辽宁省大连市真金教育信息咨询有限公司高三数学 第12

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

"辽宁省大连市真金教育信息咨询有限公司高三数学 第12章 导数及其应用精
炼试题 新人教A 版 "
【知识图解】
【方法点拨】
导数的应用极其广泛,是研究函数性质、证明不等式、研究曲线的切线和解决一些实际问题的有力工具,也是提出问题、分析问题和进行理性思维训练的良好素材。

同时,导数是初等数学与高等数学紧密衔接的重要内容,体现了高等数学思想及方法。

1.重视导数的实际背景。

导数概念本身有着丰富的实际意义,对导数概念的深刻理解应该从这些实际背景出发,如平均变化率、瞬时变化率和瞬时速度、加速度等。

这为我们解决实际问题提供了新的工具,应深刻理解并灵活运用。

2.深刻理解导数概念。

概念是根本,是所有性质的基础,有些问题可以直接用定义解决。

在理解定义时,要注意“函数()f x 在点0x 处的导数0()f x '”与“函数()f x 在开区间(,)a b 内的导数()f x '”之间的区别与联系。

3.强化导数在函数问题中的应用意识。

导数为我们研究函数的性质,如函数的单调性、极值与最值等,提供了一般性的方法。

4.重视“数形结合”的渗透,强调“几何直观”。

在对导数和定积分的认识和理解中,在研究函数的导数与单调性、极值、最值的关系等问题时,应从数值、图象等多个方面,尤其是几何直观加以理解,增强数形结合的思维意识。

5.加强“导数”的实践应用。

导数作为一个有力的工具,在解决科技、经济、生产和生活中的问题,尤其是最优化问题中得到广泛的应用。

6.(理科用)理解和体会“定积分”的实践应用。

定积分也是解决实际问题(主要是几何和物理问题)的有力工具,如可以用定积分求一些平面图形的面积、旋转体的体积、变速直线运动的路程和变力作的功等,逐步体验微积分基本定理。

平均速度 瞬时速度
平均变化率 瞬时变化率 割线斜率 切线斜率
导 数
基本初等函数导数公式、导数运算法则
微积分基本定理
导数和函数单调性的关系
导数与极(最)值的关系
定积分(理科)
第1课 导数的概念及运算
【基础练习】
1.设函数f (x )在x =x 0处可导,则0
lim
→h h
x f h x f )
()(00-+与x 0,h 的关系是 仅与x 0有关而与h 无关 。

2.已知)1()('
2
3
f x x x f +=, 则=)2('
f 0 。

3.已知),(,cos 1sin ππ-∈+=
x x x y ,则当2'=y 时,=x 3

±。

4.已知a
x
x a x f =)(,则=)1('f 2
ln a a a +。

5.已知两曲线ax x y +=3
和c bx x y ++=2
都经过点P (1,2),且在点P 处有公切线,试求a,b,c 值。

解:因为点P (1,2)在曲线ax x y +=3
上,1=∴a
函数ax x y +=3
和c bx x y ++=2
的导数分别为a x y +='2
3和b x y +='2,且在点P 处有公切数
b a +⨯=+⨯∴12132,得b=2
又由c +⨯+=12122
,得1-=c 【范例导析】
例1.下列函数的导数:
①2(1)(231)y x x x =++- ②3
231x x x y x x
-+- ③()(cos sin )x
f x e x x =⋅+
分析:利用导数的四则运算求导数。

解:①法一:13232223-++-+=x x x x x y 125223-++=x x x ∴ 26102y x x '=++
法二:)132)(1()132()1(22'-+++-+'+='x x x x x x y =1322
-+x x +)1(+x )34(+x 26102x x =++ ② 2
31
2
12
332----+-=x
x x
x y
∴ 25
2
23
212
3233---+-+='x x x x y
③()f x '=e -x (cos x +sin x )+e -x (-sin x +cos x )=2e -x
cos x ,
点评:利用基本函数的导数、导数的运算法则及复合函数的求导法则进行导数运算,是高考对导数考查的
基本要求。

例2. 如果曲线103-+=x x y 的某一切线与直线34+=x y 平行,求切点坐标与切线方程.
分析:本题重在理解导数的几何意义:曲线()y f x =在给定点00(,())P x f x 处的切线的斜率0()k f x '=,用导数的几何意义求曲线的斜率就很简单了。

