2023-2024学年湖南省长沙市高中数学北师大 必修一对数运算和对数函数章节测试-19-含解析

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1、答题前填写好自己的姓名、班级、考号等信息
2、请将答案正确填写在答题卡上
2023-2024学年湖南省长沙市高中数学北师大 必修一
对数运算和对数函数
章节测试
(19)
姓名:____________ 班级:____________ 学号:____________
考试时间:120分钟
满分:150分题
号一二三四五总分评分
*注意事项:
阅卷人
得分一、选择题(共12题,共60
分)小雨
中雨大雨暴雨1. 2021年7月20日河南省遭受特大暴雨表击,因灾死亡失踪398人.郑州日降雨量 , 其中最大小时
降雨量达, 通常说的小雨、中雨、大雨、暴雨等,一般以日降雨量衡量,指从天空降落到地面上的雨水,未经蒸发、渗透、流失而在水面上积聚的水层
深度.其中小雨日降雨量在以下;中雨日降雨量为;大雨日降雨量为;基雨日降雨量为;大暴雨日降雨量为;特大暴雨日降雨量在以上,为研究宜春某天降雨量,某同学自制一个高为的无盖正四棱柱形容器底部镶嵌了同底的正四棱锥形实心块,如图1所示,接了24小时的雨水(不考
虑水的损耗),水面刚
好没过四棱锥顶点 ,
然后盖上盖子密封,将容器倒置,如图2所示,水面
还恰好没过点 , 则当天的
降雨的级别为(

A. B. C.
D. 2. 设 ,则( )A. B.
C. D.
16
2032
903. 科学家以里氏震级来度量地震的
强度,若设I 为地震时所散发
出来的相对能量程度,则里氏震级r 可定义为 ,若 级地震释放的相对能量为 ,
级地震释放的相对能量为 ,记 ,n 约等于 A. B. C. D. 4. 已知函数
( )与 ( )的图象有且仅有两个公共点,则实数 的取值范围是( )A. B. C. D.
a >
b >c
b >
c >a c >b >a b >a >c
5. 若a=log 2.10.6,b=2.10.6 , c=log 0.50.6,则a ,b ,c 的大小关系是( )
A. B. C. D. 6. 若
,则( )A. B. C. D. 7. 已知是自然对数的底数, , , , 则( )
A. B. C. D.
在(0,2)单调递增 在(0,2)单调递减
的图像关于直线x=1对称 的图像关于点(1,0)对称
8. 已知函数
,则( )A. B. C. D. (0,2]
(0,2)(0,1)∪(1,2](﹣∞,2]
9. 函数
定义域为( )A. B. C. D. 10. 若
, 则( )A. B. C. D. 4567
11. 已知实数a 的取值能使函数
的值域为 , 实数b 的取值能使函数的值域为 , 则
( )A. B. C. D. 12. 若 , , , 则、、的大小关系为( )
A. B. C. D.
13. 如图,在菱形ABCD 中,AB=4cm ,∠ADC=120°,点E 、F 同时由A 、C 两点出发,分别沿AB 、CB 方向向点B 匀速移动(到点B 为止),点E 的速度为1cm/s ,点F 的速度为2cm/s ,经过t 秒△DEF 为等边三角形,则t 的值为 .
14. 函数f(x)=2x+1的反函数f﹣1(x)= .
15. 若函数y=log a(x+m)+n的图象过定点(﹣1,﹣2),则m•n= .
16. ;若,则 .
17. 在雅安发生地震灾害之后,救灾指挥部决定建造一批简易房,供灾区群众临时居住,房形为长方体,高2.5米,前后墙用2. 5米高的彩色钢板,两侧用2.5米高的复合钢板,两种钢板的价格都用长度来计算(即钢板的高均为2.5米,用长度乘以单价就是这块钢板的价格),每米单价:彩色钢板为450元,复合钢板为200元,房顶用其他材料建造,每平方米材料费为200元,每套房材料费控制在32000元以内.
(1) 设房前面墙的长为x,两侧墙的长为y,一套简易房所用材料费为p,试用x,y表示p;
(2) 一套简易房面积S的最大值是多少?当S最大时,前面墙的长度是多少?
18. 已知函数的图象与的图象关于轴对称,且的图象过点 .
(1) 若成立,求的取值范围;
(2) 若对于任意,不等式恒成立,求实数的取值范围.
19. 已知某电子公司生产某款手机的年固定成本为40万美元,每生产1万部还需另投入16万美元,设该公司一年内共生产该款
手机万部并全部销售完,每万部的销售收入为万美元,且
(1) 写出年利润(万美元)关于年产量(万部)的函数解析式(利润=销售收入成本);
(2) 当年产量为多少万部时,该公司在该款手机的生产中所获得的利润最大?并求出最大利润.
20. 化简计算:
(1) 计算:;
(2) 化简:.
21. 初一(2)班的郭同学参加了折纸社团,某次社团课上,指导教师老胡展示了如图2所示的图案,其由三块全等的矩形经过如图1所示的方式折叠后拼接而成.已知矩形的周长为,其中较长边为,将沿向折叠,折过去后交于点E.
(1) 用x表示图1中的面积;
(2) 郭爸爸看到孩子的折纸成果后,非常高兴,决定做一颗相同形状和大小的纽扣作为奖励其中纽扣的六个直角(如图2阴影部
分)利用镀金工艺双面上色(厚度忽略不计).已知镀金工艺是2元/,试求一颗纽扣的镀金部分所需的最大费用.
答案及解析部分1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
15.
16.
17.
(1)
(2)
18.
(1)
(2)
19.
(1)
(2)
20.
(1)
(2)
21.
(1)
(2)。

相关文档
最新文档