2013-2014学年甘肃省武威市天祝三中八年级上第二次月考数学试卷【新课标人教版】
2014年甘肃省武威市中考数学试卷
2014年甘肃省武威市中考数学试卷一、选择题:本大题共10个小题,每小题3分,共30分,每小题给出的四个选项中,只有一项是符合题目要求的,将此选项的字母填涂在答题卡上.1.﹣3的绝对值是( )A . 3B . ﹣3C . ﹣D .2.节约是一种美德,节约是一种智慧.据不完全统计,全国每年浪费食物总量折合粮食可养活约3亿5千万人.350 000 000用科学记数法表示为( )A . 3.5×107B . 3.5×108C . 3.5×109D . 3.5×10103.如图的几何体是由一个正方体切去一个小正方体形成的,它的主视图是( )A .B .C .D .4.下列计算错误的是( )A . •=B . +=C .÷=2D . =25.将直角三角尺的直角顶点靠在直尺上,且斜边与这根直尺平行,那么,在形成的这个图中与∠α互余的角共有( )A . 4个B . 3个C . 2个D . 1个6.下列图形中,是轴对称图形又是中心对称图形的是( ) A .B .C .D .7.已知⊙O 的半径是6cm ,点O 到同一平面内直线l 的距离为5cm ,则直线l 与⊙O 的位置关系是( ) A . 相交B . 相切C . 相离D . 无法判断8.用10米长的铝材制成一个矩形窗框,使它的面积为6平方米.若设它的一条边长为x 米,则根据题意可列出关于x 的方程为( ) A . x (5+x )=6B . x (5﹣x )=6C . x (10﹣x )=6D . x (10﹣2x )=69.二次函数y=x 2+bx+c ,若b+c=0,则它的图象一定过点( )A . (﹣1,﹣1)B . (1,﹣1)C . (﹣1,1)D . (1,1)10.如图,边长为1的正方形ABCD 中,点E 在CB 延长线上,连接ED 交AB 于点F ,AF=x (0.2≤x≤0.8),EC=y .则在下面函数图象中,大致能反映y 与x 之闻函数关系的是( )A .B .C .D .二、填空题:本大题共8小题,每小题4分,共32分.把答案写在答题卡中的横线上.11.分解因式:2a 2﹣4a+2= .12.化简:= .13.等腰△ABC 中,AB=AC=10cm ,BC=12cm ,则BC 边上的高是 cm .14.一元二次方程(a+1)x 2﹣ax+a2﹣1=0的一个根为0,则a= .15.△ABC 中,∠A、∠B 都是锐角,若sinA=,cosB=,则∠C= ° .16.已知x 、y 为实数,且y=﹣+4,则x ﹣y= .17.如图,四边形ABCD 是菱形,O 是两条对角线的交点,过O 点的三条直线将菱形分成阴影和空白部分.当菱形的两条对角线的长分别为6和8时,则阴影部分的面积为 12 . 18.观察下列各式:13=12 13+23=32 13+23+33=6213+23+33+43=102…猜想13+23+33+…+103= .三、解答题(一):本大题共5小题,共38分.解答时,应写出必要的文字说明、证明过程或演算步骤. 19.(6分)计算:(﹣2)3+×(2014+π)0﹣|﹣|+tan260°.20.(6分)阅读理解:我们把称作二阶行列式,规定他的运算法则为=ad﹣bc .如=2×5﹣3×4=﹣2.如果有>0,求x的解集.21.(8分)如图,△ABC中,∠C=90°,∠A=30°.(1)用尺规作图作AB边上的中垂线DE,交AC于点D,交AB于点E.(保留作图痕迹,不要求写作法和证明);(2)连接BD,求证:BD平分∠CBA.22.(8分)为倡导“低碳生活”,人们常选择以自行车作为代步工具、图(1)所示的是一辆自行车的实物图.图(2)是这辆自行车的部分几何示意图,其中车架档AC与CD的长分别为45cm和60cm,且它们互相垂直,座杆CE的长为20cm.点A、C、E在同一条只显示,且∠CAB=75°.(参考数据:sin75°=0.966,cos75°=0.259,tan75°=3.732)(1)求车架档AD的长;(2)求车座点E到车架档AB的距离(结果精确到1cm).23.(10分)如图,在直角坐标系xOy中,直线y=mx 与双曲线相交于A(﹣1,a)、B两点,BC⊥x轴,垂足为C,△AOC的面积是1.(1)求m、n的值;(2)求直线AC的解析式.四、解答题(二):本大题共5小题,共50分.解答时,应写出必要的文字说明、证明过程或演算步骤. 24.(8分)在一个不透明的布袋里装有4个标号为1、2、3、4的小球,它们的材质、形状、大小完全相同,小凯从布袋里随机取出一个小球,记下数字为x,小敏从剩下的3个小球中随机取出一个小球,记下数字为y,这样确定了点P的坐标(x,y).(1)请你运用画树状图或列表的方法,写出点P所有可能的坐标;(2)求点(x,y)在函数y=﹣x+5图象上的概率.25.(10分)某校课外小组为了解同学们对学校“阳光跑操”活动的喜欢程度,抽取部分学生进行调查,被调查的每个学生按A(非常喜欢)、B(比较喜欢)、C(一般)、D(不喜欢)四个等级对活动评价,图1和图2是该小组采集数据后绘制的两幅统计图,经确认扇形统计图是正确的,而条形统计图尚有一处错误且并不完整.请你根据统计图提供的信息.解答下列问题:(1)此次调查的学生人数为200 ;(2)条形统计图中存在错误的是 C (填A、B、C、D中的一个),并在图中加以改正;(3)在图2中补画条形统计图中不完整的部分;(4)如果该校有600名学生,那么对此活动“非常喜欢”和“比较喜欢”的学生共有多少人?26.(10分)D、E分别是不等边三角形ABC(即AB≠BC≠AC)的边AB、AC的中点.O是△ABC所在平面上的动点,连接OB、OC,点G、F分别是OB、OC的中点,顺次连接点D、G、F、E.(1)如图,当点O在△ABC的内部时,求证:四边形DGFE是平行四边形;(2)若四边形DGFE是菱形,则OA与BC应满足怎样的数量关系?(直接写出答案,不需要说明理由.)27.(10分)(2014•白银)如图,Rt△ABC中,∠ABC=90°,以AB为直径作半圆⊙O交AC与点D,点E为BC 的中点,连接DE.(1)求证:DE是半圆⊙O的切线.(2)若∠BAC=30°,DE=2,求AD的长.28.(12分)如图,在平面直角坐标系xOy中,顶点为M的抛物线是由抛物线y=x2﹣3向右平移一个单位后得到的,它与y轴负半轴交于点A,点B在该抛物线上,且横坐标为3.(1)求点M、A、B坐标;(2)联结AB、AM、BM,求∠ABM的正切值;(3)点P是顶点为M的抛物线上一点,且位于对称轴的右侧,设PO与x正半轴的夹角为α,当α=∠ABM时,求P点坐标.。
甘肃省武威市天祝三中2013-2014学年八年级12月月考物理试题(无答案)
八年级物理第二次月考试卷第Ⅰ卷(选择题 共39分)一、选择题(本题共13小题,每小题 3分,共 39分.在每个小题给出的四个选项中只有一个正确答案.请将该选项的标号填在题后的括号内)1. 如图所示,在演示声音是由物体振动引起的实验中,将正在发声的音叉紧靠悬线下的轻质小球,小球被多次弹开。
在此实验中小球的作用是 ( )A. 使音叉振动时间延长B. 把音叉微小的振动放大,便于观察C. 使音叉尽快停下来D. 使声波多次反射形成回2.如图示,将正在发声的手机、电铃或接通电源的音乐芯片悬挂在广口瓶内, 再把瓶内的空气抽出如图所示,声音逐渐变小,但始终能听到声音。
原因是 ( ).A .瓶内已被抽成真空,真空亦能传声;B .声源发声太强,换用发声较弱的声源;C .离实验瓶远一点,就可以听不到声音;D .瓶内仍有少量空气,悬挂声源的固体亦能传声。
3.有A 、B 、C 三块凸透镜,现用这三块凸透镜做成像实验, 在保持各凸透镜跟烛焰距离相等的条件下,得到的实验记录如下: 透镜像的性质 A放大 倒立 实像 B缩小 倒立 实像 C 放大 正立 虚像 由此可知A 、B 、C 三个透镜的焦距关系为 ( )A 、f A >fB >fc B 、fc >f A >f BC 、f A <f B <fcD 、f B <fc <f A4.小明自制了一个简易投影仪(如图),在暗室中将印有第1第2题图抽气奥运五环(红、黄、蓝、绿、黑五色环)标志的透明胶片,贴在发白光的手电筒上,并正对着焦距为10cm的凸透镜。
调整手电筒、凸透镜、白色墙壁之间的位置,在墙上得到了一个清晰正立放大的像,下列说法错误的是()A.手电筒与凸透镜的距离应小于10cm,且胶片应正立放置B.手电筒与凸透镜的距离应大于10cm小于20cm,且胶片应倒立放置C.能从不同角度看到墙上五环标志的像,是因为光在墙面上发生的是漫反射D.将白色的墙上蒙上一层红布,可以看到奥运标志的像中五环的颜色只有红色和黑色5.白炽灯丝是由钨丝制成的,长期使用灯泡会变黑,这种现象属于()A.先凝华后升华B.先蒸发后凝固C.先升华后凝华D.先汽化后液6.把图6中的凸透镜看作眼睛的晶状体,光屏看作是视网膜。
甘肃初二初中数学月考试卷带答案解析
甘肃初二初中数学月考试卷班级:___________ 姓名:___________ 分数:___________一、选择题1.从n边形的一个顶点作对角线,把这个n边形分成三角形的个数是()A.n个B.(n-1)个C.(n-2)个D.(n-3)个2.已知△ABC中,∠A、∠B、∠C三个角的比例如下,其中能说明△ABC是直角三角形的是()A、2:3:4B、1:2:3C、4:3:5D、1:2:23.下列图形中有稳定性的是()A.正方形B.直角三角形C.长方形D.平行四边形4.如图,AB∥CD,∠CED=90°,∠AEC=35°,则∠D的大小为()A.65°B.55°C.45°D.35°5.如图所示,将三角板的直角顶点放在直尺的一边上,∠1=30°,∠2=50°,则∠3的度数为()A.80°B.50°C.30°D.20°6.已知△ABC中,∠ABC和∠ACB的平分线交于点O,则∠BOC一定()A.小于直角B.等于直角C.大于直角D.不能确定7.下列正多边形材料中,不能单独用来铺满地面的是()A.正三角形B.正四边形C.正五边形D.正六边形8.如果三角形的两边长分别为3和5,第三边长是偶数,那么第三边长可以是()A.2B.3C.4D.89.等腰三角形的一边长为3 cm,周长为19 cm,则该三角形的腰长为()A.3 cm B.8 cm C.3 cm或8 cm D.以上答案均不对10.在△ABC中,若2(∠A+∠C)=3∠B,则∠B的外角的度数为()A.36° B.72° C.108° D.144°二、填空题1.在△ABC中,∠C比∠A+∠B还大30°,则∠C的外角为______度,这个三角形是______三角形.2.如图,△ABC中,BD是∠ ABC的角平分线,DE ∥ BC交AB 于 E,∠A=60º,∠BDC=95º,则∠BED的度数是______.3.如图,一个直角三角形纸片,剪去直角后,得到一个四边形,则∠1+∠2= .4.若等腰三角形的两边长分别为3cm和8cm,则它的周长是。
甘肃省武威市八年级上学期期中数学试卷
甘肃省武威市八年级上学期期中数学试卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分)(2019·河北模拟) 下列图形中是轴对称图形,但不是中心对称图形的是()A .B .C .D .2. (2分)如图,AC是电线杆AB的一根拉线,测得BC=6米,∠ACB=52°,则拉线AC的长为()A . 米B . 米C . 6·cos52°米D . 米3. (2分)如图,下面的四个图形中,线段BE是△ABC的高的图是()A .B .C .D .4. (2分)已知a+b=3,a﹣b=5,则a2﹣b2=()A . 3B . 8C . 15D . QUOTE5. (2分) (2019八上·台州开学考) 如图,在△ABC中,BD、BE分别是高和角平分线,点F在CA的延长线上,FH⊥BE交BD于G,交BC于H,下列结论:①∠DBE=∠F;②2∠BEF=∠BAF+∠C;③∠F= (∠BAC﹣∠C);④∠BGH=∠ABE+∠C.其中正确的是()A . ①②③B . ①③④C . ①②④D . ①②③④6. (2分) (2015八下·成华期中) 如图,在ABC中,∠C=90°,AD是∠A角平分线,DE⊥AB于点E,CD=3,BC=8,则BE=()A . 3B . 4C . 5D . 67. (2分) (2016九上·泉州开学考) 如图四边形ABCD是菱形,且∠ABC=60,△ABE是等边三角形,M为对角线BD(不含B点)上任意一点,将BM绕点B逆时针旋转60°得到BN,连接EN、AM、CM,则下列五个结论中正确的是()①若菱形ABCD的边长为1,则AM+CM的最小值1;②△AMB≌△ENB;③S四边形AMBE=S四边形ADCM;④连接AN,则AN⊥BE;⑤当AM+BM+CM的最小值为2 时,菱形ABCD的边长为2.A . ①②③B . ②④⑤C . ①②⑤D . ②③⑤8. (2分)已知a,b,c是△ABC的三边长,且满足a3+ab2+bc2=b3+a2b+ac2 ,则△ABC的形状是()A . 等腰三角形B . 直角三角形C . 等腰三角形或直角三角形D . 等腰直角三角形9. (2分)一个正多边形的每个内角都等于140°,那么它是正()边形.A . 正六边形B . 正七边形C . 正八边形D . 正九边形10. (2分) (2019九上·东源期中) 如图所示,E、F分别是正方形ABCD的边CD,AD上的点,且CE=DF,AE,BF相交于点0,下列结论①AE=BF;②AE⊥BF:③A0=0E:④S△A0B=S四边形DE0F中,正确的有()A . 1个B . 2个C . 3个D . 4个二、填空题 (共8题;共9分)11. (1分)(2019·惠安模拟) 计算:20190﹣2=________.12. (1分)(2014·常州) 已知P(1,﹣2),则点P关于x轴的对称点的坐标是________.13. (1分) (2019七下·广州期中) 如图,∠AOB=40°,OP平分∠AOB,点C为射线OP上一点,作CD⊥OA 于点D,在∠POB的内部作CE∥OB,则∠DCE=__度.14. (1分)若△ABC三条边长为a,b,c,化简:|a-b-c|-|a+c-b|=________.15. (1分)(2018·德州) 对于实数a,b,定义运算“◆”:a◆b= ,例如4◆3,因为4>3.所以4◆3= =5.若x,y满足方程组,则x◆y=________.16. (1分)如图,在Rt△ABC中,∠ABC=90°,AB=BC=,将△ABC绕点C逆时针旋转60°,得到△MNC,连接BM,则BM的长是________ .17. (1分) (2018八上·宁波期中) 如图,在Rt△ABC中,∠ABC=90°,AB=6,D为AC中点,过点A作AE∥BC,连结BE,∠EBD=∠CBD,BD=5,则BE的长为________.18. (2分)(2017·资中模拟) 一列数a1 , a2 , a3 ,…满足条件:a1= ,an= (n≥2,且n为整数),则a1+a2+a3+…+a2017=________.三、解答题 (共8题;共77分)19. (10分) (2017七下·江阴期中) 计算题(1)()﹣1+(﹣2)0﹣|﹣2|﹣(﹣3)(2)a•a2•a3+(a3)2﹣(﹣2a2)3.20. (10分) (2017七下·苏州期中) 分解因式(1) x3﹣xy2(2)(x+2)(x+4)+1.21. (5分)(2018·乐山) 先化简,再求值:(2m+1)(2m﹣1)﹣(m﹣1)2+(2m)3÷(﹣8m),其中m是方程x2+x﹣2=0的根22. (5分)(2019·陕西模拟) 如图,在四边形ABCD中,AB=AD.在BC上求作一点P使△ABP≌△ADP.(要求:用尺规作图,不写作法,保留作图痕迹)23. (2分)(2016·南充) 已知△ABN和△ACM位置如图所示,AB=AC,AD=AE,∠1=∠2.(1)求证:BD=CE;(2)求证:∠M=∠N.24. (15分) (2017八上·崆峒期末) 两个大小不同的等腰直角三角形三角板如图①所示放置,图②是由它抽象出的几何图形,B,C,E在同一条直线上,连接DC,(1)请找出图②中的全等三角形,并给予说明(说明:结论中不得含有未标识的字母);(2)试说明:DC⊥BE.25. (15分) (2019八下·平顶山期中) 如图1,△ABC的边BC在直线l上,AC⊥BC,且AC=BC;△EFP的边FP也在直线l上,边EF与边AC重合,且EF=FP(备注:当EF=FP,∠EFP=90°时,∠PEF=∠FPE=45°,反之当∠PEF=∠FPE=45°时,当EF=FP).(1)在图1中,请你通过观察、测量、猜想并写出AB与AP所满足的数量关系和位置关系.(2)将△EFP沿直线l向左平移到图2的位置时,EP交AC于点Q,连接AP,BQ.猜想并写出BQ与AP所满足的数量关系和位置关系,并证明你的猜想;(3)将△EFP沿直线l向左平移到图3的位置时,EP的延长线交AC的延长线于点Q,连接AP、BQ.你认为(2)中所猜想的BQ与AP的结论还成立吗?若成立,给出证明:若不成立,请说明理由.26. (15分) (2018八上·泰兴月考) 如图,在△A BC中,AB=AC,∠B=30°,D为BC边上一点,∠DAB=45°.(1)求∠DAC的度数;(2)求证:AB=CD.参考答案一、单选题 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共8题;共9分)11-1、12-1、13-1、14-1、15-1、16-1、17-1、18-1、三、解答题 (共8题;共77分)19-1、19-2、20-1、20-2、21-1、22-1、23-1、23-2、24-1、24-2、25-1、25-2、25-3、26-1、26-2、。
2014年甘肃省武威市中考数学试卷
,cosB= ,则∠C= +4,则 x﹣y=
17.如图,四边形 ABCD 是菱形,O 是两条对角线的交点,过 O 点的三条直线将菱形分成阴 影和空白部分.当菱形的两条对角线的长分别为 6 和 8 时,则阴影部分的面积为 18.观察下列各式: .
5.如图,将直角三角尺的直角顶点靠在直尺上,且斜边与这根直尺平行,那么,在形成的这个图中与∠α互 余的角共有( A.4 个 ) B.3 个 C.2 个 ) D. D.1 个
D.x(10﹣2x)=6
9.二次函数 y=x2+bx+c,若 b+c=0,则它的图象一定过点( A.(﹣1,﹣1) B.(1,﹣1)
C.(﹣1,1)
D.(1,1)
10. 如图, 边长为 1 的正方形 ABCD 中, 点 E 在 CB 延长线上, 连接 ED 交 AB 于点 F, AF=x (0.2≤x≤0.8) , EC=y. 则 在下面函数图象中,大致能反映 y 与 x 之闻函数关系的是( A. B. C. ) D.
3 0 2
7.已知⊙O 的半径是 6cm,点 O 到同一平面内直线 l 的距离为 5cm,则直线 l 与⊙O 的位置关系是( A.相交 B.相切 C.相离 D.无法判断
)
20. (6 分)阅读理解: 我们把 如果有 称作二阶行列式,规定他的运算法则为 >0,求 x 的解集. =ad﹣bc.如 =2×5﹣3×4=﹣2.
