高中物理万有引力定律的应用常见题型及答题技巧及练习题(含答案)含解析
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高中物理万有引力定律的应用常见题型及答题技巧及练习题(含答案)含解析
一、高中物理精讲专题测试万有引力定律的应用
1.2018年是中国航天里程碑式的高速发展年,是属于中国航天的“超级2018”.例如,我国将进行北斗组网卫星的高密度发射,全年发射18颗北斗三号卫星,为“一带一路”沿线及周边国家提供服务.北斗三号卫星导航系统由静止轨道卫星(同步卫星)、中轨道卫星和倾斜同步卫星组成.图为其中一颗静止轨道卫星绕地球飞行的示意图.已知该卫星做匀速圆周运动的周期为T ,地球质量为M 、半径为R ,引力常量为G .
(1)求静止轨道卫星的角速度ω; (2)求静止轨道卫星距离地面的高度h 1;
(3)北斗系统中的倾斜同步卫星,其运转轨道面与地球赤道面有一定夹角,它的周期也是T ,距离地面的高度为h 2.视地球为质量分布均匀的正球体,请比较h 1和h 2的大小,并说出你的理由.
【答案】(1)2π=T ω;(2)2
3124GMT h R π
(3)h 1= h 2 【解析】 【分析】
(1)根据角速度与周期的关系可以求出静止轨道的角速度; (2)根据万有引力提供向心力可以求出静止轨道到地面的高度; (3)根据万有引力提供向心力可以求出倾斜轨道到地面的高度; 【详解】
(1)根据角速度和周期之间的关系可知:静止轨道卫星的角速度2π=T
ω (2)静止轨道卫星做圆周运动,由牛顿运动定律有:2
1
212π=()()()Mm G
m R h R h T
++ 解得:2
312
=4π
GMT
h R
(3)如图所示,同步卫星的运转轨道面与地球赤道共面,倾斜同步轨道卫星的运转轨道面与地球赤道面有夹角,但是都绕地球做圆周运动,轨道的圆心均为地心.由于它的周期也是T ,根据牛顿运动定律,2
2
222=()()()Mm G
m R h R h T
π++ 解得:2
322
4GMT
h R π
因此h 1= h 2.
故本题答案是:(1)2π=T ω;(2)2312=4GMT h R π
(3)h 1= h 2 【点睛】
对于围绕中心天体做圆周运动的卫星来说,都借助于万有引力提供向心力即可求出要求的物理量.
2.“天宫一号”是我国自主研发的目标飞行器,是中国空间实验室的雏形.2013年6月,“神舟十号”与“天宫一号”成功对接,6月20日3位航天员为全国中学生上了一节生动的物理课.已知“天宫一号”飞行器运行周期T ,地球半径为R ,地球表面的重力加速度为g ,“天宫一号”环绕地球做匀速圆周运动,万有引力常量为G .求: (1)地球的密度; (2)地球的第一宇宙速度v ; (3)“天宫一号”距离地球表面的高度. 【答案】(1)34g
GR
ρπ= (2)v gR =
22
3
2
4gT R h R π
= 【解析】
(1)在地球表面重力与万有引力相等:2
Mm
G
mg R =, 地球密度:
343
M M R V
ρπ=
=
解得:34g
GR
ρπ=
(2)第一宇宙速度是近地卫星运行的速度,2
v mg m R
=
v gR =
(3)天宫一号的轨道半径r R h =+, 据万有引力提供圆周运动向心力有:()
()
2
2
24Mm
G
m R h T R h π=++,
解得:22
3
2
4gT R h R π
=
-
3.“嫦娥一号”的成功发射,为实现中华民族几千年的奔月梦想迈出了重要的一步.已知“嫦娥一号”绕月飞行轨道近似为圆形,距月球表面高度为H ,飞行周期为T ,月球的半径为R ,引力常量为G .求:
(1) “嫦娥一号”绕月飞行时的线速度大小; (2)月球的质量;
(3)若发射一颗绕月球表面做匀速圆周运动的飞船,则其绕月运行的线速度应为多大. 【答案】(1)()2R H T
π+(2)
()3
22
4R H GT π+(3)
()2R H R H
T
R
π++ 【解析】
(1)“嫦娥一号”绕月飞行时的线速度大小12π()
R H v T
+=. (2)设月球质量为M .“嫦娥一号”的质量为m .
根据牛二定律得222
4π()()R H Mm
G m R H T +=+
解得23
2
4π()R H M GT +=
. (3)设绕月飞船运行的线速度为V ,飞船质量为0m ,则2
002Mm V G m R
R =又
23
2
4π()R H M GT +=
. 联立得()2πR H R H
V T
R
++=
4.半径R =4500km 的某星球上有一倾角为30o 的固定斜面,一质量为1kg 的小物块在力F 作用下从静止开始沿斜面向上运动,力F 始终与斜面平行.如果物块和斜面间的摩擦因数
3
3
μ=
,力F 随时间变化的规律如图所示(取沿斜面向上方向为正),2s 末物块速度恰好又为0,引力常量11
226.6710
/kg G N m -=⨯⋅.试求:
(1)该星球的质量大约是多少?
