【3套试卷】广州市中考一模数学精选及答案

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

中考第一次模拟考试数学试卷含答案
一、选择题(每小题四个选项中,只有一项最符合题意.本大题共8个小题,每小题3分,共24分)
1.(3分)我市2018年的最高气温为30℃,最低气温为零下18℃,则计算2018年的温差是()
A.12℃B.48℃C
.﹣12℃D.﹣48℃
2.(3分)下列计算正确的是()
A.4x3•2x2=8x6B.a4+a3=a7
C.(﹣x2)5=﹣x10D.(a﹣b)2=a2﹣b2
3.(3分)已知a,b满足方程组,则a+b的值为()
A.﹣4B.4C.﹣2D.2
4.(3分)图①是由五个完全相同的小正方体组成的立方体图形,将图①中的一个小正方体改变位置后如图②,则三视图发生改变的是()
A.主视图
B.俯视图
C.左视图
D.主视图、俯视图和左视图都改变
5.(3分)某校为了解学生的课外阅读情况,随机抽取了一个班级的学生,对他们一周的读书时间进行了统计,统计数据如下表所示:
读书时间(小
时)
7891011学生人数610987则该班学生一周读书时间的中位数和众数分别是()
A.9,8B.9,9C.9.5,9D.9.5,8
6.(3分)如图,在⊙O的内接四边形ABCD中,AB是直径,∠BCD=120°,过D点的切
线PD与直线AB交于点P,则∠ADP的度数为()
A.40°B.35°C.30°D.45°
7.(3分)如图,某小区计划在一块长为32m,宽为20m的矩形空地上修建三条同样宽的道路,剩余的空地上种植草坪,使草坪的面积为570m2.若设道路的宽为xm,则下面所列方程正确的是()
A.(32﹣2x)(20﹣x)=570
B.32x+2×20x=32×20﹣570
C.(32﹣x)(20﹣x)=32×20﹣570
D.32x+2×20x﹣2x2=570
8.(3分)二次函数y=ax2+bx+c的图象如图所示,反比例函数y=与正比例函数y=(b+c)x在同一坐标系中的大致图象可能是()
A.B.
C.D.
二、填空题(本题共8小题,每小题3分,共24分)
9.(3分)分解因式:m3﹣4m=.
10.(3分)如图,已知A点是反比例函数的图象上一点,AB⊥y轴于B,且△ABO的面积为3,则k的值为.
11.(3分)若两个连续整数x、y满足x<+1<y,则x+y的值是.
12.(3分)农历五月初五为端午节,端午节吃粽子是中华民族的传统习俗.小明妈妈买了3个红豆粽、2个碱水粽、5个腊肉粽,粽子除了内部馅料不同外其他均相同.小明随意吃了一个,则吃到腊肉棕的概率为.
13.(3分)用一张半径为24cm的扇形纸片做一个如图所示的圆锥形小丑帽子侧面(接缝忽略不计),如果做成的圆锥形小丑帽子的底面半径为10cm,那么这张扇形纸片的面积是cm2.
14.(3分)如图所示,在▱ABCD中,点E在边DC上,DE:EC=3:1,连接AE交BD于
点F,则△DEF的面积与△BAF的面积之比为.
15.(3分)如图,⊙O是正五边形ABCDE的外接圆,则∠CAD=.
16.(3分)如图,直线y=﹣x+4与x轴、y轴分别交于A、B两点,把△AOB绕点A顺时针旋转90°后得到△AO′B′,则点B′的坐标是.
三、解答题(本题共6道题,每题6分,共36分)
17.(6分)解不等式组:.
18.(6分)解分式方程:.
19.(6分)如图,△ABC在平面直角坐标系中,点A(2,﹣1),B(3,2),C(1,0).解答问题:请按要求对△ABC作如下变换.
(1)将△ABC绕点O逆时针旋转90°得到△A1B1C1;
(2)以点O为位似中心,位似比为2:1,将△ABC在位似中心的异侧进行放大得到△A2B2C2.
20.(6分)“机动车行驶到斑马线要礼让行人”等交通法规实施后,某校数学课外实践小组就对这些交通法规的了解情况在全校随机调查了部分学生,调查结果分为四种:A.非常了解,B.比较了解,C.基本了解,D.不太了解,实践小组把此次调查结果整理并绘制成下面不完整的条形统计图和扇形统计图.