8.用 10 米长的铝材制成一个矩形窗框,使它的面积为 6 平方米.若设它的一条边长为 x 米,则根据题意可列 出关于 x 的方程为( )
21. (8 分)如图,△ABC 中,∠C=90°,∠A=30°. (1) 用尺规作图作 AB 边上的中垂线 DE, 交 AC 于点 D, 交 AB 于点 E. (保留作图痕迹,不要求写作法和证明) ; (2)连接 BD,求证:BD 平分∠CBA.
八年级(上)第二次月考数学试卷(带答案)
八年级(上)第二次月考数学试卷一、选择题1.(3分)的平方根是()A.9B.±9C.3D.±32.(3分)以下列各组数据中是勾股数的是()A.1,1,B.12,16,20C.1,D.1,2,3.(3分)下列各式中,正确的是()A.=±4B.±=4C.=﹣3D.=﹣4 4.(3分)已知正比例函数y=kx(k≠0)的函数值y随x的增大而减小,则一次函数y=x+k的图象大致是()A.B.C.D.5.(3分)点P1(x1,y1),点P2(x2,y2)是一次函数y=﹣4x+3图象上的两个点,且x1<x2,则y1与y2的大小关系是()A.y1>y2B.y1>y2>0C.y1<y2D.y1=y26.(3分)下列说法中:(1)无理数就是开方开不尽的数;(2)无理数是无限小数;(3)无理数包括正无理数、零、负无理数;(4)无理数可以用数轴上的点来表示.共有()个是正确的.A.1B.2C.3D.47.(3分)无论m为何实数,直线y=x+2m与y=﹣x+4的交点不可能在()A.第一象限B.第二象限C.第三象限D.第四象限8.(3分)直角三角形的一条直角边是另一条直角边的,斜边长为10,则它的面积为()A.10B.15C.20D.309.(3分)方程组的解互为相反数,则a的值是()A.6B.7C.8D.910.(3分)在平面直角坐标系中,点P(n,1﹣n)一定不在第()象限.A.一B.二C.三D.四二、填空题11.(3分)若x=()3,则=.12.(3分)已知y﹣2与x成正比例,当x=3时,y=1,则y与x的函数表达式是.13.(3分)函数y=2x向右平移2个单位,得到的表达式为.14.(3分)如图,AB⊥BC,且AB=,BC=2,CD=5,AD=4,则∠ACD=度,图形ABCD的面积为.三、解答题15.(1)用代入法求解(2)用加减消元法求解(3).16.如图,在平面直角坐标系中,已知A(﹣1,5),B(﹣1,0),C(﹣4,3).①在图中作出△ABC关于y轴的对称图形△A1B1C1;②写出点A1和C1的坐标.17.如图:有一个圆柱,底面圆的直径AB=,高BC=12cm,P为BC的中点,求蚂蚁从A点爬到P点的最短距离.18.某商店需要购进甲、乙两种商品共160件,其进价和售价如下表:(注:利润=售价﹣进价)甲乙进价(元/件)1535售价(元/件)2045若商店计划销售完这批商品后能使利润达到1100元,问甲、乙两种商品应分别购进多少件?19.已知函数y=(2m+1)x+m﹣3(1)若函数图象经过原点,求m的值;(2)若函数的图象平行直线y=3x﹣3,求m的值;(3)若这个函数是一次函数,且y随着x的增大而减小,求m的取值范围.20.已知一次函数y=﹣2x+4(1)画出函数的图象.(2)求图象与x轴、y轴的交点A、B的坐标.(3)求A、B两点间的距离.(4)利用图象写出当x为何值时,y≥0.21.一位农民带上若干千克自产的土豆进城出售.为了方便,他带了一些零钱备用,按市场价售出一些后,又降价出售,售出的土豆千克数与他手中持有的钱数(含备用零钱)的关系,如图,结合图象回答下列问题:(1)农民自带的零钱是多少?(2)求出降价前每千克的土豆价格是多少?(3)降价后他按每千克0.4元将剩余土豆售完,这时他手中的钱(含备用零钱)是26元,试问他一共带了多少千克土豆?22.有甲、乙两个两位数,若把甲数放在乙数的左边,组成的四位数是乙数的201倍;若把乙数放在甲数的左边,组成的四位数比上面的四位数小1188,求甲、乙这两个数.23.如图,l A,l B分别表示A步行与B骑车在同一路上行驶的路程S与时间t的关系.(1)走了一段路后,自行车因故障,进行修理,所用的时间是小时.(2)B出发后小时与A相遇(3)修理后的自行车速度是多少?A步行速度是多少?(4)若B的自行车不发生故障,保持出发时的速度前进,几小时与A相遇?相遇点离B的出发点几千米?(5)求出A行走的路程S与时间t的函数关系式.24.如图,直线y=2x+b经过点A(1,0),与y轴交于点B,直线y=ax+经过点C(4,0),且与直线AB交于点D.(1)求B、D两点的坐标;(2)求△ADC 的面积;(3)在直线BD 上是否存在一点P ,使S △ACP =2S △ACD ?若存在,请求出符合条件的点P 坐标;若不存在,请说明理由.参考答案与试题解析一、选择题1.【解答】解:∵=9,∴的平方根是±3,故选:D.2.【解答】解:A、∵不是正整数,∴此选项不符合题意;B、∵122+162=202,∴此选项符合题意;C、∵不是正整数,∴此选项不符合题意;D、∵不是正整数,∴此选项不符合题意.故选:B.3.【解答】解:A、原式=4,所以A选项错误;B、原式=±4,所以B选项错误;C、原式=﹣3=,所以C选项正确;D、原式=|﹣4|=4,所以D选项错误.故选:C.4.【解答】解:∵正比例函数y=kx(k≠0)的函数值y随x的增大而减小,∴k<0,∵一次函数y=x+k的一次项系数大于0,常数项小于0,∴一次函数y=x+k的图象经过第一、三象限,且与y轴的负半轴相交.故选:B.5.【解答】解:根据题意,k=﹣4<0,y随x的增大而减小,因为x1<x2,所以y1>y2.故选:A.6.【解答】解:(1)无理数就是开方开不尽的数,故(1)错误;(2)无理数是无限不循环小数,故(2)错误;(3)无理数包括正无理数、负无理数,故(3)错误;(4)无理数可以用数轴上的点来表示,故(4)正确;7.【解答】解:由于直线y=﹣x+4的图象不经过第三象限.因此无论m取何值,直线y=x+2m与y=﹣x+4的交点不可能在第三象限.故选:C.8.【解答】解:直角三角形的一条直角边是另一条直角边的,设一边是a,另一直角边是3a,根据勾股定理得到方程a2+(3a)2=100,解得:a=,则另一直角边是3,则面积是:××3=15.故选:B.9.【解答】解:由方程组的解互为相反数,得到x+y=0,即y=﹣x,代入方程组得:,把①代入②得:4x﹣18=﹣5x,解得:x=2,把x=2代入①得:a=8,故选:C.10.【解答】解:n>0时,1﹣n可以是负数也可以是正数,∴点P可以在第一象限也可以在第四象限,n<0时,1﹣n>0,∴点P在第二象限,不在第三象限.故选:C.二、填空题11.【解答】解:x=()3=﹣5,则==2.故答案是2.12.【解答】解:∵y﹣2与x成正比例,∴设y﹣2=kx,∵当x=3时,y=1,∴k=﹣∴y ﹣2=﹣x ,∴y 与x 的函数关系式是:y=﹣x +2.故答案为y=﹣x +2.13.【解答】解:由“左加右减”的原则可知:直线y=2x 向右平移2个单位, 得到直线的解析式为:y=2(x ﹣2),即y=2x ﹣4.故答案为:y=2x ﹣4.14.【解答】解:在RT △ABC 中,∵AB=,BC=2,∴AC==.又∵CD=5,AD=4, ∴在△ACD 中,AC 2+CD 2=AD 2,即∠ACD=90°.∴S 四边形ABCD =S △ABC +S △ACD ==+.三、解答题15.【解答】解:(1), 由②得x=3﹣4y ③,将③代入①得2(13﹣4y )+3y=16,解得:y=2,将y=2代入②得:x=5, ∴原方程的解为;(2)用加减消元法求解:,①×2得:10x ﹣12y=﹣6 ③②×3得:21x ﹣12y=27④④﹣③得:21x ﹣12y ﹣10x +12y=33,解得:x=3,将x=3代入①得:y=3,∴原方程组的解为;(3),②﹣①得:x﹣2y=﹣1 ④①×3得,3x+3y+3z=12 ⑤⑤+③得6x+y=7 ⑥⑥×2,得:12x+2y=14 ⑦⑦+④得13x=13,解得:x=1,将x=1代入④得y=1,将x=1、y=1代入①得z=2,∴原方程组的解为.16.【解答】解:(1)所作图形如图所示:;(2)点A1的坐标为(1,5),点C1的坐标为(4,3).17.【解答】解:已知如图:∵圆柱底面直径AB=cm、母线BC=12cm,P为BC的中点,∴圆柱底面圆的半径是cm,BP=6cm,∴AB=×2×=8cm,在Rt△ABP中,AP==10cm,∴蚂蚁从A点爬到P点的最短距离为10cm.18.【解答】解:设甲种商品应购进x件,乙种商品应购进y件,依题意得:,解得:,答:甲种商品应购进100件,乙种商品应购进60件.19.【解答】解:(1)∵函数y=(2m+1)x+m﹣3的图象经过原点,∴当x=0时y=0,即m﹣3=0,解得m=3;(2)∵函数y=(2m+1)x+m﹣3的图象与直线y=3x﹣3平行,∴2m+1=3,解得m=1;(3)∵这个函数是一次函数,且y随着x的增大而减小,∴2m+1<0,解得m<﹣.20.【解答】解:(1)列表如下:x…01…y…42…描点、连线画出函数图象,如图所示.(2)当x=0时,y=﹣2x+4=4,∴点B的坐标为(0,4);当y=﹣2x+4=0时,x=2,∴点A的坐标为(2,0).(3)∵A(2,0),B(0,4),∴OA=2,OB=4.在Rt△AOB中,∠AOB=90°,OA=2,OB=4,∴AB==2.∴A、B两点间的距离为2.(4)观察函数图象可知:当x<2时,一次函数y=﹣2x+4的图象在x轴上方;当x=2时,y=﹣2x+4=0.∴当x≤2时,y≥0.21.【解答】解:(1)由图象可知,当x=0时,y=5.答:农民自带的零钱是5元.(2)设降价前每千克土豆价格为k元,则农民手中钱y与所售土豆千克数x之间的函数关系式为:y=kx+5,∵当x=30时,y=20,∴20=30k+5,解得k=0.5.答:降价前每千克土豆价格为0.5元.(3)设降价后农民手中钱y与所售土豆千克数x之间的函数关系式为y=0.4x+b.∵当x=30时,y=20,∴b=8,当x=a时,y=26,即0.4a+8=26,解得:a=45.答:农民一共带了45千克土豆.22.【解答】解:设甲数为x,乙数为y,根据题意得:,解得:.答:甲是24,乙是12.23.【解答】解:(1)由图象可得,走了一段路后,自行车因故障,进行修理,所用的时间是:1.5﹣0.5=1(小时),故答案为:1;(2)由图象可得,B出发3小时与A相遇,故答案为:3;(3)由图象可得,修理后的自相车的速度为:(22.5﹣7.5)÷(3﹣1.5)=10千米/时,A步行的速度为:(22.5﹣10)÷3=千米/时;(4)由图象可得,B出发时的速度为:7.5÷0.5=15千米/时,设若B的自行车不发生故障,保持出发时的速度前进,x小时与A相遇,15x=10+,解得,x=,∴15x=15×,即若B的自行车不发生故障,保持出发时的速度前进,小时与A相遇,相遇点离B的出发点千米;(5)设A行走的路程S与时间t的函数关系式为:S=kt+b,,得,即A行走的路程S与时间t的函数关系式是S=.24.【解答】解:(1)将点A(1,0)代入y=2x+b中得b=﹣2,即为y=2x﹣2,∵DB相交于y轴,∴令x=0,∴y=﹣2,∴B(0,﹣2),将C(4,0)代入y=ax+中得:a=﹣,即为y=,∵D相交于两线之间∴,∴x=,将x=代入y=2x﹣2中得:y=1,∴D(1.5,1),(2),(3)假设存在P,则S△ACP =2S△ACD=3,∴,∴y P=2将y P=2代入y=2x﹣2中∴x=2,∴P(2,2),∴,∴,将y=﹣2代入y=2x﹣2中得x=0,∴P2(0,﹣2)即D的坐标轴为(2,2)和(0,﹣2).。
甘肃初二初中数学月考试卷带答案解析
甘肃初二初中数学月考试卷班级:___________ 姓名:___________ 分数:___________一、选择题1.下列命题:①等腰三角形的角平分线、中线和高重合②等腰三角形两腰上的高相等③等腰三角形的最短边是底边④等边三角形的高、中线、角平分线都相等⑤等腰三角形都是锐角三角形其中正确的有()A.1个B.2个C.3个D.4个2.已知一个等腰三角形的两边长分别是2和4,则该等腰三角形的周长为()A.8或10B.8C.10D.6或123.在△ABC中,∠A∶∠B∶∠C=1∶2∶3,最短边BC=4cm,则最长边AB的长是()A.5cm B.6cm C.7cm D.8cm4.三角形内一个点P到三角形三个顶点的距离相等,P点一定是()A.这个三角形的三条边的垂直平分线的交点B.这个三角形三条中线的交点C.这个三角形三角角平分线的交点D.这个三角形三条高的交点5.下面给出的5个式子中:①3>0,②4x+3y>0,③x=3,④x-1,⑤x+2≤3,其中不等式有()A.2个B.3个C.4个D.5个6.若m>n,下列不等式不一定成立的是()A.m+2>n+2B.2m>2n C.-2m<-2n D.7.若三个连续正奇数的和不大于27,则这样的正奇数组有()A.3组B.4组C.5组D.6组8.在数轴上表示不等式2(1-x)<4的解集,正确的是()9.已知MN是线段AB的垂直平分线,C、D是MN上任意两点,则∠CAD和∠CBD之间的大小关系是()A.∠CAD<∠CBDB.∠CAD=∠CBDC.∠CAD>∠CBDD.无法判断二、填空题1.Rt⊿ABC中,∠C=90º,∠B=30º,则边AC与AB的数量关系是 .2.已知△ABC的三边长分别是6cm、8cm、10cm,则△ABC的面积是 .3.已知线段AB及一点P,若PA=PB,则点P在_________上.4.用适当的符号表示:x与18的和不小于它的5倍 .5.不等式9-4x>0的非负整数解之和是 .6.由x<y得到ax>ay的条件是____________.7.当x 时,代数式2x-6的值是正数.8.一个不等式的解集如图所示,则这个不等式的正整数解是 .9.我校组织开展的环保知识竞赛,共有25道题,规定答对一题记4分,答错或不答一题扣1分.要使小明参加本次竞赛得分不低于85分,那么他至少要答对道题.三、解答题1.已知:△ABC求作:点P,使P到∠ABC的两边的距离相等,且使PB=PC(不写作法,保留作图痕迹)2.证明:等腰三角形两腰上的中线相等.3.已知:如图,CD⊥AD,CB⊥AB,AD=AB求证:CD=CB.4.已知:如图,中,是腰的垂直平分线,求:的度数.5.已知:如图,AB=AC,D是AB上一点,DE⊥BC于点E,ED的延长线交CA的延长线于点F.求证:△ADF是等腰三角形.6.如图,在Rt△ABC中,∠C=90°,∠A=30°,BD是∠ABC的平分线,AD=20,求DC的长.7.在△ABC中,AB=AC,AB的垂直平分线交AC于D,△ABC和△DBC的周长分别是60cm和38cm,求AB、BC.8.解下列不等式,并把解集在数轴上表示出来:(1)3(x+2)-8≥1-2(x-1);(2)>;9.如果关于x的不等式-k-x+6>0的正整数解为1,2,3,正整数k应取怎样的值?10.用甲、乙两种原料配制成某种饮料,已知这两种原料的维生素C的含量及购买这两种原料的价格如下表所示:(2)如果仅要求购买甲、乙两种原料的费用不超过72元,求所需甲种原料的质量x(kg)的取值范围.甘肃初二初中数学月考试卷答案及解析一、选择题1.下列命题:①等腰三角形的角平分线、中线和高重合②等腰三角形两腰上的高相等③等腰三角形的最短边是底边④等边三角形的高、中线、角平分线都相等⑤等腰三角形都是锐角三角形其中正确的有()A.1个B.2个C.3个D.4个【答案】B.【解析】试题解析:①等腰三角形的顶角的角平分线、底边上的中线和高重合,故本选项错误,②等腰三角形两腰上的高相等,正确;③等腰三角形的最小边不一定是底边,故本选项错误;④等边三角形的高、中线、角平分线都相等,正确;⑤等腰三角形不一定是锐角三角形,故本选项错误;其中正确的有2个,故选B.【考点】命题与定理.2.已知一个等腰三角形的两边长分别是2和4,则该等腰三角形的周长为()A.8或10B.8C.10D.6或12【答案】C.【解析】试题解析:①2是腰长时,三角形的三边分别为2、2、4,∵2+2=4,∴不能组成三角形,②2是底边时,三角形的三边分别为2、4、4,能组成三角形,周长=2+4+4=10,综上所述,它的周长是10.故选C.【考点】1.等腰三角形的性质;2.三角形三边关系.3.在△ABC中,∠A∶∠B∶∠C=1∶2∶3,最短边BC=4cm,则最长边AB的长是()A.5cm B.6cm C.7cm D.8cm【答案】D.【解析】试题解析:设∠A=x,则∠B=2x,∠C=3x,由三角形内角和定理得∠A+∠B+∠C=x+2x+3x=180°,解得x=30°,即∠A=30°,∠C=3×30°=90°,即△ABC为直角三角形,∵∠C=90°,∠A=30°,∴AB=2BC=2×4=8cm,故选D.【考点】含30度角的直角三角形.4.三角形内一个点P到三角形三个顶点的距离相等,P点一定是()A.这个三角形的三条边的垂直平分线的交点B.这个三角形三条中线的交点C.这个三角形三角角平分线的交点D.这个三角形三条高的交点【答案】B.【解析】试题解析:∵在三角形内部,有一点P到三角形三个顶点的距离相等,∴点P一定是三角形三条垂直平分线的交点.故选B.【考点】线段垂直平分线的性质.5.下面给出的5个式子中:①3>0,②4x+3y>0,③x=3,④x-1,⑤x+2≤3,其中不等式有()A.2个B.3个C.4个D.5个【答案】B.【解析】试题解析:3>0;4x+3y>0;x+2≤3是不等式.故选B.【考点】不等式的定义.6.若m>n,下列不等式不一定成立的是()A.m+2>n+2B.2m>2n C.-2m<-2n D.【答案】D.【解析】试题解析:A、不等式的两边都加2,不等号的方向不变,故A正确;B、不等式的两边都乘以2,不等号的方向不变,故B正确;C、不等式的两条边都除以2,不等号的方向不变,故C正确;D、当0>m>n时,不等式的两边都乘以负数,不等号的方向改变,故D错误;故选D.【考点】不等式的性质.7.若三个连续正奇数的和不大于27,则这样的正奇数组有()A.3组B.4组C.5组D.6组【答案】B.【解析】试题解析:设中间的奇数为x,则另外两个奇数为x-1,x+1,由题意得,x+x-1+x+1≤27,解得:x≤9,∵三个奇数都为正,∴x-1>0,x>0,x+1>0,即x>1,则奇数x的取值范围为:1<x≤9,则x可取3,5,7,9共4组.故选B.【考点】一元一次不等式的应用.8.在数轴上表示不等式2(1-x)<4的解集,正确的是()【答案】A.【解析】试题解析:2(1-x)<42-2x<4解得:x>-1.其解集在数轴上表示为:故选A.【考点】1.解一元一次不等式;2.合并同类项;3.不等式的性质;4.在数轴上表示不等式的解集.9.已知MN是线段AB的垂直平分线,C、D是MN上任意两点,则∠CAD和∠CBD之间的大小关系是()A.∠CAD<∠CBDB.∠CAD=∠CBDC.∠CAD>∠CBDD.无法判断【答案】B.