解:Θ切线与直线34+=x y 平行, 斜率为4
又切线在点0x 的斜率为0
32
0(10)31x x x x y x x x =='
'
=+-=+
∵ 4132
0=+x ∴10±=x
∴⎩⎨⎧-==8100y x 或⎩⎨⎧-=-=1210
0y x
∴切点为(1,-8)或(-1,-12)
切线方程为)1(48-=+x y 或)1(412+=+x y 即124-=x y 或84-=x y
点评:函数导数的几何意义揭示了导数知识与平面解析几何知识的密切联系,利用导数能解决许多曲线的切线问题,其中寻找切点是很关键的地方。

变题:求曲线3
2y x x =-的过点(1,1)A 的切线方程。

答案:20,5410x y x y +-=--=
点评:本题中“过点(1,1)A 的切线”与“在点(1,1)A 的切线”的含义是不同的,后者是以A 为切点,只有一条切线,而前者不一定以A 为切点,切线也不一定只有一条,所以要先设切点,然后求出切点坐标,再解决问题。

【反馈演练】
1.一物体做直线运动的方程为2
1s t t =-+,s 的单位是,m t 的单位是s ,该物体在3秒末的瞬时速度是
5/m s 。

2.设生产x 个单位产品的总成本函数是2
()88
x C x =+,则生产8个单位产品时,边际成本是 2 。

3.已知函数f (x )在x =1处的导数为3,则f (x )的解析式可能为 (1) 。

(1)f (x )=(x -1)2
+3(x -1) (2)f (x )=2(x -1)
(3)f (x )=2(x -1)2
(4)f (x )=x -1 4.若曲线4
y x =的一条切线l 与直线480x y +-=垂直,则l 的方程为430x y --=。

5.在函数x x y 83
-=的图象上,其切线的倾斜角小于
4
π
的点中,坐标为整数的点的个数是 3 。

6.过点(0,-4)与曲线y =x 3
+x -2相切的直线方程是 y =4x -4 . 7. 求下列函数的导数:
(1)y=(2x 2
-1)(3x+1) (2)x x y sin 2
= (3))1ln(2x x y ++=
(4)11-+=x x e e y (5)x x x x y sin cos ++= (6)x
x x
y cos sin 2cos -=
解:(1)34182-+='x x y , (2)x x x x y cos sin 22
+=';
(3)2
11
x
y +=', (4)2)1(2--='x x e e y ; (5)2
)
sin (1
cos sin sin cos x x x x x x x x y +--+--=
', (6)x x y cos sin -='. 8 已知直线1l 为曲线22-+=x x y 在点(0,2)-处的切线,2l 为该曲线的另一条切线,且21l l ⊥
(Ⅰ)求直线2l 的方程;
(Ⅱ)求由直线1l ,2l 和x 轴所围成的三角形的面积
解: 设直线1l 的斜率为1k ,直线2l 的斜率为2k ,
'21y x =+,由题意得10'|1x k y ===,得直线1l 的方程为2y x =-
1221
1
1l l k k ⊥∴=-
=-Q 211,1x x +=-=-令得,212,2x y x x y =-=+-=-将代入得
2l ∴与该曲线的切点坐标为(1,2),A --由直线方程的点斜式得直线2l 的方程为:3y x =-- (Ⅱ)由直线1l 的方程为2y x =-,令0=2y x =得: 由直线2l 的方程为3y x =--,令0=3y x =-得: 由23
y x y x =-⎧⎨
=--⎩得:5
2y =-
设由直线1l ,2l 和x 轴所围成的三角形的面积为S ,则:1525
[2(3)]224
s =⋅-⋅--=
第2课 导数的应用A
【考点导读】
1. 通过数形结合的方法直观了解函数的单调性与导数的关系,能熟练利用导数研究函数的单调性;会求
某些简单函数的单调区间。