请结合图中所给信息解答下列问题:
(1)本次共调查名学生;扇形统计图中C所对应扇形的圆心角度数是;
(2)补全条形统计图;
(3)该校共有800名学生,根据以上信息,请你估计全校学生中对这些交通法规“非常了解”的有多少名?
(4)通过此次调查,数学课外实践小组的学生对交通法规有了更多的认识,学校准备从组内的甲、乙、丙、丁四位学生中随机抽取两名学生参加市区交通法规竞赛,请用列表或画树状图的方法求甲和乙两名学生同时被选中的概率.
21.(6分)如图,四边形ABCD的对角线AC、BD交于点O,已知O是AC的中点,AE=CF,DF∥BE.
(1)求证:△BOE≌△DOF;
(2)若OD=AC,则四边形ABCD是什么特殊四边形?请证明你的结论.
22.(6分)随着“互联网+”时代的到来,一种新型打车方式受到大众欢迎,该打车方式的总费用由里程费和耗时费组成,其中里程费按x元/公里计算,耗时费按y元/分钟计算(总费用不足9元按9元计价).小明、小刚两人用该打车方式出行,按上述计价规则,其打车总费用、行驶里程数与打车时间如表:
时间(分钟)里程数(公里)车费(元)小明8812
小刚121016(1)求x,y的值;
(2)如果小华也用该打车方式,打车行驶了11公里,用了14分钟,那么小华的打车总费用为多少?
23.(8分)如图,AB是⊙O的直径,点F,C是⊙O上两点,且==,连接AC,AF,过点C作CD⊥AF交AF延长线于点D,垂足为D.
(1)求证:CD是⊙O的切线;
(2)若CD=2,求⊙O的半径.
24.(8分)如图,直线y=ax+1与x轴、y轴分别相交于A、B两点,与双曲线y=(x>0)相交于点P,PC⊥x轴于点C,且PC=2,点A的坐标为(﹣2,0).
(1)求双曲线的解析式;
(2)若点Q为双曲线上点P右侧的一点,且QH⊥x轴于H,当以点Q、C、H为顶点的三角形与△AOB相似时,求点Q的坐标.
25.(10分)小明家今年种植的草莓喜获丰收,采摘上市20天全部销售完,爸爸让他对今年的销售情况进行跟踪记录,小明利用所学的数学知识将记录情况绘成图象(所得图象均为线段),日销售量y(单位:千克)与上市时间x(单位:天)的函数关系如图1所示,草莓的价格w(单位:元/千克)与上市时间x(单位:天)的函数关系如图2所示.(1)观察图象,直接写出当0≤x≤11时,日销售量y与上市时间x之间的函数解析式为;当11≤x≤20时,日销售量y与上市时间x之间的函数解析式为.(2)试求出第11天的销售金额;
(3)若上市第15天时,爸爸把当天能销售的草莓批发给了邻居马叔叔,批发价为每千克15元,马叔叔到市场按照当日的价格w元/千克将批发来的草莓全部销售完,他在销售的过程中,草莓总质量损耗了2%.那么,马叔叔支付完来回车费20元后,当天能赚到多少元?
26.(10分)如图,矩形AOCB的顶点A、C分别位于x轴和y轴的正半轴上,线段OA、OC的长度满足方程|x﹣15|+=0(OA>OC),直线y=kx+b分别与x轴、y轴交于M、N两点,将△BCN沿直线BN折叠,点C恰好落在直线MN上的点D处,且tan∠CBD =
(1)求点B的坐标;
(2)求直线BN的解析式;
(3)将直线BN以每秒1个单位长度的速度沿y轴向下平移,求直线BN扫过矩形AOCB 的面积S关于运动的时间t(0<t≤13)的函数关系式.
2019年宁夏固原市西吉县中考数学二模试卷
参考答案与试题解析
一、选择题(每小题四个选项中,只有一项最符合题意.本大题共8个小题,每小题3分,共24分)
1.(3分)我市2018年的最高气温为30℃,最低气温为零下18℃,则计算2018年的温差是()
A.12℃B.48℃C.﹣12℃D.﹣48℃
【分析】根据题意列出算式,计算即可求出值.
【解答】解:根据题意得:30﹣(﹣18)=30+18=48,
则2018年的温差是48℃,
故选:B.
2.(3分)下列计算正确的是()
A.4x3•2x2=8x6B.a4+a3=a7
C.(﹣x2)5=﹣x10D.(a﹣b)2=a2﹣b2
【分析】A、原式利用单项式乘单项式法则计算得到结果,即可做出判断;
B、原式不能合并,错误;
C、原式利用幂的乘方与积的乘方运算法则计算得到结果,即可做出判断;
D、原式利用完全平方公式化简得到结果,即可做出判断.