【解析】试题解析:∵MN是线段AB的垂直平分线,C,D是MN上任意两点,∴AC=BC,AD=BD,∴∠DAB=∠CBA,∠DAB=∠DBA,如图1,∠CAD=∠CAB+∠DAB,∠CBD=∠CBA+∠DBA,∴∠CAD=∠CBD;如图2,∠CAD=∠CAB-∠DAB,∠CBD=∠CBA-∠DBA,∴∠CAD=∠CBD.故选B.【考点】线段垂直平分线的性质.二、填空题1.Rt⊿ABC中,∠C=90º,∠B=30º,则边AC与AB的数量关系是 .【答案】AB=2AC.【解析】试题解析:如图所示,在Rt△ABC中,∠C=90°,∠B=30°,则AB=2AC.【考点】含30度角的直角三角形.2.已知△ABC的三边长分别是6cm、8cm、10cm,则△ABC的面积是 .【答案】24.【解析】试题解析:∵62+82=102,∴△ABC是直角三角形.∴△ABC的面积为:×6×8=24.【考点】勾股定理的逆定理.3.已知线段AB及一点P,若PA=PB,则点P在_________上.【答案】点P在线段AB的垂直平分线上.【解析】试题解析:∵线段AB及一点P,PA=PB=,∴点P在线段AB的垂直平分线上.【考点】线段垂直平分线的性质.4.用适当的符号表示:x与18的和不小于它的5倍 .【答案】x+18≥5x.【解析】试题解析:x+18≥5x.【考点】列不等式.5.不等式9-4x>0的非负整数解之和是 .【答案】0、1、2.【解析】试题解析:9-3x>0,∴-3x>-9,∴x<3,∴x的非负整数解是0、1、2.【考点】一元一次不等式的整数解.6.由x<y得到ax>ay的条件是____________.【答案】a<0.【解析】试题解析:∵由x<y得到ax>ay,不等号的方向发生了可改变,∴a<0.【考点】不等式的性质.7.当x 时,代数式2x-6的值是正数.【答案】x>3.【解析】试题解析:不等式2x-6>0,移项,得2x>6,系数化1,得x>3;所以,x的取值范围为x>3.【考点】解一元一次不等式.8.一个不等式的解集如图所示,则这个不等式的正整数解是 .【答案】1,2.【解析】试题解析:由图示可看出,从3出发向左画出的线,且3处是空心圆圈,表示x<3.所以这个不等式的解集为x<3.故正整数解为:1,2.【考点】在数轴上表示不等式的解集.9.我校组织开展的环保知识竞赛,共有25道题,规定答对一题记4分,答错或不答一题扣1分.要使小明参加本次竞赛得分不低于85分,那么他至少要答对道题.【答案】22.【解析】试题解析:设小明答对了x道题,则他答错或不答的共有(25-x)道题,由题意得4x-(25-x)×1≥85,解得x≥22故小明至少答对了22道题【考点】一元一次不等式的应用.三、解答题1.已知:△ABC求作:点P,使P到∠ABC的两边的距离相等,且使PB=PC(不写作法,保留作图痕迹)【答案】作图见解析.【解析】分别作出∠BAC的平分线及线段BC的垂直平分线,其交点即为所求点.试题解析:如图所示:①以A为圆心,以任意长为半径画弧,分别交AB、BC于点D、E;②分别以D、E为圆心,以大于DE为半径画弧,两弧相交于点F,连接BF;③分别以BC为圆心,以大于BC为半径画弧,两弧相交于H、G,连接HG,则BF与HG的交点P即为所求点.【考点】1.作图—基本作图;2.角平分线的性质;3.线段垂直平分线的性质.2.证明:等腰三角形两腰上的中线相等.【答案】证明见解析.【解析】先根据题意作图,结合图形写出已知,求证,然后再根据已知和图形进行证明.可根据等腰三角形的性质得出相关的等角或相等的线段:DC=BE,∠DCB=∠EBC,BC=CB,可证明△BDC≌△CEB,所以BD=CE,即等腰三角形的两腰上的中线相等.试题解析:已知:等腰△ABC中,AB=AC,AD=DC,AE=EB,求证:BD=CE.证明:∵AB=AC,AD=DC,AE=EB,∴DC=BE,∠DCB=∠EBC.∵BC=CB,∴△BDC≌△CEB(SAS).∴BD=CE.即等腰三角形的两腰上的中线相等.【考点】等腰三角形的性质.3.已知:如图,CD⊥AD,CB⊥AB,AD=AB求证:CD=CB.【答案】证明见解析.【解析】连接AC,加一辅助线,使这个四边形变成两个直角三角形,然后利用全等三角形的判定与性质,可得CD=CB.试题解析:连接AC,CD⊥AD,CB⊥AB,∴在Rt△ADC和Rt△ABC中,AD=ABAC=AC∴Rt△ADC≌Rt△ABC(HL),∴CD=CB.【考点】全等三角形的判定与性质.4.已知:如图,中,是腰的垂直平分线,求:的度数.【答案】15°.【解析】∵∠A=50°,AB=AC,∴∠ABC=∠ACB=(180°-∠A)=65°又∵DE垂直且平分AB,∴DB=AD,∴∠ABD=∠A=50°,∴∠DBC=∠ABC-∠ABD=65°-50°=15°.即∠DBC的度数是15°.试题解析:【考点】1.线段垂直平分线的性质;2.等腰三角形的性质.5.已知:如图,AB=AC,D是AB上一点,DE⊥BC于点E,ED的延长线交CA的延长线于点F.求证:△ADF是等腰三角形.【答案】证明见解析.【解析】根据等腰三角形的性质得到∠B=∠C,再根据等角的余角相等得到∠EFC=∠EDB,再由∠EDB=∠ADF,根据等角对等边判定△ADF是等腰三角形.试题解析:∵AB=AC,∴∠B=∠C(等边对等角).∵DE⊥BC于E,∴∠FEB=∠FEC=90°,∴∠B+∠EDB=∠C+∠EFC=90°,∴∠EFC=∠EDB (等角的余角相等). ∵∠EDB=∠ADF (对顶角相等), ∴∠EFC=∠ADF .∴△ADF 是等腰三角形.【考点】等腰三角形的判定与性质.6.如图,在Rt △ABC 中,∠C=90°,∠A=30°,BD 是∠ABC 的平分线,AD=20,求DC 的长.【答案】10.【解析】先Rt △ABC ,利用∠C=90°,∠A=30°易求∠ABC=60°,再利用角平分线性质可求∠ABD=∠DBC=30°,从而可得∠ABD=∠A ,进而可求BD ,在Rt △BDC 中,利用30°的角所对的便等于斜边的一半可求CD . 试题解析:在Rt △ABC 中,∵∠C=90°,∠A=30°, ∴∠ABC=60°,∵BD 是∠ABC 的平分线, ∴∠ABD=∠DBC=30°, ∴∠ABD=∠A , ∴BD=AD=20, 又∵∠DBC=30°, ∴DC=10.【考点】1.含30度角的直角三角形;2.三角形的角平分线、中线和高.7.在△ABC 中,AB=AC ,AB 的垂直平分线交AC 于D ,△ABC 和△DBC 的周长分别是60cm 和38cm ,求AB 、BC.【答案】22cm ,16cm.【解析】先根据AB 的垂直平分线交AC 于点D 得出AD=BD ,即BD+CD=AC ,再根据△ABC 和△DBC 的周长分别是60cm 和38cm 即可得出AB 的长,再由AB=AC 得出AC 的长,故可得出BC 的长. 试题解析:∵AB 的垂直平分线交AC 于点D , ∴AD=BD ,即BD+CD=AC ,∵C △ABC =AB+AC+BC=60cm ,C △DBC =BD+CD+BC=AC+BC=38cm , ∴AB=60-38=22cm , ∵AB=AC , ∴AC=22cm ,∴BC=38-22=16cm .【考点】1.线段垂直平分线的性质;2.等腰三角形的性质.8.解下列不等式,并把解集在数轴上表示出来: (1)3(x+2)-8≥1-2(x -1);(2)>;【答案】(1)x≥1;(2)x >5.【解析】根据一元一次不等式的解法分别求解即可. 试题解析:(1)去括号得,3x+6-8≥1-2x+2 移项得,3x+2x≥1-6+8+2 合并同类项得,5x≥5 解得:x≥1; 在数轴上表示为:(2)去分母得,3(x-3)-6>2(x-5) 去括号得,3x-9-6>2x-10 移项,得:3x-2x >9+6-10合并同类项得:x>5.在数轴上表示为:【考点】1.解一元一次不等式组;2.在数轴上表示不等式的解集;3.解一元一次不等式.9.如果关于x的不等式-k-x+6>0的正整数解为1,2,3,正整数k应取怎样的值?【答案】2.【解析】将k看做已知数求出不等式的解集,根据不等式的正整数解为1,2,3,确定出正整数k的值即可.试题解析:不等式-k-x+6>0解得:x<6-k,∵不等式的正整数解为1,2,3,且k为正整数,∴6-k=4,即k=2【考点】一元一次不等式的整数解.10.用甲、乙两种原料配制成某种饮料,已知这两种原料的维生素C的含量及购买这两种原料的价格如下表所示:原料甲乙(2)如果仅要求购买甲、乙两种原料的费用不超过72元,求所需甲种原料的质量x(kg)的取值范围.【答案】(1)至少需要甲原料6.4千克;(2)6.4≤x≤8.【解析】(1)设所需甲种原料的质量为x千克,首先由甲种原料所需的质量和饮料的总质量,表示出乙种原料的质量,再结合表格中的数据,根据“至少含有4200单位的维生素C”这一不等关系列不等式,解不等式;(2)根据购买甲、乙两种原料的费用不超过72元,列不等式求解.试题解析:(1)设所需甲种原料的质量为xkg,则需乙种原料(10-x)kg.根据题意,得:600x+100(10-x)≥4200,解得:x≥6.4,答:至少需要甲原料6.4千克;(2)由题意得,8x+4(10-x)≤72,解得:x≤8,由(1)得:x≥6.4,则6.4≤x≤8.【考点】一元一次不等式的应用.。
甘肃初二初中数学月考试卷带答案解析
甘肃初二初中数学月考试卷班级:___________ 姓名:___________ 分数:___________一、选择题1.下列命题中错误的是()A.任何一个命题都有逆命题B.一个真命题的逆命题可能是真命题C.一个定理不一定有逆定理D.任何一个定理都没有逆定理2.已知△ABC的三边长分别是6cm、8cm、10cm,则△ABC的面积是()A.24cm2B.30cm2C.40cm2D.48cm23.如图,在△ABC和△DEF中,已知AC=DF,BC=EF,要使△ABC≌△DEF,还需要的条件是()A.∠A=∠D B.∠ACB=∠F C.∠B=∠DEF D.∠ACB=∠D4.不等式组的整数解的个数是()A.1个B.2个C.3个D.4个5.到△ABC的三条边距离相等的点是△ABC的()A.三条中线交点B.三条角平分线交点C.三条高的交点D.三条边的垂直平分线交点6.若a>b,且c为有理数,则下列各式正确的是()A.ac>bc B.ac<bc C.ac2<bc2D.ac2≥bc27.如图,在△ABC中,∠ABC和∠ACB的平分线交于点E,过点E作MN∥BC交AB于M,交AC于N,若BM+CN=9,则线段MN的长为()A.6B.7C.8D.98.△ABC中,若∠A:∠B:∠C=2:3:4,则∠C等于()A.20°B.40°C.60°D.80°9.等腰三角形的周长为13cm,其中一边长为3cm,则该等腰三角形的底边为()A.7cm B.3cm C.7cm或3cm D.8cm10.如图,在△ABC中,∠ACB=90°,BE平分∠ABC,DE⊥AB于D,如果AC=3cm,那么AE+DE等于()A.2cm B.3cm C.4cm D.5cm二、填空题1.如图,修建抽水站时,沿着倾斜角为30°的斜坡铺设管道,若量得水管AB的长度为80米,那么点B离水平面的高度BC的长为米.2.“等边对等角”的逆命题是.3.“a的3倍与12的差是一个非负数”用不等式表示为4.如图点P是∠BAC的平分线AD上一点,PE⊥AC于点E.已知PE=3,则点P到AB的距离是.5.如图所示,在△ABC中,∠B=90°,AB=3,AC=5,线段AC的垂直平分线DE交AC于D交BC于E,则△ABE的周长为.6.不等式(a﹣b)x<a﹣b的解集是x>1,则a、b的大小关系是:a b.7.如图,在Rt△ABC中,∠B=90°,∠A=40°,AC的垂直平分线MN与AB交于点D,则∠BCD的度数是度.8.已知,如图,O是△ABC的∠ABC、∠ACB的角平分线的交点,OD∥AB交BC于D,OE∥AC交BC于E,若BC="10" cm,则△ODE的周长 cm.三、解答题1.解答题解不等式(组)并在数轴上表示解集:(1)x﹣4≥2(x+2);(2)<3(3)(4).2.如图,已知∠AOB和C,D两点,求作一点P,使PC=PD,并且使P点到∠AOB两边的距离相等.3.如图,DC⊥CA,EA⊥CA,CD=AB,CB=AE.求证:△BCD≌△EAB.4.已知:如图,点D是△ABC内一点,AB=AC,∠1=∠2.求证:AD平分∠BAC.5.已知,在Rt△ABC中,∠ABC=90°,AB=BC=2,AD平分∠BAC,交BC于D,将△ABC沿AD折叠,B点落在AC边上的E点处,求△CDE的周长.6.甲、乙原有存款800元和1800元,从本月开始,甲每月存400元,乙每月存200元.如果设两人存款时间为x月.甲存款额是y1元,乙存款额是y2元.(1)试写出y1与x及y2与x之间的函数关系式;(2)到第几个月时,甲存款额能超过乙存款额?7.某校长暑假将带领该校市级“三好学生”去北京旅游,甲旅行社说:“如果校长买全票一张,则其余的学生可享受半价优惠.”乙旅行社说:“包括校长在内全部按票价的六折优惠.”若全票价为240元,两家旅行社的服务质量相同,根据“三好学生”的人数你认为选择哪一家旅行社才比较合算?甘肃初二初中数学月考试卷答案及解析一、选择题1.下列命题中错误的是()A.任何一个命题都有逆命题B.一个真命题的逆命题可能是真命题C.一个定理不一定有逆定理D.任何一个定理都没有逆定理【答案】D【解析】根据逆命题与原命题的关系和它们的真假性无联系对各选项进行判断.解:A、任何一个命题都有逆命题,所以A选项的说法正确;B、一个真命题的逆命题可能是真命题,也可能为假命题,所以B选项的说法正确;C、一个定理不一定有逆定理,所以C选项的说法正确;D、有的定理有逆定理,有的定理不一定有逆定理,所以D选项的说法错误.故选D.【点评】本题考查了命题与定理:判断事物的语句叫命题;正确的命题称为真命题,错误的命题称为假命题;经过推理论证的真命题称为定理.也考查了逆命题.2.已知△ABC的三边长分别是6cm、8cm、10cm,则△ABC的面积是()A.24cm2B.30cm2C.40cm2D.48cm2【答案】A【解析】因为三角形的边长是6cm、8cm、10cm,根据勾股定理的逆定理可求出此三角形为直角三角形,从而可求出面积.解:∵62+82=102,∴△ABC是直角三角形.∴△ABC的面积为:×6×8=24.故选A.【点评】本题考查勾股定理的逆定理,关键根据三边长判断出为直角三角形,然后可求出三角形面积.3.如图,在△ABC和△DEF中,已知AC=DF,BC=EF,要使△ABC≌△DEF,还需要的条件是()A.∠A=∠D B.∠ACB=∠F C.∠B=∠DEF D.∠ACB=∠D【答案】B【解析】本题要判定△ABC≌△DEF,有AC=DF,BC=EF,可以加∠ACB=∠F,就可以用SAS判定△ABC≌△DEF.解:A,添加∠A=∠D,满足SSA,不能判定△ABC≌△DEF;B,添加∠ACB=∠F,满足SAS,能判定△ABC≌△DEF;C,添加∠B=∠DEF,满足SSA,不能判定△ABC≌△DEF;D,添加∠ACB=∠D,两角不是对应角,不能判定△ABC≌△DEF;故选B.【点评】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、SSA、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.做题时,要结合已知与图形对选项逐个验证.4.不等式组的整数解的个数是()A.1个B.2个C.3个D.4个【答案】D【解析】先求出每个不等式的解集,再确定其公共解,得到不等式组的解集,然后求其整数解.解:解不等式组得﹣<x<,所以整数x=0,1,2,3.所以整数解的个数是4个.故选D.【点评】考查不等式组的解法及整数解的确定.求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.5.到△ABC的三条边距离相等的点是△ABC的()A.三条中线交点B.三条角平分线交点C.三条高的交点D.三条边的垂直平分线交点【答案】B【解析】由于角平分线上的点到角的两边的距离相等,而已知一点到△ABC的三条边距离相等,那么这样的点在这个三角形的三条角平分线上,由此即可作出选择.解:∵到△ABC的三条边距离相等,∴这点在这个三角形三条角平分线上,即这点是三条角平分线的交点.故选B.【点评】此题主要考查了三角形的角平分线的性质:三条角平分线交于一点,并且这一点到三边的距离相等.6.若a>b,且c为有理数,则下列各式正确的是()A.ac>bc B.ac<bc C.ac2<bc2D.ac2≥bc2【答案】D【解析】根据不等式的基本性质2:不等式的两边同时乘以一个正数,不等号的方向不改变;不等式的基本性质3:不等式的两边同时乘以一个负数,不等号的方向改变解答即可.解:①∵c为有理数,可以是正数也可以是负数,∴A、B都错误;②如果c=0,c2=0,C选项错误;③如果c≠0,c2>0,∴ac2>bc2,如果c=0,ac2=bc2,∴a2ac2≥bc2,D正确.故选D.【点评】本题主要考查不等式的基本性质和平方数非负数,要注意a=0时的特殊情况,容易出现选C的错误.7.如图,在△ABC中,∠ABC和∠ACB的平分线交于点E,过点E作MN∥BC交AB于M,交AC于N,若BM+CN=9,则线段MN的长为()A.6B.7C.8D.9【答案】D【解析】由∠ABC、∠ACB的平分线相交于点E,∠MBE=∠EBC,∠ECN=∠ECB,利用两直线平行,内错角相等,利用等量代换可∠MBE=∠MEB,∠NEC=∠ECN,然后即可求得结论.解:∵∠ABC、∠ACB的平分线相交于点E,∴∠MBE=∠EBC,∠ECN=∠ECB,∵MN∥BC,∴∠EBC=∠MEB,∠NEC=∠ECB,∴∠MBE=∠MEB,∠NEC=∠ECN,∴BM=ME,EN=CN,∴MN=ME+EN,即MN=BM+CN.∵BM+CN=9∴MN=9,故选:D.【点评】此题考查学生对等腰三角形的判定与性质和平行线性质的理解与掌握.此题关键是证明△BME△CNE是等腰三角形.8.△ABC中,若∠A:∠B:∠C=2:3:4,则∠C等于()A.20°B.40°C.60°D.80°【答案】D【解析】由三角形内角和为180度,则角C占,从而求得角C的度数.解:由三角形内角和为180°得:∠C的度数为:.故选D.【点评】本题考查了三角形内角和定理,根据角C所占比例从而求得.9.等腰三角形的周长为13cm,其中一边长为3cm,则该等腰三角形的底边为()A.7cm B.3cm C.7cm或3cm D.8cm【答案】B【解析】已知的边可能是腰,也可能是底边,应分两种情况进行讨论.解:当腰是3cm时,则另两边是3cm,7cm.而3+3<7,不满足三边关系定理,因而应舍去.当底边是3cm时,另两边长是5cm,5cm.则该等腰三角形的底边为3cm.故选:B.【点评】本题从边的方面考查三角形,涉及分类讨论的思想方法.10.