2. 结合函数的图象,了解函数的极大(小)值、最大(小)值与导数的关系;会求简单多项式函数的极
大(小)值,以及在指定区间上的最大(小)值。

【基础练习】
1.若函数()f x mx n =+是R 上的单调函数,则,m n 应满足的条件是 0,m n R ≠∈ 。

2.函数512322
3
+--=x x x y 在[0,3]上的最大值、最小值分别是 5,-15 。

3.用导数确定函数()sin ([0,2])f x x x π=∈的单调减区间是3[
,]22
ππ。

4.函数1
()sin ,([0,2])2
f x x x x π=+
∈的最大值是π,最小值是0。

5.函数2
()x
f x x e =⋅的单调递增区间是 (-∞,-2)与(0,+ ∞) 。

【范例导析】
例1.3
2
()32f x x x =-+在区间[]1,1-上的最大值是 2 。

解:当-1≤x <0时,()f x '>0,当0<x ≤1时,()f x '<0,
所以当x =0时,f (x )取得最大值为2。

点评:用导数求极值或最值时要掌握一般方法,导数为0的点是否是极值点还取决与该点两侧的单调性,导数为0的点未必都是极值点,如:函数3
()f x x =。

例2. 求下列函数单调区间:
(1)522
1)(2
3
+--==x x x x f y (2)x x y 12-=
(3)x x
k y +=2
)0(>k (4)x x y ln 22-= 解:(1)∵232
--='x x y )1)(23(-+=x x ∴)3
2
,(--∞∈x ),1(∞+Y 时0>'y
)1,32(-
∈x 0<'y ∴ )32,(--∞,),1(∞+↑ )1,3
2
(-↓ (2)2
21
x x y +=' ∴ )0,(-∞,),0(∞+↑
(3)22
1x
k y -= ∴ ),(k x --∞∈),(∞+k Y 0>'y , ),0()0,(k k x Y -∈ 0<'y
∴ ),(k --∞,↑∞+),(k )0,(k -,),0(k ↓
(4)x x x x y 14142-=-='定义域为),0(∞+ )21,0(∈x 0<'y ↓ ),2
1
(∞+∈x 0>'y ↑
点评:熟练掌握单调性的求法,函数的单调性是解决函数的极值、最值问题的基础。

例3.设函数f(x)= 3
2
23(1)1, 1.x a x a --+≥其中(Ⅰ)求f(x)的单调区间;(Ⅱ)讨论f(x)的极值。

解:由已知得[]'
()6(1)f x x x a =--,令'
()0f x =,解得 120,1x x a ==-。

(Ⅰ)当1a =时,'2
()6f x x =,()f x 在(,)-∞+∞上单调递增;
当1a >时,()'()61f x x x a =--⎡⎤⎣⎦,'
(),()f x f x 随x 的变化情况如下表:
x (,0)-∞
0 (0,1)a -
1a -
(1,)a -+∞
'()f x +
0 -
0 + ()f x
Z
极大值
]
极小值
Z
从上表可知,函数()f x 在(,0)-∞上单调递增;在(0,1)a -上单调递减;在(1,)a -+∞上单调递增。

(Ⅱ)由(Ⅰ)知,当1a =时,函数()f x 没有极值;
当1a >时,函数()f x 在0x =处取得极大值,在1x a =-处取得极小值3
1(1)a --。

点评:本小题主要考查利用导数研究函数的最大值和最小值的基础知识,以及运用数学知识解决实际问题的能力。

【反馈演练】
1.关于函数762)(2
3+-=x x x f ,下列说法不正确的是 (4) 。

(1)在区间(∞-,0)内,)(x f 为增函数 (2)在区间(0,2)内,)(x f 为减函数
(3)在区间(2,∞+)内,)(x f 为增函数 (4)在区间(∞-,0)),2(+∞⋃内,)(x f 为增函数 2.对任意x ,有34)('x x f =,(1)1f =-,则此函数为 2)(4
-=x x f 。

3.函数y=2x 3
-3x 2
-12x+5在[0,3]上的最大值与最小值分别是 5 , -15 。

4.下列函数中,0x =是极值点的函数是 (2) 。

(1)3
y x =- (2)2
cos y x = (3)tan y x x =- (4)1y x
=
5.下列说法正确的是 (4) 。

(1)函数的极大值就是函数的最大值 (2)函数的极小值就是函数的最小值 (3)函数的最值一定是极值 (4)在闭区间上的连续函数一定存在最值 6.函数3
2
()35f x x x =-+的单调减区间是 [0,2] 。

7.求满足条件的a 的范围: (1)使ax x y +=sin 为R 上增函数;
(2)使a ax x y ++=3
为R 上的增函数; (3)使5)(2
3
-+-=x x ax x f 为R 上的增函数。

解:(1)∵a x y +='cos 由题意可知:0y '>对x R ∀∈都成立 ∴ 1>a 又当1=a 时 x x y +=sin 也符合条件 ∴ ),1[∞+∈a
(2)同上 ),0[∞+∈a (3)同上 ),3
1
[∞+∈a
8.已知函数c bx x ax x f -+=4
4
ln )((x>0)在x = 1处取得极值c --3,其中,,a b c 为常数。