(2)要从该星球上平抛出一个物体,使该物体不再落回星球,至少需要多大速度?(计算结果均保留二位有效数字)
【答案】(1)24
2.410M kg =⨯ (2)6.0km/s
【解析】 【详解】
(1)假设星球表面的重力加速度为g ,小物块在力F 1=20N 作用过程中,有:F 1-mg sin θ-μmg cos θ=ma 1
小物块在力F 2=-4N 作用过程中,有:F 2+mg sin θ+μmg cos θ=ma 2 且有1s 末速度v=a 1t 1=a 2t 2 联立解得:g=8m/s 2. 由G
2
Mm
R =mg 解得M=gR 2/G .代入数据得M=2.4×1024kg
(2)要使抛出的物体不再落回到星球,物体的最小速度v 1要满足mg=m 2
1v R
解得v 1gR =6.0×103ms=6.0km/s
即要从该星球上平抛出一个物体,使该物体不再落回星球,至少需要6.0km/s 的速度. 【点睛】
本题是万有引力定律与牛顿定律的综合应用,重力加速度是联系这两个问题的桥梁;第二题,由重力或万有引力提供向心力,求出该星球的第一宇宙速度.
5.如图所示,A 是地球的同步卫星,另一卫星B 的圆形轨道位于赤道平面内,离地面高度为h.已知地球半径为R ,地球自转角速度为ω0,地球表面的重力加速度为g ,O 为地球中心.
(1)求卫星B 的运行周期.
(2)如卫星B 绕行方向与地球自转方向相同,某时刻A 、B 两卫星相距最近(O 、B 、A 在同一直线上),则至少经过多长时间,它们再一次相距最近? 【答案】(1)3
2
()
2B R h T gR
+=2
3
()t gR R h ω=
-+ 【解析】 【详解】
(1)由万有引力定律和向心力公式得()
()2
2
24B Mm
G
m R h T R h π=++①,2
Mm G mg R =②
联立①②解得:()
3
2
2B R h T R g
+=
(2)由题意得()02B t ωωπ-=④,由③得()
2
3
B gR R h ω=
+
代入④得
()
203
t R g
R h ω=
-+
6.设地球质量为M ,自转周期为T ,万有引力常量为G .将地球视为半径为R 、质量分布均匀的球体,不考虑空气的影响.若把一质量为m 的物体放在地球表面的不同位置,由于地球自转,它对地面的压力会有所不同.
(1)若把物体放在北极的地表,求该物体对地表压力的大小F 1; (2)若把物体放在赤道的地表,求该物体对地表压力的大小F 2;
(3)假设要发射一颗卫星,要求卫星定位于第(2)问所述物体的上方,且与物体间距离始终不变,请说明该卫星的轨道特点并求出卫星距地面的高度h .
【答案】(1)2GMm R (2)22224Mm F G m R R T π=-(3)2
32
4GMT
h R π
= 【解析】 【详解】
(1) 物体放在北极的地表,根据万有引力等于重力可得:2Mm
G mg R = 物体相对地心是静止的则有:1F mg =,因此有:12
Mm
F G
R = (2)放在赤道表面的物体相对地心做圆周运动,根据牛顿第二定律:
2
2
224Mm G
F m
R R
T
π-=
解得: 2
2224Mm F G m R R T
π=-
(3)为满足题目要求,该卫星的轨道平面必须在赤道平面内,且做圆周运动的周期等于地球自转周期T
以卫星为研究对象,根据牛顿第二定律:2
2
24()()
Mm G
m
R h R h T
π=++
解得卫星距地面的高度为:h R =
7.2016年2月11日,美国“激光干涉引力波天文台”(LIGO )团队向全世界宣布发现了引力波,这个引力波来自于距离地球13亿光年之外一个双黑洞系统的合并.已知光在真空中传播的速度为c ,太阳的质量为M 0,万有引力常量为G .
(1)两个黑洞的质量分别为太阳质量的26倍和39倍,合并后为太阳质量的62倍.利用所学知识,求此次合并所释放的能量.