如图,在△ABC中,∠ACB=90°,BE平分∠ABC,DE⊥AB于D,如果AC=3cm,那么AE+DE等于()A.2cm B.3cm C.4cm D.5cm【答案】B【解析】要求AE+DE,现知道AC=3cm,即AE+CE=3cm,只要CE=DE则问题可以解决,而应用其它条件利用角平分线的性质正好可求出CE=DE.解:∵∠ACB=90°,∴EC⊥CB,又BE平分∠ABC,DE⊥AB,∴CE=DE,∴AE+DE=AE+CE=AC=3cm故选B.【点评】此题主要考查角平分线性质:角平分线上的任意一点到角的两边距离相等;做题时要认真观察各已知条件在图形上的位置,根据位置结合相应的知识进行思考是一种很好的方法.二、填空题1.如图,修建抽水站时,沿着倾斜角为30°的斜坡铺设管道,若量得水管AB的长度为80米,那么点B离水平面的高度BC的长为米.【答案】40【解析】利用所给角的正弦函数求解.解:Rt△ABC中,∠A=30°.∴BC=AB×sin30°=AB=40(米).故答案为:40.【点评】本题是将实际问题转化为直角三角形中的数学问题,可把条件和问题放到直角三角形中,进行解决.2.“等边对等角”的逆命题是.【答案】等角对等边【解析】交换命题的题设和结论即可得到该命题的逆命题;解:“等边对等角”的逆命题是等角对等边;故答案为:等角对等边.【点评】本题考查了命题与定理的知识,解题的关键是分清原命题的题设和结论.3.“a的3倍与12的差是一个非负数”用不等式表示为【答案】3a﹣12≥0.【解析】理解:差是一个非负数,即是最后算的差应大于或等于0.解:根据题意,得3a﹣12≥0.故答案为:3a﹣12≥0.【点评】读懂题意,抓住关键词语,弄清运算的先后顺序和不等关系,才能把文字语言的不等关系转化为用数学符号表示的不等式.4.如图点P是∠BAC的平分线AD上一点,PE⊥AC于点E.已知PE=3,则点P到AB的距离是.【答案】3【解析】根据角平分线的性质可得,点P到AB的距离=PE=3.解:∵P是∠BAC的平分线AD上一点,PE⊥AC于点E,PE=3,∴点P到AB的距离=PE=3.故答案为:3.【点评】此题主要考查角平分线的性质:角的平分线上的点到角的两边的距离相等.5.如图所示,在△ABC中,∠B=90°,AB=3,AC=5,线段AC的垂直平分线DE交AC于D交BC于E,则△ABE的周长为.【答案】7【解析】根据勾股定理求出BC,根据线段垂直平分线得出AE=CE,求出△ABE的周长=AB+BC,代入求出即可.解:在△ABC中,∠B=90°,AB=3,AC=5,由勾股定理得:BC=4,∵线段AC的垂直平分线DE,∴AE=EC,∴△ABE的周长为AB+BE+AE=AB+BE+CE=AB+BC=3+4=7,故答案为:7.【点评】本题主要考查了线段的垂直平分线的性质,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是本题的关键.6.不等式(a﹣b)x<a﹣b的解集是x>1,则a、b的大小关系是:a b.【答案】<【解析】本题需先根据不等式不等式(a﹣b)x<a﹣b的解集是x>1,的解集是x<1,得出a﹣b的关系,即可求出答案.解:∵不等式(a﹣b)x<a﹣b的解集是x>1,∴a﹣b<0,∴a<b,则a与b的大小关系是a<b.故答案为:<.【点评】本题主要考查了不等式的解集,在解题时要注意注意不等式两边同时乘以同一个负数时,不等号的方向改变.7.如图,在Rt△ABC中,∠B=90°,∠A=40°,AC的垂直平分线MN与AB交于点D,则∠BCD的度数是度.【答案】10【解析】根据垂直平分线的性质计算.∠BCD=∠BCN﹣∠DCA.解:∵Rt△ABC中,∠B=90°,∠A=40°,∴∠BCN=180°﹣∠B﹣∠A=180°﹣90°﹣40°=50°,∵DN是AC的垂直平分线,∴DA=DC,∠A=∠DCA=40°,∠BCD=∠BCN﹣∠DCA=50°﹣40°=10°,∠BCD的度数是10度.故答案为:10.【点评】此题主要考查线段的垂直平分线的性质及等腰三角形的性质等几何知识.线段的垂直平分线上的点到线段的两个端点的距离相等.8.已知,如图,O是△ABC的∠ABC、∠ACB的角平分线的交点,OD∥AB交BC于D,OE∥AC交BC于E,若BC="10" cm,则△ODE的周长 cm.【答案】10【解析】根据角平分线的性质以及平行线的性质,把△ODE三条边转移到同一条线段BC上,即可解答.解:∵OC、OB分别是∠ACB、∠ABC的角平分线,∴∠5=∠6,∠1=∠2,∵OD∥AB,OE∥AC,∴∠4=∠6,∠1=∠3.∴∠4=∠5,∠2=∠3,即OD=BD,OE=CE.∴△ODE的周长=OD+DE+OE=BD+DE+CE=BC=10cm.故答案为:10.【点评】此题比较简单,利用的是角平分线的定义,平行线及等腰三角形的性质.三、解答题1.解答题解不等式(组)并在数轴上表示解集:(1)x﹣4≥2(x+2);(2)<3(3)(4).【答案】(1)x≤﹣8 (2)x>﹣7 (3)1<X≤2(4)2<x≤4【解析】(1)按解不等式的一般步骤计算即可,(2)按解不等式的一般步骤计算即可,(3)分别解两个不等式,再确定出不等式组的解集,(4)分别解两个不等式,再确定出不等式组的解集.解;(1)去括号得,x﹣4≥2x+4,移项得,x﹣2x≥4+4,合并系数化为1,得x≤﹣8,(2)去分母得,﹣x﹣1<6,移项系数化为1得,x>﹣7,(3),解不等式①得,x>1,解不等式②得,x≤2∴1<X≤2(4)由①得,x>2,由②得,x≤4∴2<x≤4【点评】此题是解一元一次不等式组,主要考查了解不等式的方法,掌握解不等式的一般步骤是解本题的关键.2.如图,已知∠AOB和C,D两点,求作一点P,使PC=PD,并且使P点到∠AOB两边的距离相等.【答案】详见解析【解析】由条件可知点P在线段CD的垂直平分线和∠AOB的平分线上,可作出图形.解:∵PC=PD,∴点P在线段CD的垂直平分线上,∵P点到∠AOB两边的距离相等,∴点P在∠AOB的平分线上,如图,先作线段CD的垂直平分线,再作∠AOB的平分线,则交点即为所求的点P.【点评】本题主要考查线段垂直平分线和角平分线的性质,掌握线段垂直平分线上的点到线段两端点的距离相等和角平分线上的点到角两边的距离相等是解题的关键.3.如图,DC⊥CA,EA⊥CA,CD=AB,CB=AE.求证:△BCD≌△EAB.【答案】详见解析【解析】根据全等三角形的判定定理SAS证得结论.解:如图,∵DC⊥CA,EA⊥CA,∴∠C=∠A=90°,∴在△BCD与△EAB中,,∴△BCD≌△EAB(SAS).【点评】本题考查了全等三角形的判定.全等三角形的5种判定方法中,选用哪一种方法,取决于题目中的已知条件,若已知两边对应相等,则找它们的夹角或第三边;若已知两角对应相等,则必须再找一组对边对应相等,且要是两角的夹边,若已知一边一角,则找另一组角,或找这个角的另一组对应邻边.4.已知:如图,点D是△ABC内一点,AB=AC,∠1=∠2.求证:AD平分∠BAC.【答案】详见解析【解析】先根据∠1=∠2得出BD=CD ,再由SSS 定理得出△ABD ≌△ACD ,由全等三角形的性质即可得出结论. 证明:∵∠1=∠2,∴BD=CD ,在△ABD 与△ACD 中,∵,∴△ABD ≌△ACD (SSS ), ∴∠BAD=∠CAD ,即AD 平分∠BAC .【点评】本题考查的是全等三角形的判定与性质,熟知判定全等三角形的SSS ,SAS ,ASA 定理是解答此题的关键.5.已知,在Rt △ABC 中,∠ABC=90°,AB=BC=2,AD 平分∠BAC ,交BC 于D ,将△ABC 沿AD 折叠,B 点落在AC 边上的E 点处,求△CDE 的周长.【答案】详见解析【解析】由翻折的性质可知BD=DE ,AB=AE ,然后依据等量代换可将△CDE 的周长转化为AC 的长,最后依据勾股定理求解即可.解:∵∠ABC=90°,AB=BC=2,∴AC===2.由翻折的性质可知:BD=DE ,AB=AE .∵AB=BC ,AE=AB , ∴AE=BC . ∴DE+DC+EC=BD+DC+EC=BC+EC=AE+EC=AC=2.【点评】本题主要考查的是翻折的性质、勾股定理的应用,依据翻折的性质将△CDE 的周长转化为AC 的长是解题的关键.6.甲、乙原有存款800元和1800元,从本月开始,甲每月存400元,乙每月存200元.如果设两人存款时间为x 月.甲存款额是y 1元,乙存款额是y 2元.(1)试写出y 1与x 及y 2与x 之间的函数关系式;(2)到第几个月时,甲存款额能超过乙存款额?【答案】详见解析【解析】(1)根据存款数=原有存款+又存入的钱数,列式即可;(2)列出一元一次不等式,然后求解即可.解:(1)根据题意,甲:y 1=400x+800,乙:y 2=200x+1800;(2)根据题意,400x+800>200x+1800,解得x >5,所以,从第6个月开始,甲存款额能超过乙存款额.【点评】本题考查了一次函数的应用,比较简单,读懂题目信息是解题的关键.7.某校长暑假将带领该校市级“三好学生”去北京旅游,甲旅行社说:“如果校长买全票一张,则其余的学生可享受半价优惠.”乙旅行社说:“包括校长在内全部按票价的六折优惠.”若全票价为240元,两家旅行社的服务质量相同,根据“三好学生”的人数你认为选择哪一家旅行社才比较合算?【答案】详见解析【解析】设三好学生的人数为x .则选甲旅行社时总费用为:y 1=240+240•x•50%,选乙旅行社时总费用为:y 2=240(x+1)•60%;分别假设y 1>y 2,y 1=y 2,y 1<y 2,等出各自x 的取值范围,从而当x 已知时就可以确定那个旅行社更合算.解:设”三好学生”人数有x 人,甲旅行社的费用为y 1,乙旅行社的费用为y 2,根据题意得:y 1=240+240•x•50%;y 2=240(x+1)•60%当y 1>y 2时,解得x <4时,选择乙旅行社合算;当y 1=y 2时,解得x=4时,选择甲、乙旅行社一样;当y 1<y 2时,解得x >4时,选择甲旅行社合算.【点评】本题要求根据学生人数确定哪一家旅行社更合算,但学生人数未知,则可以设学生人数为x ,然后分别假设甲旅行社更合算,甲乙一样合算,甲没有乙合算得出x 对应的取值范围.。
八年级(上)第二次月考数学试卷(含答案)
八年级(上)第二次月考数学试卷(含答案)一、选择题1.下列调查中适合采用普查的是()A.了解“中国达人秀第六季”节目的收视率B.调查某学校某班学生喜欢上数学课的情况C.调查我市市民知晓“礼让行人”交通新规的情况D.调查我国目前“垃圾分类”推广情况2.下列长度的三条线段能组成直角三角形的是()A.3,4,4 B.3,4,5 C.3,4,6 D.3,4,8 3.下列实数中,无理数是()A.0 B.﹣4 C.5D.1 74.若等腰三角形的两边长分别为5和11,则这个等腰三角形的周长为()A.21 B.22或27 C.27 D.21或275.如图,在放假期间,某学校对其校内的教学楼(图中的点A),图书馆(图中的点B)和宿含楼(图中的点C)进行装修,装修工人需要放置一批装修物资,使得装修物资到点A,点B和点C的距离相等,则装修物资应该放置在()A.AC、BC两边高线的交点处B.在AC、BC两边中线的交点处C.在A∠、B两内角平分线的交点处D.在AC、BC两边垂直平分线的交点处6.关于三角形中边与角之间的不等关系,提出如下命题:命题1:在一个三角形中,如果两条边不等,那么它们所对的角也不等,大边所对的角较大;命题2:在一个三角形中,如果两个角不等,那么它们所对的边也不等,大角所对的边较大;命题3:如果一个三角形中最大的边所对的角是锐角,这个三角形一定是锐角三角形;命题4:直角三角形中斜边最长;以上真命题的个数是()A.1 B.2 C.3 D.47.已知点(,21)P a a-在一、三象限的角平分线上,则a的值为()A.1-B.0 C.1 D.28.在下列各数中,无理数有()33224,3,,8,9,07π A .1个 B .2个 C .3个 D .4个9.下列各式成立的是( )A .93=±B .235+=C .()233-=±D .()233-=10.下列说法中,不正确的是( )A .2﹣3的绝对值是2﹣3B .2﹣3的相反数是3﹣2C .64的立方根是2D .﹣3的倒数是﹣13二、填空题11.点P (﹣5,12)到原点的距离是_____.12.若关于x 的分式方程122x x a x x--=--有增根,则a 的值_____________. 13.如图,长方形OABC 中,8OA =,6AB =,点D 在边BC 上,且3CD DB =,点E 是边OA 上一点,连接DE ,将四边形ABDE 沿DE 折叠,若点A 的对称点'A 恰好落在边OC 上,则OE 的长为____.14. 在实数范围内分解因式35x x -=___________.15.一次函数1y kx b =+与2y x a =+的图象如图,则()0kx b x a +-+>的解集是__.16.如图,在ABC 中,∠A =60°,D 是BC 边上的中点,DE ⊥BC ,∠ABC 的平分线BF 交DE 于ABC 内一点P ,连接PC ,若∠ACP =m °,∠ABP =n °,则m 、n 之间的关系为______.17.3的平方根是_________.18.平行四边形的周长是20,两条对角线相交于O,△AOB的周长比△BOC的周长大2,则AB的长为_____.19.如图,等边△ABC的周长是18,D是AC边上的中点,点E在BC边的延长线上.如果DE=DB,那么CE的长是_____.20.在第二象限内的点P到x轴的距离是1,到y轴的距离是4,则点P的坐标是_________.三、解答题21.某学校是乒乓球体育传统项目校,为进一步推动该项目的发展.学校准备到体育用品店购买甲、乙两种型号乒乓球若干个,已知3个甲种乒乓球和5个乙种乒乓球共需50元,2个甲种乒乓球和3个乙种乒乓球共需31元.(1)求1个甲种乒乓球和1个乙种乒乓球的售价各是多少元?(2)学校准备购买这两种型号的乒乓球共200个,要求甲种乒乓球的数量不超过乙种乒乓球的数量的3倍,请设计出最省钱的购买方案,并说明理由.22.已知函数y1=2x-4与y2=-2x+8的图象,观察图象并回答问题:(1)x取何值时,2x-4>0?(2)x取何值时,-2x+8>0?(3)x取何值时,2x-4>0与-2x+8>0同时成立?(4)求函数y1=2x-4与y2=-2x+8的图象与x轴所围成的三角形的面积?23.如图1,在Rt△ABC中,∠ACB=90°,动点M从点A出发沿A-C-B向点B匀速运动,动点N从点B出发沿B-C-A向点A运动.设MC的长为y1(cm),NC的长为y2(cm),点M的运动时间为x(s);y1、y2与x的函数图像如图2所示.(1)线段AC= cm,点M运动 s后点N开始运动;(2)求点P的坐标,并写出它的实际意义;(3)当∠CMN=45°时,求x的值.24.已知一次函数y=kx+3的图象经过点(1,4).(1)求这个一次函数的解析式;(2)求关于x的不等式kx+3≤6的解集.25.在如图所示的正方形网格中,每个小正方形的边长都为1,△ABC的顶点都在格点上(网格线的交点).(1)请在如图所示的网格平面内建立适当的平面直角坐标系,使点A坐标为(﹣1,2),点B的坐标为(﹣5,2);(画出直角坐标系)(2)点C的坐标为(,)(直接写出结果)(3)把△ABC先向下平移6个单位后得到对应的△A1B1C1,再将△A1B1C1沿y轴翻折至△A2B2C2;①请在坐标系中画出△A2B2C2;②若点P(m,n)是△ABC边上任意一点,P2是△A2B2C2边上与P对应的点,写出点P2的坐标为(,);(直接写出结果)③试在y 轴上找一点Q ,使得点Q 到A 2,C 2两点的距离之和最小,此时,QA 2+QC 2的长度之和最小值为 .(在图中画出点Q 的位置,并直接写出最小值答案)四、压轴题26.对于实数x ,若231a x ≤+,则符合条件的a 中最大的正数为X 的內数,例如:8的内数是5;7的内数是4.(1)1的内数是______,20的內数是______,6的內数是______;(2)若3是x 的內数,求x 的取值范围;(3)一动点从原点出发,以3个单位/秒的速度按如图1所示的方向前进,经过t 秒后,动点经过的格点(横,纵坐标均为整数的点)中能围成的最大实心正方形的格点数(包括正方形边界与内部的格点)为n ,例如当1t =时,4n =,如图2①……;当4t =时,9n =,如图2②,③;……①用n 表示t 的內数;②当t 的內数为9时,符合条件的最大实心正方形有多少个,在这些实心正方形的格点中,直接写出离原点最远的格点的坐标.(若有多点并列最远,全部写出)27.如图,已知A(3,0),B(0,-1),连接AB ,过B 点作AB 的垂线段BC ,使BA=BC ,连接AC(1)如图1,求C 点坐标;(2)如图2,若P 点从A 点出发沿x 轴向左平移,连接BP ,作等腰直角BPQ ,连接CQ ,当点P 在线段OA 上,求证:PA=CQ ;(3)在(2)的条件下若C 、P ,Q 三点共线,直接写出此时∠APB 的度数及P 点坐标28.如图1.在△ABC 中,∠ACB =90°,AC =BC =10,直线DE 经过点C ,过点A ,B 分别作AD ⊥DE ,BE ⊥DE ,垂足分别为点D 和E ,AD =8,BE =6.(1)①求证:△ADC ≌△CEB ;②求DE 的长; (2)如图2,点M 以3个单位长度/秒的速度从点C 出发沿着边CA 运动,到终点A ,点N 以8个单位长度/秒的速度从点B 出发沿着线BC —CA 运动,到终点A .M ,N 两点同时出发,运动时间为t 秒(t >0),当点N 到达终点时,两点同时停止运动,过点M 作PM ⊥DE 于点P ,过点N 作QN ⊥DE 于点Q ;①当点N 在线段CA 上时,用含有t 的代数式表示线段CN 的长度;②当t 为何值时,点M 与点N 重合;③当△PCM 与△QCN 全等时,则t = .29.直角三角形ABC 中,∠ACB =90°,直线l 过点C .(1)当AC =BC 时,如图①,分别过点A 、B 作AD ⊥l 于点D ,BE ⊥l 于点E .求证:△ACD ≌△CBE .(2)当AC =8,BC =6时,如图②,点B 与点F 关于直线l 对称,连接BF ,CF ,动点M 从点A 出发,以每秒1个单位长度的速度沿AC 边向终点C 运动,同时动点N 从点F 出发,以每秒3个单位的速度沿F →C →B →C →F 向终点F 运动,点M 、N 到达相应的终点时停止运动,过点M 作MD ⊥l 于点D ,过点N 作NE ⊥l 于点E ,设运动时间为t 秒.①CM = ,当N 在F →C 路径上时,CN = .(用含t 的代数式表示) ②直接写出当△MDC 与△CEN 全等时t 的值.30.定义:在平面直角坐标系中,对于任意两点A (a ,b ),B (c ,d ),若点T (x ,y )满足x =3+a c ,y =3+b d ,那么称点T 是点A 和B 的融合点.