得0438)1()143124)(1(2
22222
=+⋅-+++-+k k k k k k ,即0972=-k 解得773±=k ,直线m 的方程为)1(7
7
3-±
=x y 21.【答案】
【解析】解:由复数相等的条件,得﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(4分)
解得

﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(8分)
【点评】本题考查复数相等的条件,以及方程思想,属于基础题.
22.【答案】
【解析】解:(Ⅰ)f (x )的定义域为(﹣∞,+∞),f ′(x )=1+a ﹣2x ﹣3x 2

由f ′(x )=0,得x 1=,x 2=,x 1<x 2,
∴由f ′(x )<0得x <,x >;
由f ′(x )>0得<x <;
故f (x )在(﹣∞,)和(
,+∞)单调递减,
在(,
)上单调递增;
(Ⅱ)∵a >0,∴x 1<0,x 2>0,∵x ∈,当
时,即a ≥4
①当a ≥4时,x 2≥1,由(Ⅰ)知,f (x )在上单调递增,∴f (x )在x=0和x=1处分别取得最小值和最大值. ②当0<a <4时,x 2<1,由(Ⅰ)知,f (x )在单调递增,在上单调递减,
因此f (x )在x=x 2=
处取得最大值,又f (0)=1,f (1)=a ,
∴当0<a <1时,f (x )在x=1处取得最小值; 当a=1时,f (x )在x=0和x=1处取得最小值;
当1<a<4时,f(x)在x=0处取得最小值.
23.【答案】
【解析】解:设直线l的倾斜解为α,则l与y轴的夹角θ=90°﹣α,
cotθ=tanα=2,
∴sinθ=,
|AB|==40.
线段AB的长为40.
【点评】本题考查抛物线的焦点弦的求法,解题时要注意公式|AB|=的灵活运用.24.【答案】
【解析】解:(1)f(x)=a x(a>0且a≠1)的图象经过点(2,),
∴a2=,
∴a=
(2)∵f(x)=()x在R上单调递减,
又2<b2+2,
∴f(2)≥f(b2+2),
(3)∵x≥0,x2﹣2x≥﹣1,
∴≤()﹣1=3
∴0<f(x)≤(0,3]。

相关文档
最新文档