【解答】解:A、原式=8x5,错误;
B、原式不能合并,错误;
C、原式=﹣x10,正确;
D、原式=a2﹣2ab+b2,错误,
故选:C.
3.(3分)已知a,b满足方程组,则a+b的值为()
A.﹣4B.4C.﹣2D.2
【分析】求出方程组的解得到a与b的值,即可确定出a+b的值.
【解答】解:法1:,
①+②×5得:16a=32,即a=2,
把a=2代入①得:b=2,
则a+b=4,
法2:①+②得:4a+4b=16,
则a+b=4,
故选:B.
4.(3分)图①是由五个完全相同的小正方体组成的立方体图形,将图①中的一个小正方体改变位置后如图②,则三视图发生改变的是()
A.主视图
B.俯视图
C.左视图
D.主视图、俯视图和左视图都改变
【分析】根据从正面看得到的视图是主视图,从左边看得到的图形是左视图,从上边看得到的图形是俯视图解,可得答案.
【解答】解:①的主视图是第一层三个小正方形,第二层左边一个小正方形;左视图是第一层两个小正方形,第二层左边一个小正方形;俯视图是第一层中间一个小正方形,第二层三个小正方形;
②的主视图是第一层三个小正方形,第二层中间一个小正方形;左视图是第一层两个小
正方形,第二层左边一个小正方形;俯视图是第一层中间一个小正方形,第二层三个小正方形;
故选:A.
5.(3分)某校为了解学生的课外阅读情况,随机抽取了一个班级的学生,对他们一周的读书时间进行了统计,统计数据如下表所示:
读书时间(小
时)
7891011学生人数610987
则该班学生一周读书时间的中位数和众数分别是()
A.9,8B.9,9C.9.5,9D.9.5,8
【分析】根据表格中的数据可知该班有学生40人,从而可以求得中位数和众数,本题得以解决.
【解答】解:由表格可得,
该班学生一周读书时间的中位数和众数分别是:9、8,
故选:A.
6.(3分)如图,在⊙O的内接四边形ABCD中,AB是直径,∠BCD=120°,过D点的切线PD与直线AB交于点P,则∠ADP的度数为()
A.40°B.35°C.30°D.45°
【分析】连接DB,即∠ADB=90°,又∠BCD=120°,故∠DAB=60°,所以∠DBA =30°;又因为PD为切线,利用切线与圆的关系即可得出结果.
【解答】解:连接BD,
∵∠DAB=180°﹣∠C=60°,
∵AB是直径,
∴∠ADB=90°,
∴∠ABD=90°﹣∠DAB=30°,
∵PD是切线,
∴∠ADP=∠ABD=30°,
故选:C.
7.(3分)如图,某小区计划在一块长为32m,宽为20m的矩形空地上修建三条同样宽的道路,剩余的空地上种植草坪,使草坪的面积为570m2.若设道路的宽为xm,则下面所列
方程正确的是()
A.(32﹣2x)(20﹣x)=570
B.32x+2×20x=32×20﹣570
C.(32﹣x)(20﹣x)=32×20﹣570
D.32x+2×20x﹣2x2=570
【分析】六块矩形空地正好能拼成一个矩形,设道路的宽为xm,根据草坪的面积是570m2,即可列出方程.
【解答】解:设道路的宽为xm,根据题意得:(32﹣2x)(20﹣x)=570,
故选:A.
8.(3分)二次函数y=ax2+bx+c的图象如图所示,反比例函数y=与正比例函数y=(b+c)x在同一坐标系中的大致图象可能是()
A.B.
C.D.
【分析】可先根据二次函数的图象与性质判断a、b、c的符号,再判断正比例函数、反比例函数的图象大致位置.
【解答】解:由二次函数y=ax2+bx+c的图象开口向上可知a>0;
∵x=﹣>0,
∴b<0;
∵图象与y轴交于负半轴,
∴c<0,
即b+c<0,
∴反比例函数y=图象在一、三象限,正比例函数y=(b+c)x图象在二、四象限;
故选:B.
二、填空题(本题共8小题,每小题3分,共24分)
9.(3分)分解因式:m3﹣4m=m(m﹣2)(m+2).
【分析】当一个多项式有公因式,将其分解因式时应先提取公因式,再对余下的多项式利用平方差公式继续分解.