例如:M (﹣1,8),N (4,﹣2),则点T (1,2)是点M 和N 的融合点.如图,已知点D (3,0),点E 是直线y =x +2上任意一点,点T (x ,y )是点D 和E 的融合点.(1)若点E的纵坐标是6,则点T的坐标为;(2)求点T(x,y)的纵坐标y与横坐标x的函数关系式:(3)若直线ET交x轴于点H,当△DTH为直角三角形时,求点E的坐标.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【解析】【分析】根据普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似解答.【详解】解:A、了解“中国达人秀第六季”节目的收视率适合采用抽样调查的方式;B、调查某学校某班学生喜欢上数学课的情况适合采用全面调查的方式;C、调查我市市民知晓“礼让行人”交通新规的情况适合采用抽样调查的方式;D、调查我国目前“垃圾分类”推广情况适合采用抽样调查的方式;故选:B.【点睛】本题考查的是抽样调查和全面调查,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.2.B解析:B【解析】【分析】利用勾股定理的逆定理:如果三角形两条边的平方和等于第三边的平方,那么这个三角形就是直角三角形.最长边所对的角为直角.由此判定即可.【详解】解:A 、∵2223+44≠,∴三条线段不能组成直角三角形,错误;B 、∵2223+4=5,∴三条线段能组成直角三角形,正确;C 、∵2223+46≠,∴三条线段不能组成直角三角形,错误;D 、∵2223+48≠,∴∴三条线段不能组成直角三角形,错误;故选:B .【点睛】此题考查了勾股定理逆定理的运用,判断三角形是否为直角三角形,已知三角形三边的长,只要利用勾股定理的逆定理加以判断即可,注意数据的计算.3.C解析:C【解析】【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此解答即可.【详解】解:0,﹣4是整数,属于有理数;17 故选:C .【点睛】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数. 4.C解析:C【解析】【分析】分两种情况分析:当腰取5,则底边为11;当腰取11,则底边为5;根据三角形三边关系分析.【详解】当腰取5,则底边为11,但5+5<11,不符合三角形三边的关系,所以这种情况不存在; 当腰取11,则底边为5,则三角形的周长=11+11+5=27.故选C .【点睛】考核知识点:等腰三角形定义.理解等腰三角形定义和三角形三边关系是关键.5.D解析:D【解析】【分析】根据线段垂直平分线的性质判断即可.【详解】作AC,BC两边的垂直平分线,它们的交点为P,由线段垂直平分线的性质,P A=PB=PC,故选:D.【点睛】本题主要考查了垂直平分线的性质,熟练掌握相关性质要点是解决本题的关键.6.D解析:D【解析】【分析】根据三角形边与角的关系逐一分析即可得解.【详解】假设它们所对的边相等,则根据等腰三角形的性质定理,“等边对等角”知它们所对的角也相等,这就与题设两个角不等相矛盾,因此假设不成立,故原结论成立,同时根据三角形中大边对大角,大角对大边可知命题1,2正确;因为三角形中大边对大角,大角对大边,所以当最大边所对角是锐角时,可知另外两个角也为锐角,则命题3正确;因为直角三角形中,直角所对的边时斜边,而另外两个角为锐角,所以直角所对斜边最大,所以命题4正确,故选:D.【点睛】本题主要考查了三角形边与角的关系,熟练掌握相关知识点是解决本题的关键.7.C解析:C【解析】【分析】根据第一、三象限的角平分线上的点的横坐标与纵坐标相等列出方程求解即可.【详解】∵点P(a,2a-1)在一、三象限的角平分线上,∴a=2a-1,解得a=1.故选:C.【点睛】本题考查了坐标与图形性质,熟记第一、三象限的角平分线上的点的横坐标与纵坐标相等是解题的关键.8.B解析:B【解析】【分析】先将能化简的进行化简,再根据无理数的定义进行解答即可.【详解】,∴这一组数中的无理数有:32个.故选:B.【点睛】本题考查的是无理数的定义,注意带根号的要开不尽方才是无理数,无限不循环小数为无理数.9.D解析:D【解析】【分析】根据算术平方根的定义对A进行判断;根据二次根式的加减法对B进行判断;根据二次根式的性质对C、D进行判断.【详解】解:A3=,所以A选项错误;B B选项错误;C3=,所以C选项错误;D、(23=,所以D选项正确.故选D.【点睛】此题考查了算术平方根和二次根式的性质以及二次根式的加减,熟练掌握二次根式的性质是解题的关键.10.A解析:A【解析】【分析】分别根据实数绝对值的意义、相反数的定义、立方根的定义和倒数的定义逐项解答即可.【详解】解:A,故A选项不正确,所以本选项符合题意;B,正确,所以本选项不符合题意;C82,正确,所以本选项不符合题意;D、﹣3的倒数是﹣13,正确,所以本选项不符合题意.故选:A.【点睛】本题考查了实数的绝对值、相反数、立方根和倒数的定义,属于基础知识题型,熟练掌握实数的基本知识是解题关键.二、填空题11.13【解析】【分析】直接根据勾股定理进行解答即可.【详解】∵点P(-5,12),∴点P到原点的距离==13.故答案为13.【点睛】本题考查的是勾股定理,熟知在任何一个直角三角形中,解析:13【解析】【分析】直接根据勾股定理进行解答即可.【详解】∵点P(-5,12),∴点P到原点的距离=13.故答案为13.【点睛】本题考查的是勾股定理,熟知在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方是解答此题的关键.12.4【解析】【分析】方程第二个分母提取-1变形后,去分母转化为整式方程,表示出方程的解,令方程的解为2,即可求出a的值.【详解】方程变形得:,去分母得:x+x-a=x-2,解得:x=a-解析:4【解析】【分析】 方程第二个分母提取-1变形后,去分母转化为整式方程,表示出方程的解,令方程的解为2,即可求出a 的值.【详解】方程变形得:+122x x a x x -=--, 去分母得:x+x-a=x-2,解得:x=a-2, ∵方程122x x a x x--=--有增根, ∴x=2,即a-2=2,解得:a=4,故答案为:4.【点睛】此题考查了分式方程的增根,增根问题可按如下步骤进行:①让最简公分母为0确定增根;②化分式方程为整式方程;③把增根代入整式方程即可求得相关字母的值.13.【解析】【分析】根据矩形的性质得到BC=OA=8,OC=AB=6,∠C=∠B=∠O=90°,求得CD=6,BD=2,根据折叠可知A′D=AD,A′E=AE,可证明Rt△A′CD≌Rt△DBA, 解析:【解析】【分析】根据矩形的性质得到BC=OA=8,OC=AB=6,∠C=∠B=∠O=90°,求得CD=6,BD=2,根据折叠可知A′D=AD ,A′E=AE ,可证明Rt △A′CD ≌Rt △DBA ,根据全等三角形的性质得到A′C=BD=2,A′O=4,然后在Rt △A′OE 中根据勾股定理列出方程求解即可.【详解】解:如图,∵四边形OABC 是矩形,∴BC=OA=8,OC=AB=6,∠C=∠B=∠O=90°,∵CD=3DB ,∴CD=6,BD=2,∴CD=AB ,∵将四边形ABDE 沿DE 折叠,若点A 的对称点A′恰好落在边OC 上,∴A′D=AD ,A′E=AE ,在Rt △A′CD 与Rt △DBA 中,CD AB A D AD '=⎧⎨=⎩, ∴Rt △A′CD ≌Rt △DBA (HL ),∴A′C=BD=2,∴A′O=4,∵A′O 2+OE 2=A′E 2,∴42+OE 2=(8-OE )2,∴OE=3,故答案是:3.【点睛】本题考查了轴对称变换(折叠问题),矩形的性质,全等三角形的判定和性质,掌握相关性质是解题的关键.14.【解析】提取公因式后利用平方差公式分解因式即可,即原式=.故答案为解析:(x x x -【解析】提取公因式后利用平方差公式分解因式即可,即原式=2(5)(x x x x x -=-.故答案为(.x x x15.【解析】【分析】不等式kx+b-(x+a )>0的解集是一次函数y1=kx+b 在y2=x+a 的图象上方的部分对应的x 的取值范围,据此即可解答.【详解】解:不等式的解集是.故答案为:.【点解析:1x <-【解析】【分析】不等式kx+b-(x+a )>0的解集是一次函数y 1=kx+b 在y 2=x+a 的图象上方的部分对应的x 的取值范围,据此即可解答.【详解】解:不等式()0kx b x a +-+>的解集是1x <-.故答案为:1x <-.【点睛】本题考查了一次函数的图象与一元一次不等式的关系:从函数的角度看,就是寻求使一次函数y=kx+b 的值大于(或小于)0的自变量x 的取值范围;从函数图象的角度看,就是确定直线y=kx+b 在x 轴上(或下)方部分所有的点的横坐标所构成的集合.16.m+3n=120【解析】【分析】根据线段垂直平分线的性质,可得∠PBC=∠PCB,结合角平分线的定义,可得∠PBC=∠PCB=∠ABP,最后根据三角形内角和定理,从而得到m 、n 之间的关系.【解析:m +3n =120【解析】【分析】根据线段垂直平分线的性质,可得∠PBC=∠PCB ,结合角平分线的定义,可得∠PBC=∠PCB=∠ABP ,最后根据三角形内角和定理,从而得到m 、n 之间的关系.【详解】解:∵点D 是BC 边的中点,DE ⊥BC ,∴PB=PC ,∴∠PBC=∠PCB ,∵BP 平分∠ABC ,∴∠PBC=∠ABP ,∴∠PBC=∠PCB=∠ABP=n°,∵∠A=60°,∠ACP=m°,180,A ABC ACB ∠+∠+∠=︒∴∠PBC+∠PCB+∠ABP=120°-m°,∴3∠ABP=120°-m°,∴3n°+m°=120°,故答案为:m+3n=120.【点睛】本题主要考查了三角形内角和定理以及线段垂直平分线的性质的运用,角平分线的定义,解题时注意:线段垂直平分线上任意一点,到线段两端点的距离相等;三角形内角和等于180°.17.【解析】试题解析:∵()2=3,∴3的平方根是.故答案为.解析:【解析】试题解析:∵(2=3,∴3的平方根是故答案为18.6【解析】【分析】由已知可得到AB比BC长2,根据平行四边形的周长可得到AB与BC的和,从而不难求得AB的长.【详解】解:∵△AOB的周长比△BOC的周长大2,∴OA+OB+AB-OB-解析:6【解析】【分析】由已知可得到AB比BC长2,根据平行四边形的周长可得到AB与BC的和,从而不难求得AB的长.【详解】解:∵△AOB的周长比△BOC的周长大2,∴OA+OB+AB-OB-OC-BC=2,∵ABCD是平行四边形,∴OA=OC,∴AB-BC=2,∵平行四边形ABCD的周长是20,∴AB+BC=10,∴AB=6.故答案为:6.【点睛】此题主要考查学生对平行四边形的性质的理解及运用,熟记性质是解题的关键.19.3【解析】【分析】由△ABC为等边三角形,D为AC边上的中点可得∠DBE=30°,由DE=DB得∠E =30°,再证出∠CDE=∠E,得出CD=CE=AC=3即可.【详解】∵△ABC为等边解析:3【解析】【分析】由△ABC为等边三角形,D为AC边上的中点可得∠DBE=30°,由DE=DB得∠E =30°,再证出∠CDE=∠E,得出CD=CE=12AC=3即可.【详解】∵△ABC为等边三角形,D为AC边上的中点,∴BD为∠ABC的平分线,且∠ABC=60°,∴∠DBE=30°,又DE=DB,∴∠E=∠DBE=30°,∵等边△ABC的周长为18,∴AC=6,且∠ACB=60°,∴∠CDE=∠ACB-∠E=30°,∴∠CDE=∠E,∴CD=CE=12AC=3.故答案为:3.【点睛】此题考查了等边三角形的性质、等腰三角形的判定以及三角形的外角性质等知识;熟练掌握等边三角形的性质,证明CD=CE是解题的关键.20.(-4,1).【解析】【分析】根据第二象限内点的坐标特征以及点到x轴的距离等于纵坐标的长度,到y轴的距离等于横坐标的长度解答.【详解】∵第二象限的点P到x轴的距离是1,到y轴的距离是4,解析:(-4,1).【解析】【分析】根据第二象限内点的坐标特征以及点到x轴的距离等于纵坐标的长度,到y轴的距离等于横坐标的长度解答.【详解】∵第二象限的点P到x轴的距离是1,到y轴的距离是4,∴点P的横坐标是-4,纵坐标是1,∴点P 的坐标为(-4,1).故答案为:(-4,1).【点睛】此题考查点的坐标,解题关键在于熟记点到x 轴的距离等于纵坐标的长度,到y 轴的距离等于横坐标的长度.三、解答题21.(1)1个甲种乒乓球的售价是5元,乙种售价是7元;(2)当购买甲种乒乓球150只,乙种乒乓球50只时最省钱.【解析】【分析】(1)设1个甲种乒乓球的售价是x 元,1个乙种乒乓球的售价是y 元,根据题意列出二元一次方程组,解方程组即可;(2)设购买甲种乒乓球a 只,则购买乙种乒乓球()200a -只,费用为w 元,根据题意列出费用关于a 的一次函数,根据一次函数的性质解答即可.【详解】(1)设1个甲种乒乓球的售价是x 元,1个乙种乒乓球的售价是y 元,35502331x y x y +=⎧⎨+=⎩,解得,57x y =⎧⎨=⎩, 答:1个甲种乒乓球的售价是5元,乙种售价是7元;(2)设购买甲种乒乓球a 只,则购买乙种乒乓球()200a -只,费用为w 元,()5720021400w a a a =+-=-+,∵()3200a a -,∴150a ≤,∴当150a =时,w 取得最小值,此时1100w =,20050a -=,答:当购买甲种乒乓球150只,乙种乒乓球50只时最省钱.【点睛】本题考查的是列二元一次方程组、一元一次不等式解实际问题/一次函数的性质等知识,解题的关键是学会利用一次函数的性质解决最值问题.22.(1)x >2;(2)x <4 ;(3)2<x <4;(4)2(平方单位)【解析】【分析】利用图象可解决(1)、(2)、(3);利用图象写出两函数图象的交点坐标,然后根据三角形面积公式计算函数y 1=2x -4与y 2=-2x +8的图象与x 轴所围成的三角形的面积.【详解】由图可知:(1)当x >2时,2x−4>0;(2)当x <4时,-2x +8>0;(3)由(1)(2)可知当2<x <4时,2x−4>0与−2x +8>0同时成立;(4)联立y1=2x-4与y2=-2x+8,解得x=3,y=2,∴函数y1=2x-4与y2=-2x+8的图象的交点坐标为(3,2),所以函数y1=2x-4与y2=-2x+8的图象与x轴所围成的三角形的面积=12×(4−2)×2=2(平方单位).【点睛】本题考查了一次函数与一元一次不等式:一次函数与一元一次不等式的关系从函数的角度看,就是寻求使一次函数y=kx+b的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合.解决本题的关键是准确画出两函数图象.23.(1)10,1;(2)P为(103,0);点P的实际意义为:点M运动到点C,MC=0;(3)当∠CMN=45°时,x的值为2或4.【解析】【分析】(1)由函数图像可知,AC=10,点M运动1秒后,点N开始运动;(2)由点M为匀速运动,则先计算点M的速度,然后求出点M运动到点C时的时间,即求出点P的坐标;(3)先求出点N在BC上的运动速度和在AC上的运动速度,结合∠CMN=45°,则CM=CN,可分为两种情况进行分析:①点M在AC上,点N在BC上;②点M在BC上,点N在AC上;分别列式求解即可.【详解】解:(1)根据函数的图像可知,当点M与点A重合时,AC=MC=10cm,当点N与点B重合时,BC=NC=8cm,由图可知,点M运动1秒后,点N开始运动,故答案为:10,1;(2)由题意,点M为匀速运动,则点M的速度为:1083/6cm s+=,∴当点M运动到点C时,MC=0,则点P的横坐标为:103,∴点P的坐标为:(103,0);点P的实际意义为:点M运动到点C,MC=0;(3)由图可知,点N在BC上运动的速度为:84/31cm s=-,点N 在AC 上运动的速度为:102/83cm s =-; ∵∠CMN=45°, ∴△CMN 是等腰直角三角形,即MC=NC ,①如图,当点M 在AC 上,点N 在BC 上时,有设x 秒后,∠CMN=45°,∴103MC x =-,84(1)NC x =--,∴10384(1)x x -=--,解得:2x =;②如图,当点M 在BC 上,点N 在AC 上时,有点N 到达点C 所用的时间为3x =,设x 秒后,∠CMN=45°,∴310MC x =-,2(3)NC x =-,∴3102(3)x x -=-,解得:4x =;综合上述,当∠CMN=45°时,x 的值为2或4.【点睛】本题考查了等腰直角三角形的判定和性质,从函数图像获取信息,解一元一次方程,线段动点问题,解题的关键是弄清函数图像,根据函数图像找到关键点,从而进行计算,注意运用分类讨论的思想进行解题.24.(1)y =x +3;(2)x ≤3.【解析】试题分析:()1把14x y ==,代入3y kx =+, 求出k 的值是多少,即可求出这个一次函数的解析式.()2首先把()1中求出的k 的值代入36kx +≤,然后根据一元一次不等式的解法,求出关于x 的不等式36kx +≤,的解集即可.试题解析:(1)∵一次函数y =kx +3的图象经过点(1,4),∴ 4=k+3,∴k=1,∴这个一次函数的解析式是:y=x+3.(2)∵k=1,∴x+3≤6,∴x≤3,即关于x的不等式kx+3≤6的解集是:x≤3.25.(1)见解析;(2)(-2,5);(3)①见解析;②点P2的坐标为(﹣m,n﹣6);③32【解析】【分析】(1)建立适当的平面直角坐标系,根据点A坐标为(﹣1,2),点B的坐标为(﹣5,2)即可画出直角坐标系;(2)根据坐标系即可写出点C的坐标;(3)把△ABC先向下平移6个单位后得到对应的△A1B1C1,再将△A1B1C1沿y轴翻折至△A2B2C2;①即可在坐标系中画出△A2B2C2;②若点P(m,n)是△ABC边上任意一点,P2是△A2B2C2边上与P对应的点,即可写出点P2的坐标;③根据对称性即可在y轴上找一点Q,使得点Q到A2,C2两点的距离之和最小,进而可以求出QA2+QC2的长度之和最小值.【详解】(1)∵点A坐标为(﹣1,2),点B的坐标为(﹣5,2),如图所示:即为所画出的直角坐标系;(2)根据坐标系可知:点C的坐标为(﹣2,5),故答案为:﹣2,5;(3)把△ABC先向下平移6个单位后得到对应的△A1B1C1,再将△A1B1C1沿y轴翻折至△A2B2C2;①如图即为坐标系中画出的△A2B2C2;②点P(m,n)是△ABC边上任意一点,P2是△A2B2C2边上与P对应的点,∴点P2的坐标为(﹣m,n﹣6),故答案为:﹣m,n﹣6;③根据对称性可知:在y轴上找一点Q,使得点Q到A2,C2两点的距离之和最小,∴连接A2C1交y轴于点Q,此时QA2+QC2的长度之和最小,即为A2C1的长,A2C1=2,∴QA2+QC2的长度之和最小值为2.