(2)黑洞密度极大,质量极大,半径很小,以最快速度传播的光都不能逃离它的引力,因此我们无法通过光学观测直接确定黑洞的存在.假定黑洞为一个质量分布均匀的球形天体.
a .因为黑洞对其他天体具有强大的引力影响,我们可以通过其他天体的运动来推测黑洞的存在.天文学家观测到,有一质量很小的恒星独自在宇宙中做周期为T ,半径为r 0的匀速圆周运动.由此推测,圆周轨道的中心可能有个黑洞.利用所学知识求此黑洞的质量M ;
b .严格解决黑洞问题需要利用广义相对论的知识,但早在相对论提出之前就有人利用牛顿力学体系预言过黑洞的存在.我们知道,在牛顿体系中,当两个质量分别为m 1、m 2的质点相距为r 时也会具有势能,称之为引力势能,其大小为12
p m m E G
r
=-(规定无穷远处势能为零).请你利用所学知识,推测质量为M′的黑洞,之所以能够成为“黑”洞,其半径R 最大不能超过多少?
【答案】(1)3M 0c 2
(2)23
02
4r M GT π=;22GM R c '=
【解析】 【分析】 【详解】
(1)合并后的质量亏损
000(2639)623m M M M ∆=+-=
根据爱因斯坦质能方程
2E mc ∆=∆
得合并所释放的能量
203E M c ∆=
(2)a .小恒星绕黑洞做匀速圆周运动,设小恒星质量为m 根据万有引力定律和牛顿第二定律
2
0202Mm G m
r r T π⎛⎫= ⎪⎝⎭
解得
23
02
4r M GT
π= b .设质量为m 的物体,从黑洞表面至无穷远处;根据能量守恒定律
2102Mm mv G R ⎛⎫+-= ⎪⎝⎭
解得
22GM R v '
=
因为连光都不能逃离,有v =c 所以黑洞的半径最大不能超过
2
2GM R c '
=
8.我国航天事业的了令世界瞩目的成就,其中嫦娥三号探测器与2013年12月2日凌晨1点30分在四川省西昌卫星发射中心发射,2013年12月6日傍晚17点53分,嫦娥三号成功实施近月制动顺利进入环月轨道,它绕月球运行的轨道可近似看作圆周,如图所示,设嫦娥三号运行的轨道半径为r ,周期为T ,月球半径为R .
(1)嫦娥三号做匀速圆周运动的速度大小 (2)月球表面的重力加速度 (3)月球的第一宇宙速度多大.
【答案】(1) 2r T π;(2) 23224r T R π; (3) 23
2
4r
T R
π 【解析】 【详解】
(1)嫦娥三号做匀速圆周运动线速度:
2r
v r T
πω==
(2)由重力等于万有引力:
2
GMm
mg R
= 对于嫦娥三号由万有引力等于向心力:
222
4GMm m r
r T π=
联立可得:
23224r g T R
π=
(3)第一宇宙速度为沿月表运动的速度:
2
2
GMm mv mg R R
== 可得月球的第一宇宙速度:
23
2
4r v gR T R
π==
9.我国预计于2022年建成自己的空间站。
假设未来我国空间站绕地球做匀速圆周运动时离地面的高度为同步卫星离地面高度的,已知同步卫星到地面的距离为地球半径的6倍,地球的半径为R ,地球表面的重力加速度为g 。
求: (1)空间站做匀速圆周运动的线速度大小;
(2)同步卫星做圆周运动和空间站做圆周运动的周期之比。
【答案】(1) (2)
【解析】 【详解】
(1)卫星在地球表面时
,可知:
空间站做匀速圆周运动时:
其中
联立解得线速度为:
(2)设同步卫星做圆周运动和空间站做圆周运动的周期分别为T1和T2,
则由开普勒第三定律有:
其中:,
解得:
【点睛】
本题考查了万有引力的典型应用包括开普勒行星运动的三定律、黄金代换、环绕天体运动的参量。
10.我国首颗量子科学实验卫星于2016年8月16日1点40分成功发射。
量子卫星成功运行后,我国已首次实现了卫星和地面之间的量子通信,成功构建了天地体化的量子保密通信与科学实验体系。
假设量子卫星轨道在赤道平面,如图所示。
已知量子卫星的轨道半径是地球半径的m倍,同步卫星的轨道半径是地球半径的n倍,图中P点是地球赤道上一点,求量子卫星的线速度与P点的线速度之比。
【答案】
【解析】试题分析:研究量子卫星和同步卫星绕地球做匀速圆周运动,根据万有引力提供向心力,求出两颗卫星的线速度;研究地球赤道上的点和同步卫星,具有相等角速度,求P点的线速度,从而比较量子卫星的线速度与P点的线速度之比。
设地球的半径为R,对量子卫星,根据万有引力提供向心力
则有:,又
解得:
对同步卫星,根据万有引力提供向心力
则有:,又
解得:
同步卫星与P点有相同的角速度,则有:
解得:
则量子卫星的线速度与P点的线速度之比为
【点睛】求一个物理量之比,我们应该把这个物理量先用已知的物理量表示出来,再根据表达式进行比较.向心力的公式选取要根据题目提供的已知物理量或所求解的物理量选取应用.。