【解答】解:m3﹣4m,
=m(m2﹣4),
=m(m﹣2)(m+2).
10.(3分)如图,已知A点是反比例函数的图象上一点,AB⊥y轴于B,且△ABO的面积为3,则k的值为6.
【分析】过双曲线上任意一点与原点所连的线段、坐标轴、向坐标轴作垂线所围成的直角三角形面积S是个定值,即S=|k|.
【解答】解:根据题意可知:S△ABO=|k|=3,
由于反比例函数的图象位于第一象限,k>0,
则k=6.
故答案为:6.
11.(3分)若两个连续整数x、y满足x<+1<y,则x+y的值是7.【分析】先估算的范围,再估算+1,即可解答.
【解答】解:∵,
∴,
∵x<+1<y,
∴x=3,y=4,
∴x+y=3+4=7.
故答案为:7.
12.(3分)农历五月初五为端午节,端午节吃粽子是中华民族的传统习俗.小明妈妈买了3个红豆粽、2个碱水粽、5个腊肉粽,粽子除了内部馅料不同外其他均相同.小明随意吃了一个,则吃到腊肉棕的概率为.
【分析】根据题意和题目中的数据可以求得小明随意吃了一个,则吃到腊肉棕的概率.【解答】解:由题意可得,
小明随意吃了一个,则吃到腊肉棕的概率为:,
故答案为:.
13.(3分)用一张半径为24cm的扇形纸片做一个如图所示的圆锥形小丑帽子侧面(接缝忽略不计),如果做成的圆锥形小丑帽子的底面半径为10cm,那么这张扇形纸片的面积是240πcm2.
【分析】易得圆锥的底面周长,利用侧面积公式可得扇形纸片的面积.
【解答】解:∵圆锥的底面周长为20π,
∴扇形纸片的面积=×20π×24=240πcm2.
故答案为240π.
14.(3分)如图所示,在▱ABCD中,点E在边DC上,DE:EC=3:1,连接AE交BD于点F,则△DEF的面积与△BAF的面积之比为9:16.
【分析】可证明△DFE∽△BF A,根据相似三角形的面积之比等于相似比的平方即可得出答案.
【解答】解:∵四边形ABCD为平行四边形,
∴DC∥AB,
∴△DFE∽△BF A,
∵DE:EC=3:1,
∴DE:DC=3:4,
∴DE:AB=3:4,
∴S△DFE:S△BF A=9:16.
故答案为:9:16.
15.(3分)如图,⊙O是正五边形ABCDE的外接圆,则∠CAD=36°.
【分析】由正五边形的性质得出∠BAE=(5﹣2)×180°÷5=108°,BC=CD=DE,得出,由圆周角定理即可得出答案.
【解答】解:∵⊙O是正五边形ABCDE的外接圆,
∴∠BAE=(5﹣2)×180°÷5=108°,BC=CD=DE,
∴,
∴∠CAD=×108°=36°;
故答案为:36°.
16.(3分)如图,直线y=﹣x+4与x轴、y轴分别交于A、B两点,把△AOB绕点A顺时针旋转90°后得到△AO′B′,则点B′的坐标是(7,3).
【分析】根据旋转的性质﹣﹣旋转不改变图形的形状和大小解答.
【解答】解:直线y=﹣x+4与x轴、y轴分别交于A(3,0)、B(0,4)两点,由图易知点B′的纵坐标为O′A=OA=3,横坐标为OA+O′B′=OA+OB=7.则点B′的坐标是(7,3).
故答案为:(7,3).
三、解答题(本题共6道题,每题6分,共36分)
17.(6分)解不等式组:.
【分析】先求出每个不等式的解集,再找出不等式组的解集即可.
【解答】解:
∵解不等式①得:x>﹣4,
解不等式②得:x≤,
∴不等式组的解集是﹣4<x≤.
18.(6分)解分式方程:.
【分析】观察方程可得最简公分母是:2(x﹣2),两边同时乘最简公分母可把分式方程化为整式方程来解答.
【解答】解:去分母,得3﹣2x=x﹣2,
整理,得3x=5,
解得x=.
经检验,x=是原方程式的解.
所以原方程式的解是x=.
19.(6分)如图,△ABC在平面直角坐标系中,点A(2,﹣1),B(3,2),C(1,0).解答问题:请按要求对△ABC作如下变换.
(1)将△ABC绕点O逆时针旋转90°得到△A1B1C1;
(2)以点O为位似中心,位似比为2:1,将△ABC在位似中心的异侧进行放大得到△A2B2C2.