故答案为:2.【点睛】此题主要考查平面直角坐标系中三角形的平移以及对称性的运用,熟练掌握,即可解题.四、压轴题26.(1)2,7,4;(2)83x ≥;(3)①t 的内数=有2个,离原点最远的格点的坐标有两个,为()8,4-±.【解析】【分析】(1)根据内数的定义即可求解;(2)根据内数的定义可列不等式2331x ≤+,求解即可;(3)①分析可得当1t =时,即t 的内数为2时,4n =;当4t =时,即t 的内数为3时,9n =,当5t =时,即t 的内数为4时,16n =……归纳可得结论;②分析可得当t 的内数为奇数时,最大实心正方形有2个;当t 的内数为偶数时,最大实心正方形有1个;且最大实心正方形的边长为:t 的內数-1,即可求解.【详解】解:(1)22311=⨯+,所以1的内数是2;232017⨯+>,所以20的内数是7;23614⨯+>,所以6的内数是4;(2)∵3是x 的內数,∴2331x ≤+, 解得83x ≥; (3)①当1t =时,即t 的内数为2时,4n =;当4t =时,即t 的内数为3时,9n =,当5t =时,即t 的内数为4时,16n =,……∴t 的内数=②当t 的内数为2时,最大实心正方形有1个;当t 的内数为3时,最大实心正方形有2个,当t 的内数为4时,最大实心正方形有1个,……即当t 的内数为奇数时,最大实心正方形有2个;当t 的内数为偶数时,最大实心正方形有1个;∴当t 的內数为9时,符合条件的最大实心正方形有2个,由前几个例子推理可得最大实心正方形的边长为:t 的內数-1,∴此时最大实心正方形的边长为8,离原点最远的格点的坐标有两个,为()8,4-±.【点睛】本题考查图形类规律探究,明确题干中内数的定义是解题的关键.27.(1)(1,-4);(2)证明见解析;(3)()135,1,0APB P ︒∠= 【解析】(1)作CH ⊥y 轴于H ,证明△ABO ≌△BCH ,根据全等三角形的性质得到BH=OA=3,CH=OB=1,求出OH ,得到C 点坐标;(2)证明△PBA ≌△QBC ,根据全等三角形的性质得到PA=CQ ;(3)根据C 、P ,Q 三点共线,得到∠BQC=135°,根据全等三角形的性质得到∠BPA=∠BQC=135°,根据等腰三角形的性质求出OP ,得到P 点坐标.【详解】解:(1)作CH ⊥y 轴于H ,则∠BCH+∠CBH=90°,因为AB BC ⊥,所以.∠ABO+∠CBH=90°,所以∠ABO=∠BCH ,在△ABO 和△BCH 中,ABO BCH AOB BHC AB BC ∠=∠⎧⎪∠=∠⎨⎪=⎩ABO BCH ∴∆≅∆:BH=OA=3,CH=OB=1,:OH=OB+BH=4,所以C 点的坐标为(1,-4);(2)因为∠PBQ=∠ABC=90°,,PBQ ABQ ABC ABQ PBA QBC ∴∠-=∠-∠∴∠=∠在△PBA 和△QBC 中,BP BQ PBA QBC BA BC =⎧⎪∠=∠⎨⎪=⎩PBA QBC ∴∆≅∆:.PA=CQ ;(3) ()135,1,0APB P ︒∠= BPQ ∆是等腰直角三角形,:所以∠BQP=45°,当C 、P ,Q 三点共线时,∠BQC=135°,由(2)可知,PBA QBC ∴∆≅∆;所以∠BPA=∠BQC=135°,所以∠OPB=45°,所以.OP=OB=1,所以P 点坐标为(1,0) .。
八年级上学期第二次月考数学试题(1)
八年级上学期第二次月考数学试题(1)一、选择题1.如图所示的两个三角形全等,图中的字母表示三角形的边长,则1∠的度数为( )A .82°B .78°C .68°D .62°2.人的眼睛可以看见的红光的波长约为5810cm -⨯,近似数5810-⨯精确到( ) A .0.001cm B .0.0001cm C .0.00001cm D .0.000001cm 3.估计11的值应在( )A .2和3之间B .3和4之间C .4和5之间D .5和6之间4.如图,将△ABC 折叠,使点A 与BC 边中点D 重合,折痕为MN ,若AB=9,BC=6,则△DNB 的周长为( )A .12B .13C .14D .155.下列各点中,在函数y=-8x图象上的是( ) A .(﹣2,4)B .(2,4)C .(﹣2,﹣4)D .(8,1)6.如图, Rt ABC 中,90,B ED ∠=︒垂直平分,AC ED 交AC 于点D ,交BC 于点E .已知ABC 的周长为24,ABE 的周长为14,则AC 的长( )A .10B .14C .24D .15 7.一次函数y =﹣2x+3的图象不经过的象限是( )A .第一象限B .第二象限C .第三象限D .第四象限8.已知:如图,点P 在线段AB 外,且PA=PB ,求证:点P 在线段AB 的垂直平分线上,在证明该结论时,需添加辅助线,则作法不正确的是( )A .作∠APB 的平分线PC 交AB 于点C B .过点P 作PC ⊥AB 于点C 且AC=BC C .取AB 中点C ,连接PCD .过点P 作PC ⊥AB ,垂足为C 9.9的平方根是( ) A .3B .81C .3±D .81±10.估算x =5值的大小正确的是( ) A .0<x <1B .1<x <2C .2<x <3D .3<x <4二、填空题11.如图,已知函数y =3x +b 和y =ax -3的图象交于点P(-2,-5),则根据图象可得不等式3x +b >ax -3的解集是________.12.已知点P (a ,b )在一次函数y=x +1的图象上,则b ﹣a=_____. 132(5)-=_____.14.3x -有意义的x 的取值范围是__________.15.已知点P (m ﹣2,2m ﹣1)在第二象限,则实数m 的取值范围是_____. 16.2,227,2543.14,这些数中,无理数有__________个. 17.在平面直角坐标系中,把直线y=-2x+3沿y 轴向上平移两个单位后,得到的直线的函数关系式为_____.18.如图,在平面直角坐标系中,()1,1A ,()1,1B -,()1,2C --,()1,2D -.把一条长为2020个单位长度且没有弹性的细线(线的粗细忽略不计)的一端固定在点A 处,并按A B C D A -----…的规律紧绕在四边形ABCD 的边上,则细线另一端所在位置的点的坐标是__________.19.已知函数y=x+m-2019 (m 是常数)是正比例函数,则m= ____________20.如图,在△ABC 中,AB =5,AC =13,BC 边上的中线AD =6,则△ABD 的面积是______.三、解答题21.通过对下面数学模型的研究学习,解决下列问题:(模型呈现)(1)如图1,90BAD ∠=︒,AB AD =,过点B 作BC AC ⊥于点C ,过点D 作DE AC ⊥于点E .由12290D ∠+∠=∠+∠=︒,得1D ∠=∠.又90ACB AED ∠=∠=︒,可以推理得到ABC DAE ∆∆≌.进而得到AC = ,BC = .我们把这个数学模型称为“K 字”模型或“一线三等角”模型;(模型应用)(2)①如图2,90BAD CAE ∠=∠=︒,AB AD =,AC AE =,连接BC ,DE ,且BC AF ⊥于点F ,DE 与直线AF 交于点G .求证:点G 是DE 的中点;②如图3,在平面直角坐标系xOy 中,点A 的坐标为()2,4,点B 为平面内任一点.若AOB ∆是以OA 为斜边的等腰直角三角形,请直接写出点B 的坐标.22.如图,△ABC 中,∠ACB =90°,AB =10cm ,BC =6cm ,若点P 从点A 出发以每秒1cm 的速度沿折线A ﹣C ﹣B ﹣A 运动,设运动时间为t 秒(t >0).(1)若点P 在AC 上,且满足PA =PB 时,求出此时t 的值;(2)若点P 恰好在∠BAC 的角平分线上(但不与A 点重合),求t 的值.23.为落实“美丽抚顺”的工作部署,市政府计划对城区道路进行了改造,现安排甲、乙两个工程队完成.已知甲队的工作效率是乙队工作效率的32倍,甲队改造360米的道路比乙队改造同样长的道路少用3天.(1)甲、乙两工程队每天能改造道路的长度分别是多少米?(2)若甲队工作一天需付费用7万元,乙队工作一天需付费用5万元,如需改造的道路全长1200米,改造总费用不超过145万元,至少安排甲队工作多少天? 24.(1)计算:()1131133-⎛⎫⎪⎝⎭+--(2)已知()23227x -=,求x 的值.25.某工厂计划生产A 、B 两种产品共50件,已知A 产品成本2000元/件,售价2300元/件;B 种产品成本3000元/件,售价3500元/件,设该厂每天生产A 种产品x 件,两种产品全部售出后共可获利y 元. (1)求出y 与x 的函数表达式;(2)如果该厂每天最多投入成本140000元,那么该厂生产的两种产品全部售出后最多能获利多少元?四、压轴题26.如图,在平面直角坐标系中,一次函数y x =的图象为直线1.(1)观察与探究已知点A 与A ',点B 与B '分别关于直线l 对称,其位置和坐标如图所示.请在图中标出()2,3C -关于线l 的对称点C '的位置,并写出C '的坐标______.(2)归纳与发现观察以上三组对称点的坐标,你会发现:平面直角坐标系中点()P m n ,关于直线l 的对称点P '的坐标为______. (3)运用与拓展已知两点()2,3E -、()1,4F --,试在直线l 上作出点Q ,使点Q 到E 、F 点的距离之和最小,并求出相应的最小值.27.某校七年级数学兴趣小组对“三角形内角或外角平分线的夹角与第三个内角的数量关系”进行了探究.(1)如图1,在△ABC 中,∠ABC 与∠ACB 的平分线交于点P ,∠A =64°,则∠BPC = ;(2)如图2,△ABC 的内角∠ACB 的平分线与△ABC 的外角∠ABD 的平分线交于点E .其中∠A =α,求∠BEC .(用α表示∠BEC );(3)如图3,∠CBM、∠BCN为△ABC的外角,∠CBM、∠BCN的平分线交于点Q,请你写出∠BQC与∠A的数量关系,并说明理由;(4)如图4,△ABC外角∠CBM、∠BCN的平分线交于点Q,∠A=64°,∠CBQ,∠BCQ的平分线交于点P,则∠BPC= ゜,延长BC至点E,∠ECQ的平分线与BP的延长线相交于点R,则∠R= ゜.28.阅读下列材料,并按要求解答.(模型建立)如图①,等腰直角三角形ABC中,∠ACB=90°,CB=CA,直线ED经过点C,过A作AD⊥ED于点D,过B作BE⊥ED于点E.求证:△BEC≌△CDA.(模型应用)应用1:如图②,在四边形ABCD中,∠ADC=90°,AD=6,CD=8,BC=10,AB2=200.求线段BD的长.应用2:如图③,在平面直角坐标系中,纸片△OPQ为等腰直角三角形,QO=QP,P(4,m),点Q始终在直线OP的上方.(1)折叠纸片,使得点P与点O重合,折痕所在的直线l过点Q且与线段OP交于点M,当m=2时,求Q点的坐标和直线l与x轴的交点坐标;(2)若无论m取何值,点Q总在某条确定的直线上,请直接写出这条直线的解析式.29.如图,直线l1的表达式为:y=-3x+3,且直线l1与x轴交于点D,直线l2经过点A,B,直线l1,l2交于点C.(1)求点D的坐标;(2)求直线l2的解析表达式;(3)求△ADC的面积;(4)在直线l2上存在异于点C的另一点P,使得△ADP与△ADC的面积相等,求点P的坐标.30.在等腰Rt△ABC中,AB=AC,∠BAC=90°(1)如图1,D,E是等腰Rt△ABC斜边BC上两动点,且∠DAE=45°,将△ABE绕点A逆时针旋转90后,得到△AFC,连接DF①求证:△AED≌△AFD;②当BE=3,CE=7时,求DE的长;(2)如图2,点D是等腰Rt△ABC斜边BC所在直线上的一动点,连接AD,以点A为直角顶点作等腰Rt△ADE,当BD=3,BC=9时,求DE的长.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【解析】【分析】直接利用全等三角形的性质得出∠1=∠2进而得出答案.【详解】∵如图是两个全等三角形,∴∠1=∠2=180°−40°−62°=78°.故选:B.【点睛】此题主要考查了全等三角形的性质,正确得出对应角是解题关键.2.C解析:C【解析】【分析】把数还原后,再看首数8的最后一位数字8所在的位数是十万分位,即精确到十万分位.【详解】∵5⨯=0.00008,810-∴近似数5⨯是精确到十万分位,即0.00001.810-故选:C.【点睛】此题主要考查了科学记数法与有效数字,正确还原数据是解题关键.3.B解析:B【解析】【分析】直接利用32=9,42=1611的取值范围.【详解】∵32=9,42=16,11在3和4之间.故选:B.【点睛】本题考查了估算无理数的大小,正确得出接近无理数的有理数是解题的关键.4.A解析:A【解析】【分析】根据中点的定义可得BD=3,由折叠的性质可知DN=AN,即DN+BN=AB=9,可得△DNB的周长.【详解】解:∵D是BC的中点,BC=6,由折叠的性质可知DN=AN,∴△DNB的周长=DN+BN+BD=AN+BN+BD=AB+BD=9+3=12.故选A.【点睛】本题主要考查翻折变换,解题的关键是掌握翻折变换的性质:折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等5.A解析:A【解析】【分析】所有在反比例函数上的点的横纵坐标的积应等于比例系数.本题只需把所给点的横纵坐标相乘,结果是﹣8的,就在此函数图象上【详解】解:-2×4=-8故选:A【点睛】本题考查反比例函数图象上点的坐标特征,掌握反比例函数性质是本题的解题关键.6.A解析:A【解析】【分析】首先依据线段垂直平分线的性质得到AE=CE;接下来,依据AE=CE可将△ABE的周长为:14转化为AB+BC=14,求解即可.【详解】∵DE是AC的垂直平分线,∴AE=CE,∴△ABE的周长为:AB+BE+AE=AB+BE+CE=AB+BC∵ABC的周长为24,ABE的周长为14∴AB+BC=14∴AC=24-14=10故选:A【点睛】本题主要考查的是线段垂直平分线的性质,掌握线段垂直平分线的性质是解题的关键. 7.C解析:C【解析】试题解析:∵k=-2<0,∴一次函数经过二四象限;∴一次函数又经过第一象限,∴一次函数y=-x+3的图象不经过第三象限,故选C.8.B解析:B【解析】【分析】利用判断三角形全等的方法判断即可得出结论.【详解】A、利用SAS判断出△PCA≌△PCB,∴CA=CB,∠PCA=∠PCB=90°,∴点P在线段AB的垂直平分线上,符合题意;B、过线段外一点作已知线段的垂线,不能保证也平分此条线段,不符合题意;C、利用SSS判断出△PCA≌△PCB,∴CA=CB,∠PCA=∠PCB=90°,∴点P在线段AB的垂直平分线上,符合题意;D、利用HL判断出△PCA≌△PCB,∴CA=CB,∴点P在线段AB的垂直平分线上,符合题意,故选B.【点睛】本题主要考查了全等三角形的判定,线段垂直平分线的判定,熟练掌握全等三角形的判断方法是解本题的关键.9.C解析:C【解析】【分析】根据平方根的定义进行求解即可.【详解】.解:9的平方根是3故选C.【点睛】本题考查平方根,一个正数有两个实平方根,它们互为相反数.10.C解析:C【解析】【分析】.【详解】∴23,故选:C.【点睛】此题主要考查无理数的估值,熟练掌握,即可解题.二、填空题11.x>-2【解析】【分析】根据一次函数的图象和两函数的交点坐标即可得出答案.【详解】解:观察图象知,当x>-2时,y=3x+b的图象在y=ax-3的图象的上方,故该不等式的解集为x>-2故解析:x>-2【解析】【分析】根据一次函数的图象和两函数的交点坐标即可得出答案.【详解】解:观察图象知,当x>-2时,y=3x+b的图象在y=ax-3的图象的上方,故该不等式的解集为x>-2故答案为:x>-2【点睛】本题考查了议程函数与一元一次不等式的应用,主要考查学生的观察能力和理解能力,题型较好,难度不大.12.1【解析】∵点P(a,b)在一次函数y=x+1的图象上,∴b=a+1,∴b-a=1,故答案为1.【点睛】本题主要考查了一次函数图象上点的坐标特征,解题的关键是把点P (a,b)代入一次函数解析:1【解析】∵点P(a,b)在一次函数y=x+1的图象上,∴b=a+1,∴b-a=1,故答案为1.【点睛】本题主要考查了一次函数图象上点的坐标特征,解题的关键是把点P(a,b)代入一次函数的解析式.13.5【解析】根据二次根式的性质知:5.解析:5【解析】=5.14.【解析】【分析】根据以上信息可得到关于不等式x-3≥0,求解便能得到x的取值范围.【详解】根据题意,得x-3≥0,解得x≥3.故答案为【点睛】考查二次根式有意义的条件:二次根式的x≥解析:3【解析】【分析】根据以上信息可得到关于不等式x-3≥0,求解便能得到x的取值范围.【详解】根据题意,得x-3≥0,解得x≥3.x≥故答案为3【点睛】考查二次根式有意义的条件:二次根式的被开方数是非负数;15.<m<2.【解析】【分析】根据第二象限内点的横坐标是负数,纵坐标是正数列出不等式组,然后求解即可.【详解】解:∵点P(m﹣2,2m﹣1)在第二象限,∴,解不等式①得,m<2,解不等式解析:12<m<2.【解析】【分析】根据第二象限内点的横坐标是负数,纵坐标是正数列出不等式组,然后求解即可.【详解】解:∵点P(m﹣2,2m﹣1)在第二象限,∴20210mm-<⎧⎨->⎩①②,解不等式①得,m<2,解不等式②得,m>12,所以,不等式组的解集是12<m<2,故答案为12<m<2.【点睛】本题考查了各象限内点的坐标的符号特征以及解不等式,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(−,+);第三象限(−,−);第四象限(+,−).16.1【解析】【分析】根据无理数的定义,即可得到答案.【详解】解:根据题意,是无理数;,,3.14是有理数;∴无理数有1个;故答案为:1.【点睛】本题考查了无理数的定义,解题的关键是熟解析:1【解析】【分析】根据无理数的定义,即可得到答案.【详解】是无理数;227, 3.14是有理数; ∴无理数有1个;故答案为:1.【点睛】 本题考查了无理数的定义,解题的关键是熟练掌握无理数的定义.17.y=-2x+5.【解析】【分析】根据平移法则上加下减可得出平移后的解析式.【详解】解:由题意得:平移后的解析式为:y=-2x+3+2=-2x+5.故答案为y=-2x+5.【点睛】本题解析:y=-2x+5.【解析】【分析】根据平移法则上加下减可得出平移后的解析式.【详解】解:由题意得:平移后的解析式为:y=-2x+3+2=-2x+5.故答案为y=-2x+5.【点睛】本题考查一次函数图形的平移变换和函数解析式之间的关系,解题关键是在平面直角坐标系中,图形的平移与图形上某点的平移相同.平移中点的变化规律是:横坐标左移加,右移减;纵坐标上移加,下移减.18.