(1)试确定,a b 的值;(2)讨论函数f(x)的单调区间。

解:(I )由题意知(1)3f c =--,因此3b c c -=--,从而3b =-. 又对()f x 求导得()34
3
41
ln 4'bx x
ax x ax x f +⋅
+=3(4ln 4)x a x a b =++. 由题意(1)0f '=,因此40a b +=,解得12a =.
(II )由(I )知3
()48ln f x x x '=(0x >),令()0f x '=,解得1x =.
当01x <<时,()0f x '<,此时()f x 为减函数;当1x >时,()0f x '>,此时()f x 为增函数. 因此()f x 的单调递减区间为(01),,而()f x 的单调递增区间为(1)+,∞.
第3课 导数的应用B
【考点导读】
1. 深化导数在函数、不等式、解析几何等问题中的综合应用,加强导数的应用意识。

2. 利用导数解决实际生活中的一些问题,进一步加深对导数本质的理解,逐步提高分析问题、探索问题
以及解决实际应用问题等各种综合能力。

【基础练习】
1.若)(x f 是在()l l ,-内的可导的偶函数,且)(x f '不恒为零,则关于)(x f '下列说法正确的是(4) 。

(1)必定是()l l ,-内的偶函数 (2)必定是()l l ,-内的奇函数 (3)必定是()l l ,-内的非奇非偶函数 (4)可能是奇函数,也可能是偶函数 2.()f x '是()f x 的导函数,()f x '的图象如右图所示,则()f x 的图象只可能是(4) 。

(1) (2) (3) (4)
3.若t R ∈,曲线3
y x =与直线3y x t =-在[0,1]x ∈上的不同交点的个数有 至多1个 。

4.把长为60cm 的铁丝围成矩形,要使矩形的面积最大,则长为 15cm ,宽为 15cm 。

【范例导析】
例1.函数c bx ax x x f +++=23)(,过曲线)(x f y =上的点))1(,1(f P 的切线方程为13+=x y (1)若)(x f y =在2-=x 时有极值,求f (x )的表达式; (2)在(1)的条件下,求)(x f y =在]1,3[-上最大值;
(3)若函数)(x f y =在区间]1,2[-上单调递增,求b 的取值范围 解:(1)
13:))1(,1()()1)(23()1()1)(1()1(:
))1(,1()(23)(:)(223+==-++=+++--'=-=++='+++=x y f P x f y x b a c b a y x f f y f P x f y b ax x x f c bx ax x x f 的切线方程为上而过即的切线方程为上点过求导数得由
⎩⎨
⎧=++=+⎩⎨⎧=-++=++)2(3)1(0212323ΛΛΛΛc b a b a c b a b a 即故5
42)(5
,4,2)3)(2)(1()
3(1240)2(,2)(23+-+==-==-=+-∴=-'-==x x x x f c b a b a f x x f y 相联立解得由故时有极值在ΛΛΘ
(2))2)(23(44323)(2
2+-=-+=++='x x x x b ax x x f
x
)2,3[--
-2 )32,2(-
32 ]1,32( )(x f ' + 0 - 0 +
)(x f
极大
极小
135)2(4)2(2)2()2()(=+---+-=-=f x f 极大
4514121)1(3=+⨯-⨯+=f ]1,3[)(-∴在x f 上最大值为13 (3)]1,2[)(-=在区间x f y 上单调递增
又02)1(,23)(2=+++='b a b ax x x f 知由 b bx x x f +-='∴2
3)(
依题意]1,2[03,0)(]1,2[)(2
-≥+-≥'-'在即上恒有在b bx x x f x f 上恒成立.
①在603)1()(,16≥∴>+-='='≥=
b b b f x f b
x 小时 ②在0212)2()(,26≥++=-'='-≤=b b f x f b
x 小时 ∅∈∴b
③在.60012
12)(,1622
≤≤≥-=
'≤≤-b b b x f b 则时小 综合上述讨论可知,所求参数b 取值范围是:b ≥0。

点评:本题把导数的几何意义与单调性、极值和最值结合起来,属于函数的综合应用题。

例2.请您设计一个帐篷。

它下部的形状是高为1m 的正六棱柱,上部的形状是侧棱长为3m 的正六棱锥(如右图所示)。

试问当帐篷的顶点O 到底面中心1O 的距离为多少时,帐篷的体积最大?
分析:本题应该先建立模型,再求体积的最大值。

选择适当的变量很关键,设1OO 的长度会比较简便。

解:设1()OO x m =,则由题设可得正六棱锥底面边长为2223(1)82x x x --=+-(单位:m )。

于是底面正六边形的面积为(单位:m 2
):
222223333(1)6(82)(82)x x x x x --=+-=+-g
g 。

帐篷的体积为(单位:m 3
):
233313()(82)(1)1(1612)232
V x x x x x x ⎡⎤=
+--+=+-⎢⎥⎣⎦ 求导数,得23
()(123)V x x '=
-; 令()0V x '=解得x=-2(不合题意,舍去),x=2。