【分析】(1)根据网格结构找出点A、B、C绕点O逆时针旋转90°的对应点A1、B1、C1的位置,然后顺次连接即可;
(2)连接AO并延长至A2,使A2O=2AO,连接BO并延长至B2,使B2O=2BO,连接CO并延长至C2,使C2O=2CO,然后顺次连接A2、B2、C2即可.
【解答】解:(1)如图所示,△A1B1C1即为△ABC绕点O逆时针旋转90°得到的图形;
(2)如图所示,△A2B2C2即为△ABC在位似中心O的异侧位似比为2:1的图形.20.(6分)“机动车行驶到斑马线要礼让行人”等交通法规实施后,某校数学课外实践小组就对这些交通法规的了解情况在全校随机调查了部分学生,调查结果分为四种:A.非常了解,B.比较了解,C.基本了解,D.不太了解,实践小组把此次调查结果整理并绘制成下面不完整的条形统计图和扇形统计图.
请结合图中所给信息解答下列问题:
(1)本次共调查60名学生;扇形统计图中C所对应扇形的圆心角度数是90°;
(2)补全条形统计图;
(3)该校共有800名学生,根据以上信息,请你估计全校学生中对这些交通法规“非常了解”的有多少名?
(4)通过此次调查,数学课外实践小组的学生对交通法规有了更多的认识,学校准备从组内的甲、乙、丙、丁四位学生中随机抽取两名学生参加市区交通法规竞赛,请用列表或画树状图的方法求甲和乙两名学生同时被选中的概率.
【分析】(1)由A的人数及其所占百分比可得总人数,用360°乘以C人数所占比例即可得;
(2)总人数乘以D的百分比求得其人数,再根据各类型人数之和等于总人数求得B的人数,据此补全图形即可得;
(3)用总人数乘以样本中A类型的百分比可得;
(4)画树状图列出所有等可能结果,再利用概率公式计算可得.
【解答】解:(1)本次调查的学生总人数为24÷40%=60人,扇形统计图中C所对应扇形的圆心角度数是360°×=90°,
故答案为:60、90°;
(2)D类型人数为60×5%=3,
则B类型人数为60﹣(24+15+3)=18,
补全条形图如下:
(3)估计全校学生中对这些交通法规“非常了解”的有800×40%=320名;
(4)画树状图为:
共有12种等可能的结果数,其中甲和乙两名学生同时被选中的结果数为2,
所以甲和乙两名学生同时被选中的概率为=.
21.(6分)如图,四边形ABCD的对角线AC、BD交于点O,已知O是AC的中点,AE=CF,DF∥BE.
(1)求证:△BOE≌△DOF;
(2)若OD=AC,则四边形ABCD是什么特殊四边形?请证明你的结论.
【分析】(1)由DF与BE平行,得到两对内错角相等,再由O为AC的中点,得到OA =OC,又AE=CF,得到OE=OF,利用AAS即可得证;
(2)若OD=AC,则四边形ABCD为矩形,理由为:由OD=AC,得到OB=AC,即OD=OA=OC=OB,利用对角线互相平分且相等的四边形为矩形即可得证.
【解答】(1)证明:∵DF∥BE,
∴∠FDO=∠EBO,∠DFO=∠BEO,
∵O为AC的中点,
∴OA=OC,
∵AE=CF,
∴OA﹣AE=OC﹣CF,
即OE=OF,
在△BOE和△DOF中,

∴△BOE≌△DOF(AAS);
(2)若OD=AC,则四边形ABCD是矩形,理由为:
证明:∵△BOE≌△DOF,
∴OB=OD,
∵OD=AC,
∴OA=OB=OC=OD,
∴四边形ABCD是平行四边形,
∵BD=AC,
∴平行四边形ABCD为矩形.
22.(6分)随着“互联网+”时代的到来,一种新型打车方式受到大众欢迎,该打车方式的总费用由里程费和耗时费组成,其中里程费按x元/公里计算,耗时费按y元/分钟计算(总费用不足9元按9元计价).小明、小刚两人用该打车方式出行,按上述计价规则,其打车总费用、行驶里程数与打车时间如表:
时间(分钟)里程数(公里)车费(元)小明8812
小刚121016
(1)求x,y的值;
(2)如果小华也用该打车方式,打车行驶了11公里,用了14分钟,那么小华的打车总费用为多少?