【解析】【分析】根据各个点的坐标,分别求出AB 、BC 、CD 和DA 的长,即可求出细线绕一圈的长度,然后用2020除以细线绕一圈的长度即可判断.【详解】解:∵,,,∴AB=2,BC=3,CD解析:()1,1【解析】【分析】根据各个点的坐标,分别求出AB 、BC 、CD 和DA 的长,即可求出细线绕一圈的长度,然后用2020除以细线绕一圈的长度即可判断.【详解】解:∵()1,1A ,()1,1B -,()1,2C --,()1,2D -∴AB=2,BC=3,CD=2,DA=3∴细线绕一圈所需:AB+BC+CD+DA=10个单位长度2020÷10=202(圈),即细线正好绕了202圈故细线另一端所在位置正好为点A ,它的坐标为()1,1故答案为:()1,1.【点睛】此题考查的是探索点的坐标规律题,掌握把坐标转化为线段的长是解决此题的关键. 19.2019【解析】【分析】根据正比例函数的定义,m-2019=0,从而求解.【详解】解:根据题意得:m-2019=0,解得:m=2019,故答案为2019.【点睛】本题主要考查了正比解析:2019【解析】【分析】根据正比例函数的定义,m-2019=0,从而求解.【详解】解:根据题意得:m-2019=0,解得:m=2019,故答案为2019.【点睛】本题主要考查了正比例函数的定义,形如y =kx (k 是常数,k ≠0)的函数,其中k 叫做比例系数.正比例函数一定是一次函数,但一次函数不一定是正比例函数.20.15【解析】【分析】延长AD 到点E ,使DE=AD=6,连接CE ,可证明△ABD ≌△CED ,所以CE=AB ,再利用勾股定理的逆定理证明△CDE是直角三角形,即△ABD为直角三角形,进而可求出△A解析:15【解析】【分析】延长AD到点E,使DE=AD=6,连接CE,可证明△ABD≌△CED,所以CE=AB,再利用勾股定理的逆定理证明△CDE是直角三角形,即△ABD为直角三角形,进而可求出△ABD的面积.【详解】解:延长AD到点E,使DE=AD=6,连接CE,∵AD是BC边上的中线,∴BD=CD,在△ABD和△CED中,BD CDADB EDCAD CE=⎧⎪∠=∠⎨⎪=⎩,∴△ABD≌△CED(SAS),∴CE=AB=5,∠BAD=∠E,∵AE=2AD=12,CE=5,AC=13,∴CE2+AE2=AC2,∴∠E=90°,∴∠BAD=90°,即△ABD为直角三角形,∴△ABD的面积=12AD•AB=15.故答案为15.【点睛】本题考查了全等三角形的判定和性质、勾股定理的逆定理的运用,解题的关键是添加辅助线,构造全等三角形.三、解答题21.(1)DE,AE;(2)①见解析;②()3,1,()1,3-【解析】【分析】(1)根据全等三角形的性质即可得到结论;(2)①作DM ⊥AH 于M ,EN ⊥AH 于N ,根据余角的性质得到∠B=∠1,根据全等三角形的性质得到AH=DM ,同理AH=EN ,求得EN=DM ,由全等三角形的性质得到DG=EG ,于是得到点G 是DE 的中点;②过A 作AM ⊥y 轴,过B 作BN ⊥x 轴于N ,AM 与BN 相交于M ,根据余角的性质得到∠OBN=∠BAM ,根据全等三角形的性质得到AM=BN ,ON=BM ,设AM=x ,则BN=AM=x ,从而得到结论.【详解】解:(1)AC=DE ,BC=AE ;故答案为:DE ,AE(2)①如图,作DM AF ⊥于M ,EN AF ⊥于N ,∵BC AF ⊥,∴90BFA AMD ∠=∠=︒,∵90BAD ∠=︒,∴12190B ∠+∠=∠+∠=︒,∴1B ∠=∠,在ABF ∆与DAM ∆中,BFA AMD ∠=∠,2B ∠=∠,AB DA =,∴ABF DAM ∆∆≌(AAS ),∴AF DM =,同理AF EN =,∴EN DM =,∵DM AF ⊥,EN AF ⊥,∴90GMD GNE ∠=∠=︒,在DMG ∆与ENG ∆中,DMG ENG ∠=∠,MGD NGE ∠=∠,DM EN =, ∴DMG ENG ∆=(AAS ),∴DG EG =,∴点G 是DE 的中点;②如图,过A 作AM ⊥y 轴,过B 作BN ⊥x 轴于N ,AM 与BN 相交于M ,∴∠M=90°,∵∠OBA=90°,∴∠ABM+∠OBN=90°,∵∠ABM+∠BAM=90°,∴∠OBN=∠BAM ,在△OBN 与△BAM 中,M ONB OBN BAM OB AB ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∴△OBN ≌△BAM (AAS ),∴AM=BN ,ON=BM ,设AM=x ,则BN=AM=x ,∴ON= x+2,∴MB+NB=x+x+2=MN=4,∴x=1,x+2=3,∴点B 的坐标(3,1);如图同理可得,点B 的坐标(-1,3),综上所述,点B 的坐标为()3,1,()1,3-【点睛】本题考查了全等三角形的判定和性质,垂直的定义,余角的性质,正确的作出辅助线是解题的关键.22.(1)254t = ;(2)323t =.【解析】 【分析】(1)根据中垂线性质可知,作AB 的垂直平分线,与AC 交于点P ,则满足PA=PB ,在Rt △ABC 中,用勾股定理计算出AC=8cm ,再用t 表示出PA=t cm ,则PC=()8t -cm ,在Rt △PBC 中,利用勾股定理建立方程求t ;(2)过P 作PD ⊥AB 于D 点,由角平分线性质可得PC=PD ,由题意PC=()t 8-cm ,则PB=()()6t 8=14t ---cm ,在Rt △ABD 中,利用勾股定理建立方程求t.【详解】(1)作AB 的垂直平分线交AB 于D ,交AC 于P ,连接PB ,如图所示,由垂直平分线的性质可知PA=PB ,此时P 点满足题意,在Rt △ABC 中,2222AC=AB BC =106=8--cm ,由题意PA= t cm ,PC=()8t -cm ,在Rt △PBC 中,222PC +BC =PB ,即()2228t +6=t -,解得25t=4(2)作∠CAB 的平分线AP ,过P 作PD ⊥AB 于D 点,如图所示∵AP 平分∠CAB ,PC ⊥AC ,PD ⊥AB ,∴PC=PD在Rt △ACP 和Rt △ADP 中,AP=AP PC=PD ⎧⎨⎩∴()Rt ACP Rt ADP HL ≅∴AD=AC=8cm∴BD=AB-AD=10-8=2cm由题意PD=PC=()t 8-cm ,则PB=()()6t 8=14t ---cm ,在Rt △ABD 中,222PD +BD =PB即()()222t 8+2=14t -- 解得32t=3【点睛】 本题考查了勾股定理的动点问题,熟练运用中垂线性质和角平分线性质,找出线段长度,利用勾股定理建立方程是关键.23.(1)乙工程队每天能改造道路的长度为40米,甲工程队每天能改造道路的长度为60米.(2)10天.【解析】【分析】(1)设乙工程队每天能改造道路的长度为x 米,则甲工程队每天能改造道路的长度为32x 米,根据工作时间=工作总量÷工作效率结合甲队改造360米的道路比乙队改造同样长的道路少用3天,即可得出关于x 的分式方程,解之经检验后即可得出结论;(2)设安排甲队工作m 天,则安排乙队工作12006040m -天,根据总费用=甲队每天所需费用×工作时间+乙队每天所需费用×工作时间结合总费用不超过145万元,即可得出关于m 的一元一次不等式,解之取其中的最大值即可得出结论.【详解】(1)设乙工程队每天能改造道路的长度为x 米,则甲工程队每天能改造道路的长度为32x 米, 根据题意得:360360332x x -=, 解得:x=40,经检验,x=40是原分式方程的解,且符合题意, ∴32x=32×40=60, 答:乙工程队每天能改造道路的长度为40米,甲工程队每天能改造道路的长度为60米; (2)设安排甲队工作m 天,则安排乙队工作12006040m -天, 根据题意得:7m+5×12006040m -≤145, 解得:m≥10,答:至少安排甲队工作10天.【点睛】本题考查了分式方程的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出分式方程;(2)根据各数量间的关系,正确列出一元一次不等式.24.(1) )- (2) x=5或x=-1 【解析】【分析】(1) 按顺序分别进行0指数幂运算,负指数幂运算,化简绝对值,然后再按运算顺序进行计算即可;(2) 利用直接开平方法进行求解即可.【详解】(1)原式=1-3-)=)-(2) ()23227x -=(x-2)2=9x-2=±3x=5或x=-1.【点睛】此题主要考查了实数的综合运算能力及解一元二次方程的方法,熟记概念是解题的关键.25.(1)y =﹣200x +25000;(2)该厂生产的两种产品全部售出后最多能获利23000元.【解析】【分析】(1)根据题意,可以写出y 与x 的函数关系式;(2)根据该厂每天最多投入成本140000元,可以列出相应的不等式,求出x 的取值范围,再根据(1)中的函数关系式,即可求得该厂生产的两种产品全部售出后最多能获利多少元.【详解】(1)由题意可得:y =(2300﹣2000)x +(3500﹣3000)(50﹣x )=﹣200x +25000,即y 与x 的函数表达式为y =﹣200x +25000;(2)∵该厂每天最多投入成本140000元,∴2000x +3000(50﹣x )≤140000,解得:x ≥10.∵y =﹣200x +25000,∴当x =10时,y 取得最大值,此时y =23000,答:该厂生产的两种产品全部售出后最多能获利23000元.【点睛】本题考查一次函数的应用、一元一次不等式的应用,解答本题的关键是明确题意,利用一次函数的性质和不等式的性质解答.四、压轴题26.(1) (3,-2);(2) (n ,m );(3)图见解析, 点Q 到E 、F 点的距离之和最小值为210【解析】【分析】(1)根据题意和图形可以写出C '的坐标;(2)根据图形可以直接写出点P 关于直线l 的对称点的坐标;(3)作点E 关于直线l 的对称点E ',连接E 'F ,根据最短路径问题解答.【详解】 (1)如图,C '的坐标为(3,-2),故答案为(3,-2);(2)平面直角坐标系中点()P m n ,关于直线l 的对称点P '的坐标为(n ,m ), 故答案为(n ,m );(3)点E 关于直线l 的对称点为E '(-3,2),连接E 'F 角直线l 于一点即为点Q ,此时点Q 到E 、F 点的距离之和最小,即为线段E 'F ,∵E 'F ()[]221(3)2(4)210=---+--=⎡⎤⎣⎦, ∴点Q 到E 、F 点的距离之和最小值为10【点睛】此题考查轴对称的知识,画关于直线的对称点,最短路径问题,勾股定理关键是找到点的对称点,由此解决问题.27.(1) 122°;(2)12BEC α∠=;(3)01902BQC A ;(4)119,29 ; 【解析】【分析】(1)根据三角形的内角和角平分线的定义;(2)根据三角形的一个外角等于与它不相邻的两个内角的和,用A ∠与1∠表示出2∠,再利用E ∠与1∠表示出2∠,于是得到结论;(3)根据三角形的一个外角等于与它不相邻的两个内角的和以及角平分线的定义表示出EBC ∠与ECB ∠,然后再根据三角形的内角和定理列式整理即可得解;(4)根据(1),(3)的结论可以得出∠BPC 的度数;根据(2)的结论可以得到∠R 的度数.【详解】解:(1)BP 、CP 分别平分ABC ∠和ACB ∠,12PBC ABC ∴∠=∠,12PCB ACB ∠=∠, 180()BPC PBC PCB ∴∠=︒-∠+∠11180()22ABC ACB =︒-∠+∠, 1180()2ABC ACB =︒-∠+∠, 1(180180)2A =︒-︒-∠,1180902A =-︒+︒∠, 9032122,故答案为:122︒;(2)如图2示,CE 和BE 分别是ACB ∠和ABD ∠的角平分线,112ACB ∴∠=∠,122ABD ∠=∠, 又ABD ∠是ABC ∆的一外角,ABD A ACB ∴∠=∠+∠,112()122A ABC A ∴∠=∠+∠=∠+∠, 2∠是BEC ∆的一外角,112111222BEC A A α∴∠=∠-∠=∠+∠-∠=∠=; (3)1()2QBC A ACB ∠=∠+∠,1()2QCB A ABC ∠=∠+∠, 180BQC QBC QCB ∠=︒-∠-∠,11180()()22A ACB A ABC =︒-∠+∠-∠+∠, 11180()22A A ABC ACB =︒-∠-∠+∠+∠, 结论1902BQC A ∠=︒-∠. (4)由(3)可知,119090645822BQC A , 再根据(1),可得180()BPCPBC PCB 1118022QBC QCB 1180902Q 118090582119;由(2)可得:115829 22R Q;故答案为:119,29.【点睛】本题考查了三角形的外角性质与内角和定理,熟记三角形的一个外角等于与它不相邻的两个内角的和是解题的关键.28.模型建立:见解析;应用1:652:(1)Q(1,3),交点坐标为(52,0);(2)y=﹣x+4【解析】【分析】根据AAS证明△BEC≌△CDA,即可;应用1:连接AC,过点B作BH⊥DC,交DC的延长线于点H,易证△ADC≌△CHB,结合勾股定理,即可求解;应用2:(1)过点P作PN⊥x轴于点N,过点Q作QK⊥y轴于点K,直线KQ和直线NP 相交于点H,易得:△OKQ≌△QHP,设H(4,y),列出方程,求出y的值,进而求出Q(1,3),再根据中点坐标公式,得P(4,2),即可得到直线l的函数解析式,进而求出直线l与x轴的交点坐标;(2)设Q(x,y),由△OKQ≌△QHP,KQ=x,OK=HQ=y,可得:y=﹣x+4,进而即可得到结论.【详解】如图①,∵AD⊥ED,BE⊥ED,∠ACB=90°,∴∠ADC=∠BEC=90°,∴∠ACD+∠DAC=∠ACD+∠BCE=90°,∴∠DAC=∠BCE,∵AC=BC,∴△BEC≌△CDA(AAS);应用1:如图②,连接AC,过点B作BH⊥DC,交DC的延长线于点H,∵∠ADC=90°,AD=6,CD=8,∴AC=10,∵BC=10,AB2=200,∴AC2+BC2=AB2,∴∠ACB=90°,∵∠ADC=∠BHC=∠ACB=90°,∴∠ACD=∠CBH,∵AC=BC=10,∴△ADC≌△CHB(AAS),∴CH=AD=6,BH=CD=8,∴DH=6+8=14,∵BH⊥DC,∴BD=22260BH DH+==265;应用2:(1)如图③,过点P作PN⊥x轴于点N,过点Q作QK⊥y轴于点K,直线KQ和直线NP相交于点H,由题意易:△OKQ≌△QHP(AAS),设H(4,y),那么KQ=PH=y﹣m=y﹣2,OK=QH=4﹣KQ=6﹣y,又∵OK=y,∴6﹣y=y,y=3,∴Q(1,3),∵折叠纸片,使得点P与点O重合,折痕所在的直线l过点Q且与线段OP交于点M,∴点M是OP的中点,∵P(4,2),∴M(2,1),设直线Q M的函数表达式为:y=kx+b,把Q(1,3),M(2,1),代入上式得:213k bk b+=⎧⎨+=⎩,解得:25kb=-⎧⎨=⎩∴直线l的函数表达式为:y=﹣2x+5,∴该直线l与x轴的交点坐标为(52,0);(2)∵△OKQ≌△QHP,∴QK=PH,OK=HQ,设Q(x,y),∴KQ=x,OK=HQ=y,∴x+y=KQ+HQ=4,∴y=﹣x+4,∴无论m取何值,点Q总在某条确定的直线上,这条直线的解析式为:y=﹣x+4,故答案为:y=﹣x+4.【点睛】本题主要考查三角形全等的判定和性质定理,勾股定理,一次函数的图象和性质,掌握“一线三垂直”模型,待定系数法是解题的关键.29.(1)(1,0);(2)362y x -=;(3)92;(4)(6,3). 【解析】【分析】(1)由题意已知l 1的解析式,令y=0求出x 的值即可;(2)根据题意设l 2的解析式为y=kx+b ,并由题意联立方程组求出k ,b 的值;(3)由题意联立方程组,求出交点C 的坐标,继而即可求出S △ADC ;(4)由题意根据△ADP 与△ADC 底边都是AD ,面积相等所以高相等,△ADC 高就是点C 到AD 的距离进行分析计算.【详解】解:(1)由y=-3x+3,令y=0,得-3x+3=0,∴x=1,∴D (1,0);(2)设直线l 2的解析表达式为y=kx+b ,由图象知:x=4,y=0;x=3,y =32-,代入表达式y=kx+b , ∴40332k b k b +⎧⎪⎨+-⎪⎩==, ∴326k b ⎧⎪⎨⎪-⎩==, ∴直线l 2的解析表达式为362y x -=; (3)由33362y x y x ⎪-+-⎧⎪⎨⎩==,解得23x y ⎧⎨⎩-==, ∴C (2,-3),∵AD=3, ∴331922ADC S =⨯⨯-=; (4)△ADP 与△ADC 底边都是AD ,面积相等所以高相等,△ADC 高就是点C 到直线AD 的距离,即C 纵坐标的绝对值=|-3|=3,则P 到AD 距离=3,∴P 纵坐标的绝对值=3,点P 不是点C ,∴点P 纵坐标是3,∵y=1.5x-6,y=3,∴1.5x-6=3,解得x=6,所以P (6,3).【点睛】本题考查的是一次函数图象的性质以及三角形面积的计算等有关知识,熟练掌握求一次函数解析式的方法以及一次函数图象的性质和三角形面积的计算公式是解题的关键.30.(1)①见解析;②DE =297;(2)DE 的值为 【解析】【分析】(1)①先证明∠DAE =∠DAF ,结合DA =DA ,AE =AF ,即可证明;②如图1中,设DE =x ,则CD =7﹣x .在Rt △DCF 中,由DF 2=CD 2+CF 2,CF =BE =3,可得x 2=(7﹣x )2+32,解方程即可;(2)分两种情形:①当点E 在线段BC 上时,如图2中,连接BE .由△EAD ≌△ADC ,推出∠ABE =∠C =∠ABC =45°,EB =CD =5,推出∠EBD =90°,推出DE 2=BE 2+BD 2=62+32=45,即可解决问题;②当点D 在CB 的延长线上时,如图3中,同法可得DE 2=153.【详解】(1)①如图1中,∵将△ABE 绕点A 逆时针旋转90°后,得到△AFC ,∴△BAE ≌△CAF ,∴AE =AF ,∠BAE =∠CAF ,∵∠BAC =90°,∠EAD =45°,∴∠CAD +∠BAE =∠CAD +∠CAF =45°,∴∠DAE =∠DAF ,∵DA =DA ,AE =AF ,∴△AED ≌△AFD (SAS );②如图1中,设DE =x ,则CD =7﹣x .∵AB =AC ,∠BAC =90°,∴∠B =∠ACB =45°,∵∠ABE =∠ACF =45°,∴∠DCF =90°,∵△AED ≌△AFD (SAS ),∴DE =DF =x ,∵在Rt △DCF 中, DF 2=CD 2+CF 2,CF =BE =3,∴x 2=(7﹣x )2+32,∴x =297, ∴DE =297;(2)∵BD=3,BC=9,∴分两种情况如下:①当点E在线段BC上时,如图2中,连接BE.∵∠BAC=∠EAD=90°,∴∠EAB=∠DAC,∵AE=AD,AB=AC,∴△EAB≌△DAC(SAS),∴∠ABE=∠C=∠ABC=45°,EB=CD=9-3=6,∴∠EBD=90°,∴DE2=BE2+BD2=62+32=45,∴DE=35;②当点D在CB的延长线上时,如图3中,连接BE.同理可证△DBE是直角三角形,EB=CD=3+9=12,DB=3,∴DE2=EB2+BD2=144+9=153,∴DE=317,综上所述,DE的值为35或317.【点睛】本题主要考查旋转变换的性质,三角形全等的判定和性质以及勾股定理,添加辅助线,构造旋转全等模型,是解题的关键.。