当1<x<2时,()0V x '>,V(x)为增函数;当2<x<4时,()0V x '<,V(x)为减函数。

所以当x=2时,V(x)最大。

答:当OO 1为2m 时,帐篷的体积最大。

点评:本题是结合空间几何体的体积求最值,加深理解导数的工具作用,主要考查利用导数研究函数的最大值和最小值的基础知识,以及运用数学知识解决实际问题的能力。

【反馈演练】
1.设()f x '是函数()f x 的导函数,将()y f x =和()y f x '=的图象画在同一个直角坐标系中,不可能正确的是 图4 。

2.已知二次函数2
()f x ax bx c =++的导数为'()f x ,'(0)0f >,对于任意实数x 都有()0f x ≥,则
(1)
'(0)
f f 的最小值为
3
2。

3.若π
02x <<
,则下列命题正确的是 (3) . (1)2sin πx x < (2)2sin πx x > (3)3
sin π
x x <
(4)3
sin π
x x >
4.函数()ln (0)f x x x x =>的单调递增区间是1,e ⎡⎫+∞⎪⎢⎣⎭

5.已知函数32
()f x x bx cx d =+++的图象过点P (0,2),且在点M (-1,f (-1))处的切线方程为
076=+-y x .
y x
O y x O y x O y
x
O 图1
图2
图3
图4
故所求的解析式是 .233)(23+--=x x x x f (Ⅱ)22()36 3.3630,f x x x x x '=----=令 2210.x x --=即 解得 .21,2121+=-=x x
当;0)(,21,21>'+>-<x f x x 时或 当.0)(,2121<'+<<-x f x 时
故)21,()(--∞在x f 内是增函数,在)21,21(+-内是减函数,在),21(+∞+内是增函数.
点评:本题考查函数的单调性、导数的应用等知识,考查运用数学知识分析问题和解决问题的能力.
6.如图,有一块半椭圆形钢板,其半轴长为2r ,短半轴长为r ,计划将此钢板切割成等腰梯形的形状,下底AB 是半椭圆的短轴,上底CD 的端点在椭圆
上,记2CD x =,梯形面积为S .
(I )求面积S 以x 为自变量的函数式,并写出其定义域; (II )求面积S 的最大值.
解:(I )依题意,以AB 的中点O 为原点建立直角坐标系O xy -(如图),
则点C 的横坐标为x .点C 的纵坐标y 满足方程22
221(0)4x y y r r
+=≥,
解得222(0)y r x x r =-<< 所以221
(22)22
S x r r x =
+-g 222()x r r x =+-g ,其定义域为{}
0x x r <<.
(II )记222()4()()0f x x r r x x r =+-<<,
, 则2
()8()(2)f x x r r x '=+-. 令()0f x '=,得12x r =.因为当02r x <<时,()0f x '>;当2r
x r <<时,()0f x '<, 所以()f x 在(0,)2r 上是单调递增函数,在(,)2
r
r 上是单调递减函数,
所以12f r ⎛⎫
⎪⎝⎭
是()f x 的最大值. 4r
C D
A
B
2r
C
D
A B O
x
y
因此,当12
x r =时,S
2=. 即梯形面积S
的最大值为22
r . 7.设函数22()21(0)f x tx t x t x t =++-∈>R ,.
(Ⅰ)求()f x 的最小值()h t ;
(Ⅱ)若()2h t t m <-+对(02)t ∈,恒成立,求实数m 的取值范围.
解:(Ⅰ)23
()()1(0)f x t x t t t x t =+-+-∈>R Q ,, ∴当x t =-时,()f x 取最小值3()1f t t t -=-+-,即3()1h t t t =-+-.
(Ⅱ)令3
()()(2)31g t h t t m t t m =--+=-+--,
由2()330g t t '=-+=得1t =,1t =-(不合题意,舍去).
当t 变化时()g t ',()g t 的变化情况如下表:
()g t ∴在(02),内有最大值(1)1g m =-. ()2h t t m <-+在(02),内恒成立等价于()0g t <在(02),内恒成立,
即等价于10m -<,所以m 的取值范围为1m >.
点评:本题主要考查函数的单调性、极值以及函数导数的应用,考查运用数学知识分析问题解决问题的能力.
8.设函数2
()ln()f x x a x =++,若当1x =-时,()f x 取得极值,求a 的值,并讨论()f x 的单调性. 解: 1()2f x x x a '=++,依题意有(1)0f '-=,故3
2a =.。

相关文档
最新文档