【分析】(1)根据表格内的数据结合打车费=里程费×里程+耗时费×耗时,即可得出关于x、y的二元一次方程组,解之即可得出结论;
(2)根据打车费=里程费×里程+耗时费×耗时,列式计算即可求出结论.
【解答】解:(1)根据题意得:,
解得:.
(2)11×1+14×=18(元).
答:小华的打车总费用是18元.
23.(8分)如图,AB是⊙O的直径,点F,C是⊙O上两点,且==,连接AC,AF,过点C作CD⊥AF交AF延长线于点D,垂足为D.
(1)求证:CD是⊙O的切线;
(2)若CD=2,求⊙O的半径.
【分析】(1)连结OC,由=,根据圆周角定理得∠F AC=∠BAC,而∠OAC=∠OCA,则∠F AC=∠OCA,可判断OC∥AF,由于CD⊥AF,所以OC⊥CD,然后根据切线的判定定理得到CD是⊙O的切线;
(2)连结BC,由AB为直径得∠ACB=90°,由==得∠BOC=60°,则∠BAC =30°,所以∠DAC=30°,在Rt△ADC中,利用含30度的直角三角形三边的关系得AC=2CD=4,在Rt△ACB中,利用含30度的直角三角形三边的关系得BC=AC =4,AB=2BC=8,所以⊙O的半径为4.
【解答】(1)证明:连结OC,如图,
∵=,
∴∠F AC=∠BAC,
∵OA=OC,
∴∠OAC=∠OCA,
∴∠F AC=∠OCA,
∴OC∥AF,
∵CD⊥AF,
∴OC⊥CD,
∴CD是⊙O的切线;
(2)解:连结BC,如图,
∵AB为直径,
∴∠ACB=90°,
∵==,
∴∠BOC=×180°=60°,
∴∠BAC=30°,
∴∠DAC=30°,
在Rt△ADC中,CD=2,
∴AC=2CD=4,
在Rt△ACB中,BC=AC=×4=4,
∴AB=2BC=8,
∴⊙O的半径为4.
24.(8分)如图,直线y=ax+1与x轴、y轴分别相交于A、B两点,与双曲线y=(x>0)相交于点P,PC⊥x轴于点C,且PC=2,点A的坐标为(﹣2,0).
(1)求双曲线的解析式;
(2)若点Q为双曲线上点P右侧的一点,且QH⊥x轴于H,当以点Q、C、H为顶点的三角形与△AOB相似时,求点Q的坐标.
【分析】(1)把A坐标代入直线解析式求出a的值,确定出直线解析式,把y=2代入直线解析式求出x的值,确定出P坐标,代入反比例解析式求出k的值,即可确定出双曲线解析式;
(2)设Q(a,b),代入反比例解析式得到b=,分两种情况考虑:当△QCH∽△BAO 时;当△QCH∽△ABO时,由相似得比例求出a的值,进而确定出b的值,即可得出Q 坐标.
【解答】解:(1)把A(﹣2,0)代入y=ax+1中,求得a=,
∴y=x+1,
由PC=2,把y=2代入y=x+1中,得x=2,即P(2,2),
把P代入y=得:k=4,
则双曲线解析式为y=;
(2)设Q(m,n),
∵Q(m,n)在y=上,
∴n=,
当△QCH∽△BAO时,可得=,即=,
∴m﹣2=2n,即m﹣2=,
整理得:m2﹣2m﹣8=0,
解得:m=4或m=﹣2(舍去),
∴Q(4,1);
当△QCH∽△ABO时,可得=,即=,
整理得:2m﹣4=,
解得:m=1+或m=1﹣(舍),
∴Q(1+,2﹣2).
综上,Q(4,1)或Q(1+,2﹣2).
25.(10分)小明家今年种植的草莓喜获丰收,采摘上市20天全部销售完,爸爸让他对今年的销售情况进行跟踪记录,小明利用所学的数学知识将记录情况绘成图象(所得图象均为线段),日销售量y(单位:千克)与上市时间x(单位:天)的函数关系如图1所示,草莓的价格w(单位:元/千克)与上市时间x(单位:天)的函数关系如图2所示.(1)观察图象,直接写出当0≤x≤11时,日销售量y与上市时间x之间的函数解析式为y=x;当11≤x≤20时,日销售量y与上市时间x之间的函数解析式为y=﹣10x+200.
(2)试求出第11天的销售金额;
(3)若上市第15天时,爸爸把当天能销售的草莓批发给了邻居马叔叔,批发价为每千克15元,马叔叔到市场按照当日的价格w元/千克将批发来的草莓全部销售完,他在销售的过程中,草莓总质量损耗了2%.那么,马叔叔支付完来回车费20元后,当天能赚到多少元?