甘肃省八年级上学期数学第二次月考试卷
甘肃省八年级上学期数学第二次月考试卷姓名:________ 班级:________ 成绩:________一、单选题 (共12题;共24分)1. (2分)王师傅用4根木条钉成一个四边形木架,如图.要使这个木架不变形,他至少还要再钉上几根木条()A . 0根B . 1根C . 2根D . 3根2. (2分)下面的图形既是轴对称图形又是中心对称图形的是()A . 正六边形B . 平行四边形C . 正五边形D . 等边三角形3. (2分)下列长度的4根木条中,能与4cm和9cm长的2根木条首尾依次相接围成一个三角形的是()A . 4cmB . 9cmC . 5cmD . 13cm4. (2分) (2019八上·合肥期中) 在平面直角坐标系中,点与点关于y轴对称,则()A . ,B . ,C . ,D . ,5. (2分)(2016·深圳) 下列命题正确的是()A . 一组对边平行,另一组对边相等的四边形是平行四边形B . 两边及其一角相等的两个三角形全等C . 16的平方根是4D . 一组数据2,0,1,6,6的中位数和众数分别是2和66. (2分) (2020八上·宽城期末) 如图,AB=AC,点D、E分别是AB、AC上一点,AD=AE,BE、CD相交于点M.若∠BAC=70°,∠C=30°,则∠BMD的大小为()A . 50°B . 65°C . 70°D . 80°7. (2分) (2019八上·恩施期中) 如图,用尺规作图作已知角平分线,其根据是构造两个三形全等,它所用到的判别方法是()A . SASB . AASC . ASAD . SSS8. (2分)已知一次函数y=kx+b的图象如图所示,则关于z的不等式k(z﹣4)﹣2b>0的解集为()A . z>﹣2B . z>2C . z<﹣2D . z<39. (2分)如图,在△ABC中,∠C=90°,点D,E分别在边AC,AB上.若∠B=∠ADE,则下列结论正确的是()A . ∠A和∠B互为补角B . ∠B和∠ADE互为补角C . ∠A和∠ADE互为余角D . ∠AED和∠DEB互为余角10. (2分) (2020八上·铁东期中) 如图,△ABC 中,AB = 6cm ,AC = 8cm ,BC 的垂直平分线l 与 AC 相交于点 D ,则DABD 的周长为()A . 10cmB . 12cmC . 14cmD . 16cm11. (2分) (2021八上·沙坪坝期末) 已知一次函数经过第一、二、三象限,且关于x的不等式组恰有 4 个整数解,则所有满足条件的整数a的值的和为()A . 9B . 11C . 15D . 1812. (2分) (2019八下·电白期末) 如图所示.在△ABC中,AC=BC,∠C=90°,AD平分∠CAB交BC于点D,DE⊥AB于点E,若AB=6 cm,则△DEB的周长为()A . 12 cmB . 8 cmC . 6 cmD . 4 cm二、填空题 (共6题;共8分)13. (1分)(2020·鼓楼模拟) 把一副三角板如图摆放,其中∠C=∠E=90°,∠A=45°,∠F=30°,则∠1+∠2=°.14. (2分) (2019八上·兰州期末) 若代数式在实数范围内有意义,则x的取值范围是。
甘肃省武威市凉州区八年级数学上学期第二次月考(12月)试题(答案不全) 北师大版
武威2017—2018学年度第一学期第二次月考试卷八年级数学(满分120分,考试时间120分钟)一、选择题(每小题3分,共30分)1. 化简23()a -的结果是 ( )A .5a -B .5aC .6a -D .6a2.计算32)x 21(y -的结果正确的是 ( )A. 2441y xB.3681y xC. 3681y x -D. 3581y x -3.计算(﹣2ab )(3a 2b 2)3的结果是 ( )A .﹣6a 3b 3B . 54a 7b 7C .﹣6a 7b 7 D.﹣54a 7b 74.若a 是有理数,则整式a 2(a 2-2)-2a 2+4的值 ( )A .恒为正数B .恒为负数C .不是负数D .不等于零5.一个等腰三角形的两边长分别是3和7,则它的周长为 ( )A .17B .15C .13D .13或176.在△ABC 和△A'B'C'中,①AB=A'B',②BC=B'C',③AC=A'C',④∠A=∠A',⑤∠B=∠B',⑥∠C=∠C',则下列条件组不能保证△ABC ≌A'B'C'的是 ( ).A.①②③B.①②⑤C.②④⑤D.①③⑤7.下列变形正确的是 ( )A.a+b-c=a-(b ﹣c )B.a+b+c=a-(b+c )C.a-b+c-d=a-(b-c+d )D.a-b+c-d=(a-b )-(c-d )8. 若x 2﹣2mx+1是完全平方式,则m 的值为 ( )A .2B .1 C.±1 D.9. 若等腰三角形一腰上的高和另一腰的夹角为25°,则该三角形的一个底角为 ()A .32.5° B.57.5°C .32.5°或57.5°D .65°或57.5°10.如果(x +m)与(x +3)的乘积中不含x 的一次项,则m 的值为 ( )A .-3B .3C .0D .1二、填空题(每小题3分,共30分)11.计算:(-4x -3y )2=__________.12.分解因式: 9x 3-18x 2+9x=__________.13. 若2b -|a -5|=1+b 2,则b a=__________.14.若x 2-4x +k 2是完全平方式,则k=__________.15.如图,∠AOP=∠BOP=15°,PC ∥OA ,PD ⊥OA ,若PC=4,则PD 等于______.16.已知1-,5=-=+ab b a ,求 a b 22+= .17.如果(a 2+b 2+1)(a 2+b 2-1)=63,那么a+b=_ ____.18. 若2a =3,2b =2,则23a+2b = .19.如果一个多边形的内角和是外角和的3倍,那么此多边形是 边形.20. 如图,在边长为a 的正方形中剪去一个边长为b 的小正方形(a >b ).把剩下的部分拼成一个梯形,分别计算这两个图形阴影部分面积,可以验证乘法公式__ ___ .三、解答题(共60分)21.(16分)计算:(1)34223()()a b ab ÷; (2)(x +3)2+(2x -3)(2x+3)-5x 2;(3) (4a 4b 7-a 6b 7)(ab 2)3;(4)(x +2y -3z)(x -2y +3z).22.(12分)把下列各式分解因式:(1)16x2+24x+9; (2) -x4+1 ;(3)x2-2xy+y2 -123.(6分) 先化简,再求值: ,其中.24.(8分) 若a2+b2+25=6a-8b,求a2b-ab2的值.25.(8分) 如图,水压机有四根空心钢立柱,每根高都是18m,外径D为1m,内径d为0.4m.每立方米钢的质量为7.8t,求4根立柱的总质量(π取3.14).26.(10分)如图,△ABC为等边三角形,AE=BD,AD,CE相交于点F,CP⊥AD于P,PF=3,EF=1.(1)求证:AD=CE;(2)求∠CFD的度数;(3)求AD的长.。
甘肃省武威第二十三中学八年级数学上学期期中试题(无答案) 北师大版
座号:2013——2014学年度第一学期期中考试试卷八年级数学(满分120分,考试时间100分钟)一、精心选一选:(本大题共10小题,每小题3分,共30分.)1.在下列各电视台的台标图案中,是轴对称图形的是()A.B. C. D.(2题)(3题)(4题)2.如图所示,亮亮书上的三角形被墨迹污染了一部分,很快他就根据所学知识画出一个与书上完全一样的三角形,那么这两个三角形完全一样的依据是()A. SSSB. SASC. AASD. ASA3.如图所示,△ABD≌△CDB,下面四个结论中,不正确的是()A.△ABD和△CDB的面积相等B.△ABD和△CDB的周长相等C.∠A+∠ABD=∠C+∠CBDD.AD∥BC,且AD=BC4.如图所示,BE⊥AC于点D,且AD=CD,BD=ED,若∠A BC=54°,则∠E=()A.25°B.27°C.30°D.45°5.以下列各组线段为边,能组成三角形的是()A. 2 cm ,3 cm,5 cmB. 3 cm,3 cm,6 cmC. 5 cm,8 cm,2 cmD. 4 cm,5 cm,6 cm6.如图,把长方形ABCD沿EF对折后使两部分重合,若AEF=110°,则∠1=()A.30°B.35°C.40°D.50°7.等腰三角形一腰上的高与另一腰的夹角为60,则顶角的度数为()A.30°B.30°或150°C.60150或D.60或1208.下列图形具有稳定性的是()A. 正方形B. 长方形C. 直角三角形D. 平行四边形DACEBDACB9、正n 边形的内角和等于1080º,则n 的值为 ( ) A. 7 B. 8 C. 9 D. 10 10、如图:∠EAF=15°,A B=BC=CD=DE=EF ,则∠DEF 等于( )A :90°B : 75°C :70°D : 60°二、细心填一填:(本大题共10小题,每小题3分,共30分.) 11. 点A (2,-1)关于x 轴对称的点的坐标是 .12. △ABC 中,∠A=1000,BI 、CI 分别平分∠ABC ,∠ACB ,则∠BIC= 13.如图,已知AD AB =,DAC BAE ∠=∠,要使ABC △≌ADE △,若以“SAS ”为依据,补充 的条件是 .14.等腰三角形的两边分别为1和2,则其周长为 . 15. 如图:从镜子中看到一钟表的时针和分针,此时的实际 时刻是________;16. 在Rt △ABC 中,∠C=90°,∠A=30°, AB +BC=12㎝,则AB= ㎝;17. 如图:DE 是∆ABC 中AC 边的垂直平分线,若BC=8厘米, AB=10厘米,则∆EBC 的周长为18、在⊿ABC 中,∠A = 34º,∠B = 72º,则与∠C 相邻的外角为________。
武威市天祝三中2013-2014学年七年级上第二次月考数学试卷
3、已知方程 2x25m 4m 5 是关于 x 的一元一次方程,那么 x=_______.
4、已知方程
x
5
2
2
x
23的ຫໍສະໝຸດ 也是方程3x2
b
的解,则
b=_______.
5、若单项式
6a
x2b
与
1 2
a3b3
y
是同类项,则代数式
x2
y3
y
x
的值为____.
6、在公式v v 0 at 中,若 v=15,v 0=5,t=3,则 a=_______.
7、已知关于 m 的方程3m a 0 的解比关于 m 的方程5m a 0 的解大 2,则
a=_______.
8、某厂的两个车间 10 月份共生产 1339 个零件,第一车间 10 月份比 9 月份增产
12%,第二车间 10 月份比 9 月份减产 24%,若 9 月份第一车间 的产量是第二车间产量
别从 A、B 两站同时出发,相向而行,已知甲车速度为 45 公里/时,乙车速度为 36
公里 /时,则两车相遇的时间是( )
A.16 时 20 分 B.17 时 20 分 C.17 时 30 分 D.16 时 50 分
20、某时刻钟表在 10 点和 11 点之间,在这个时刻再过 6 分钟的分针和这个时刻 3 分
本息和为 26000 元,这种债券的年利率为_______.
10、国家规定个人发表文章,出版图书获得稿费的原纳税计算方法是:(1)稿费不高于
800 元的不纳税;( 2)稿费高于 800 元又不高于 4000 元的应缴纳超过 800 元的那一部分
甘肃省武威第五中学八年级数学上学期期中试题
甘肃省武威第五中学2013-2014学年八年级上学期期中考试数学试题 新人教版一、选择题(每小题3分,共36分) 1、下列图案是轴对称图形的有( )2、能把一个三角形分成面积相等的两个三角形的线段是这个三角形的( ) A.角平分线 B.中线 C.高线 D.垂线3、等腰三角形有两条边长为5cm 和9cm ,则该三角形的周长是( ) A .19cm B .23cm C .19cm 或23cm D .20cm4、使两个直角三角形全等的条件是 ( ) A .一锐角对应相等 B .两锐角对应相等 C .一条边对应相等 D .两条直角边对应相等5、如图,∠A, ∠1,∠2的大小关系是( ) A .∠2>∠1>∠A B .∠1>∠2>∠A C .∠A >∠2>∠1 D .∠A >∠1>∠26、如图:Rt Rt ABC DEF △≌△,则∠D 的度数为( ).A .30 B .45C .60D .907、已知点P (3,a )与Q (b ,2)关于x 轴成轴对称,又有点Q (b ,2)与点M (m ,n )关于y 轴成轴对称,则m+n 的值为( )A. 3B.-3C. 1D. -18、如图,等腰三角形ABC 中,A B A C ,∠A =44°,CD ⊥AB 于D ,则∠D C B 等于 ( ).A .44°B .68°C .46°D .22°9、已知等腰三角形的一个内角为70°,则另外两个内角的度数是( )A .55°,55°B .70°,40°C .55°,55°或70°,40°D .以上都不对10、已知∠AOB =30°,点P 在∠AOB 的内部,点P 1和点P 关于OA 对称,点P 2和点P 关于OB 对称,则P 1、O 、P 2三点构成的三角形是( )A.直角三角形B.钝角三角形C.等腰直角三角形D.等边三角形11、如图所示,某同学将一块三角形的玻璃打碎成了三块,现在要到玻璃店去配一块完全一样的玻璃,那么最省事的办法是带第 块去。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
天祝三中2013-2014学年第一学期第二次月考试卷
八年级数学
一、选择题(4个选项中,只有一项是符合题目要求的,请将正确答案的代号填在题后括号内)
1.下列计算中正确的是().
A.a2+b3=2a5B.a4÷a=a4
C.a2·a4=a8D.(-a2)3=-a6
2.(x-a)(x2+ax+a2)的计算结果是().
A.x3+2ax2-a3B.x3-a3
C.x3+2a2x-a3D.x3+2ax2+2a2-a3
3.下面是某同学在一次测验中的计算摘录,其中正确的个数有().
①3x3·(-2x2)=-6x5;②4a3b÷(-2a2b)=-2a;③(a3)2=a5;④(-a)3÷(-a)=-a2.
A.1个B.2个
C.3个D.4个
4.已知被除式是x3+2x2-1,商式是x,余式是-1,则除式是().
A.x2+3x-1 B.x2+2x
C.x2-1 D.x2-3x+1
5.下列各式是完全平方式的是().
A.x2-x+1
4
B.1+x2
C.x+xy+1 D.x2+2x-1
6.把多项式ax2-ax-2a分解因式,下列结果正确的是().A.a(x-2)(x+1) B.a(x+2)(x-1)
C.a(x-1)2D.(ax-2)(ax+1)
7.如(x+m)与(x+3)的乘积中不含x的一次项,则m的值为().A.-3 B.3
C.0 D.1
8.若3x=15,3y=5,则3x-y等于().
A.5 B.3
C.15 D.10
9.下列从左边到右边的变形,是因式分解的是()
(A)2
9
)
3
)(
3(x
x
x-
=
+
-(B))
)(
(2
2
3
3n
mn
m
n
m
n
m+
+
-
=
-
(C))1
)(
3(
)3
)(
1
(+
-
-
=
-
+y
y
y
y(D)z
yz
z
y
z
z
y
yz+
-
=
+
-)
2(
2
2
42
10.下列运算正确的是()
A.1
3
4=
-a
a B.9
)3
(2
2-
=
-a
a
C.2
2
)
)(
(b
a
b
a
b
a-
=
-
+D.2
2
2
)
(b
a
b
a+
=
+
二、填空题(本大题共10小题,每小题3分,共30分.把答案填在题中横线上)
11.计算(-3x2y)·(2
1
3
xy)=__________.
12.计算:
22
()()
33
m n m n
-+--=__________.
13.计算:2
23
()
32
x y
--=__________.
14.计算:(-a2)3+(-a3)2-a2·a4+2a9÷a3=__________.
15.当x__________时,(x-4)0=1.
16.若多项式x2+ax+b分解因式的结果为(x+1)(x-2),则a+b的值为__________.17.若|a-2|+b2-2b+1=0,则a=__________,b=__________.
18.已知a+
1
a
=3,则a2+
2
1
a
的值是__________.
19.已知a b ab
+=-=
31
,,求a b
22
+= .
20.若221
m m
-=,则2
242007
m m
-+的值是_______________.
三、解答题(本大题共6小题,共60分)
21.(本题满分12分)计算:
(1)(ab2)2·(-a3b)3÷(-5ab);
(2)x2-(x+2)(x-2)-(x+1
x
)2;
(3)[(x+y)2-(x-y)2]÷(2xy).
22.(本题满分16分)把下列各式因式分解:
(1)3x-12x3;(2)-2a3+12a2-18a;
(3)9a2(x-y)+4b2(y-x);(4)(x+y)2+2(x+y)+1.
23.(本题满分12分)先化简,再求值.
(1).2(x-3)(x+2)-(3+a)(3-a),其中,a=-2,x=1.
(2).22
()()()2
a b a b a b a
+-++-,其中
1
3
3
a b
==-
,.
24.(本题满分8分)求证:无论x、y为何值,35
30
9
12
42
2+
+
+
-y
y
x
x的值恒为正
25. (本题满分8分)已知:a,b,c为△ABC的三边长,且2a2+2b2+2c2=2ab+2ac+2bc,试判断△ABC的形状,并证明你的结论.
26.(本题满分10分)在日常生活中,如取款、上网等都需要密码.有一种用“因式分解”法产生的密码,方便记忆.原理是:如对于多项式x4-y4,因式分解的结果是(x-y)(x+y)·(x2+y2),若取x=9,y=9时,则各个因式的值是:(x-y)=0,(x+y)=18,x2+y2=162,于是就可以把“018162”作为一个六位数的密码.对于多项式4x3-xy2,取x=10,y=10时,请你写出用上述方法产生的密码.。