【分析】(1)当0≤x≤11时,设y与x之间的函数关系式为y=kx,当11≤x≤20时设y 与x之间的函数关系式为y=k1x+b,由待定系数法求出其解即可;
(2)当3≤x<16时,设w与x的关系式为w=k2x+b2,当x=11时,代入解析式求出w 的值,由销售金额=单价×数量就可以求出结论;
(3)当x=15时代入(1)的解析式求出y的值,再当x=15时代入(2)的解析式求出w的值,再由利润=销售总额﹣进价总额﹣车费就可以得出结论.
【解答】解:(1)当0≤x≤11时,设y与x之间的函数关系式为y=kx,当11≤x≤20时设y与x之间的函数关系式为y=k1x+b,由题意,得
90=11k,,
解得:k=,,
∴y=,
故答案为:y=x,y=﹣10x+200;
(2)当3≤x<16时,设w与x的关系式为w=k2x+b2,由题意,得

解得:,
∴w=﹣x+33.
当x=11时,
y=90,w=22,
∴90×22=1980元.
答:第11天的销售总额为1980元;
(3)由题意,得
当x=15时,
y=﹣10×15+200=50千克.
w=﹣15+33=18元,
利润为:50(1﹣2%)×18﹣50×15﹣20=112元.
答:当天能赚到112元.
26.(10分)如图,矩形AOCB的顶点A、C分别位于x轴和y轴的正半轴上,线段OA、OC的长度满足方程|x﹣15|+=0(OA>OC),直线y=kx+b分别与x轴、y轴交于M、N两点,将△BCN沿直线BN折叠,点C恰好落在直线MN上的点D处,且tan∠CBD =
(1)求点B的坐标;
(2)求直线BN的解析式;
(3)将直线BN以每秒1个单位长度的速度沿y轴向下平移,求直线BN扫过矩形AOCB 的面积S关于运动的时间t(0<t≤13)的函数关系式.
【分析】(1)由非负数的性质可求得x、y的值,则可求得B点坐标;
(2)过D作EF⊥OA于点E,交CB于点F,由条件可求得D点坐标,且可求得=,结合DE∥ON,利用平行线分线段成比例可求得OM和ON的长,则可求得N点坐标,利用待定系数法可求得直线BN的解析式;
(3)设直线BN平移后交y轴于点N′,交AB于点B′,当点N′在x轴上方时,可知S即为▱BNN′B′的面积,当N′在y轴的负半轴上时,可用t表示出直线B′N′的解析式,设交x轴于点G,可用t表示出G点坐标,由S=S四边形BNN′B′﹣S△OGN′,可分别得到S与t的函数关系式.
【解答】解:
(1)∵|x﹣15|+=0,
∴x=15,y=13,
∴OA=BC=15,AB=OC=13,
∴B(15,13);
(2)如图1,过D作EF⊥OA于点E,交CB于点F,
由折叠的性质可知BD=BC=15,∠BDN=∠BCN=90°,
∵tan∠CBD=,
∴=,且BF2+DF2=BD2=152,解得BF=12,DF=9,
∴CF=OE=15﹣12=3,DE=EF﹣DF=13﹣9=4,
∵∠CND+∠CBD=360°﹣90°﹣90°=180°,且∠ONM+∠CND=180°,∴∠ONM=∠CBD,
∴=,
∵DE∥ON,
∴==,且OE=3,
∴=,解得OM=6,
∴ON=8,即N(0,8),
把N、B的坐标代入y=kx+b可得,解得,
∴直线BN的解析式为y=x+8;
(3)设直线BN平移后交y轴于点N′,交AB于点B′,
当点N′在x轴上方,即0<t≤8时,如图2,
由题意可知四边形BNN′B′为平行四边形,且NN′=t,
∴S=NN′•OA=15t;
当点N′在y轴负半轴上,即8<t≤13时,设直线B′N′交x轴于点G,如图3,
∵NN′=t,
∴可设直线B′N′解析式为y=x+8﹣t,
令y=0,可得x=3t﹣24,
∴OG=3t﹣24,
∵ON=8,NN′=t,
∴ON′=t﹣8,
∴S=S四边形BNN′B′﹣S△OGN′=15t﹣(t﹣8)(3t﹣24)=﹣t2+39t﹣96;
综上可知S与t的函数关系式为S=.
中考模拟考试数学试题
一.选择题(满分21分,每小题3分)
1.﹣2的相反数是()
A.2 B.﹣2 C.D.﹣
2.如图,由5个完全相同的小正方体组合成一个立体图形,它的左视图是()
A.B.C.D.
3.在下列运算中,正确的是()
A.(x﹣y)2=x2﹣y2B.(a+2)(a﹣3)=a2﹣6
C.(a+2b)2=a2+4ab+4b2D.(2x﹣y)(2x+y)=2x2﹣y2
4.已知一组数据2,3,4,x,1,4,3有唯一的众数4,则这组数据的中位数是()A.2 B.3 C.4 D.5
5.如图,点A在反比例函数y=(x<0)的图象上,过点A作AC⊥x轴,垂足为C,OA 的垂直平分线交x轴于点B,当AC=1时,△ABC的周长为()
A.1 B.C. +1 D. +2
6.如图,点F是矩形ABCD的边CD上一点,射线BF交AD的延长线于点E,则下列结论错误的是()
A.=B.=C.=D.=
7.已知二次函数y=ax2+bx+c(a≠0)的图象如图,有下列5个结论:①4a+2b+c>0;②abc <0;③b<a﹣c;④3b>2c;⑤a+b<m(am+b),(m≠1的实数);其中正确结论的个数为()
A.2个B.3个C.4个D.5个
二.填空题(满分24分,每小题3分)
8.若关于x的不等式组无解,则m的取值范围是.
9.将数12000000科学记数法表示为.
10.如图,是一块飞镖游戏板,板中每一块小正方形除颜色外全部相同,小明向飞镖板中投掷飞镖一次,假设飞镖都落在游戏板上,求飞镖落在阴影部分的概率是.
11.要使代数式有意义,x的取值范围是.
12.如图,已知在Rt△ABC中,∠C=90°,AC=BC=10,点D,E在线段BC上,且CD=2,BE=5,点P,Q分别是线段AC,AB上的动点,则四边形PQED周长的最小值为.
13.如图,在正方形ABCD和正方形AEFG中,边AE在边AB上,AB=,AE=1.将正方形AEFG绕点A逆时针旋转,设BE的延长线交直线DG于点P,当点P,G第一次重合时停止旋转.在这个过程中:
(1)∠BPD=度;
(2)点P所经过的路径长为.
14.如图,在直角坐标系中,A,B为定点,A(2,﹣3),B(4,﹣3),定直线l∥AB,P是l上一动点,l到AB的距离为6,M,N分别为PA,PB的中点下列说法中:
①线段MN的长始终为1;②△PAB的周长固定不变;
③△PMN的面积固定不变;④若存在点Q使得四边形APBQ是平行四边形,则Q到MN所
在直线的距离必为9.
其中正确的说法是.
15.如图所示,摆第一个“小屋子”要5枚棋子,摆第二个要11枚棋子,摆第三个要17枚棋子,则摆第30个“小屋子”要枚棋子.
三.解答题
16.(8分)(1)计算:(﹣1)2019+(﹣)﹣2﹣|2﹣|+4sin60°
(2)先化简,再求值:(1﹣)÷,其中a=+2
17.(8分)已知:如图,在△ABC中,AB=AC=5,BC=8,D,E分别为BC,AB边上一点,∠ADE=∠C.
(1)求证:△BDE∽△CAD;
(2)若CD=2,求BE的长.
四.解答题
18.(10分)我校对全校学生进传统文化礼仪知识测试,为了了解测试结果,随机抽取部分学生的成绩进行分析,现将成绩分为三个等级:不合格、一般、优秀,并绘制成如下两幅统计图(不完整).
请你根据图中所给的信息解答下列问题:(1)本次随机抽取的人数是人,并将以上两幅统计图补充完整;
(2)若“一般”和“优秀”均被视为达标成绩,则我校被抽取的学生中有人达标;
(3)若我校学生有1200人,请你估计此次测试中,全校达标的学生有多少人?19.(10分)小明家客厅里装有一种三位单极开关,分别控制着A(楼梯)、B(客厅)、C(走廊)三盏电灯,按下任意一个开关均可打开对应的一盏电灯,因刚搬进新房不久,不熟悉情况.
(1)若小明任意按下一个开关,则下列说法正确的是.
A.小明打开的一定是楼梯灯
B.小明打开的可能是卧室灯
C.小明打开的不可能是客厅灯。

相关文档
最新文档