山东省枣庄市第八中学下册期末精选单元达标训练题(Word版 含答案)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
山东省枣庄市第八中学下册期末精选单元达标训练题(Word版含答案)
一、第五章抛体运动易错题培优(难)
1.如图所示,一块橡皮用细线悬挂于O点,用铅笔靠着线的左侧水平向右匀速移动,运动中始终保持悬线竖直,则橡皮运动的速度
A.大小和方向均不变
B.大小不变,方向改变
C.大小改变,方向不变
D.大小和方向均改变
【答案】A
【解析】
【分析】
【详解】
橡皮参与了水平向右和竖直向上的分运动,如图所示,两个方向的分运动都是匀速直线运动,v x和v y恒定,则v合恒定,则橡皮运动的速度大小和方向都不变,A项正确.
2.物体A做平抛运动,以抛出点O为坐标原点,以初速度v0的方向为x轴的正方向、竖直向下的方向为y轴的正方向,建立平面直角坐标系。
如图所示,两束光分别沿着与坐标轴平行的方向照射物体A,在坐标轴上留下两个“影子”,则两个“影子”的位移x、y和速度v x、v y描述了物体在x、y两个方向上的运动。
若从物体自O点抛出时开始计时,下列图像中正确的是()
A .
B .
C .
D .
【答案】B 【解析】 【分析】 【详解】
AC .“影子”在x 轴方向做匀速运动,因此在x v x — 图象中是一条平行于x 轴的直线,根据
0x v t =
可知在—x t 图象中是一条过坐标原点的直线,AC 错误; BD .物体在竖直方向上做自由落体运动,根据
212
y gt =
可知在y t —图象中是一条开口向上的抛物线,根据
22y v gy =
可知在y v y — 图象是是一条开口向右的抛物理线,B 正确,D 错误。
故选B 。
3.如图所示,从倾角θ=37°的斜面上方P 点,以初速度v 0水平抛出一个小球,小球以10m/s 的速度垂直撞击到斜面上,过P 点作一条竖直线,交斜面于Q 点,则P 、Q 间的距离为(sin37°=0.6,cos37°=0.8,重力加速度g =10m/s 2)( )
A .5.4m
B .6.8m
C .6m
D .7.2m
【答案】B 【解析】 【分析】 【详解】
设小球垂直撞击到斜面上的速度为v
,竖直速度为v y ,由几何关系得
0sin 37cos37y v v v v
︒=︒=
解得
0sin 376m/s cos378m/s
y v v v v =︒==︒=
设小球下落的时间为t ,竖直位移为y ,水平位移为x ,由运动学规律得,竖直分速度
y gt =v
解得
t =0.8s
竖直方向
212
y gt =
水平方向
0x v t =
设P 、Q 间的距离为h ,由几何关系得
tan37h y x =+︒
解得
h =6.8m
选项B 正确,ACD 错误。
故选B 。
4.如图所示,套在竖直细杆上的轻环A 由跨过定滑轮的不可伸长的轻绳与重物B 相连,施加外力让A 沿杆以速度v 匀速上升,从图中M 位置上升至与定滑轮的连线处于水平N 位置,已知AO 与竖直杆成θ角,则( )
A .刚开始时
B 的速度为
cos v
θ
B .A 匀速上升时,重物B 也匀速下降
C .重物B 下降过程,绳对B 的拉力大于B 的重力
D .A 运动到位置N 时,B 的速度最大 【答案】C 【解析】 【详解】
A.对于A ,它的速度如图中标出的v ,这个速度看成是A 的合速度,其分速度分别是
a b v v 、,其中a v 就是B 的速率(同一根绳子,大小相同),故刚开始上升时B 的速度cos B v v θ=,故A 不符合题意;
B.由于A 匀速上升,θ在增大,所以B v 在减小,故B 不符合题意;
C .B 做减速运动,处于超重状态,绳对B 的拉力大于B 的重力,故C 符合题意; D.当运动至定滑轮的连线处于水平位置时90θ=︒,所以0B v =, 故
D 不符合题意。
5.一快艇从离岸边100m 远的河流中央向岸边行驶.已知快艇在静水中的速度图象如(图甲)所示;河中各处水流速度相同,且速度图象如(图乙)所示.则( )
A .快艇的运动轨迹一定为直线
B .快艇的运动轨迹一定为曲线
C .快艇最快到达岸边,所用的时间为20s
D .快艇最快到达岸边,经过的位移为100m 【答案】BC 【解析】 【分析】 【详解】
AB 、两分运动为一个做匀加速直线运动,一个做匀速线运动,知合速度的方向与合加速度的方向不在同一直线上,合运动为曲线运动.故A 错误、B 正确;
CD 、当水速垂直于河岸时,时间最短,垂直于河岸方上的加速度a =0.5m/s 2,由
2
12d at =
,得t =20s ,而位移大于100m ,故C 正确、D 错误. 【点睛】 解决本题的关键会将的运动分解为沿河岸方向和垂直河岸方向,知道在垂直于河岸方向上速度越大,时间越短.以及知道分运动和合运动具有等时性.
6.高度为d 的仓库起火,现需要利用仓库前方固定在地面上的消防水炮给它灭火。
如图所示,水炮与仓库的距离为d ,出水口的横截面积为S 。
喷水方向可自由调节,功率也可以变化,火势最猛的那层楼窗户上、下边缘离地高度分别为0.75d 和0.25d ,(要使火火效果最好)要求水喷入时的方向与窗户面垂直,已知水炮的效率为η,水的密度为ρ,重力加速度为g ,不计空气阻力,忽略水炮离地高度。
下列说法正确的是( )
A dg
B 2dg
C .若水从窗户的正中间进入,则此时的水炮功率最小
D .满足水从窗户进入的水炮功率最小值为()3
21
22S gd ρη
【答案】CD 【解析】 【分析】 【详解】
A .把抛出水的运动逆向思维为平抛运动,根据平抛运动规律有
022g g
v h h
==水从上边缘进入0.75h d =,解得
0220.753
g
gd
v d
==
⨯故A 错误;
B .水从下边缘进入0.25h d =,解得
0220.25g
v gd d
==⨯故B 错误;
C .逆向思维,水到达水炮时
0x v v =
,2y v gh =
则有
2
22(2)2x
y
d v v v g h h
=+=+
根据数学知识可知,当2d h =,即0.5h d =时,v 最小,对应位置为窗户正中间,故C 正确;
D .由上面的分析可知,当v 的最小值2v dg =,满足水从窗户进入的水炮功率最小,其最小值为
()223
3212122122mv vt S g Sv W Sv P t t d t ρρηηρη
η===== 故D 正确。
故选CD 。
7.如图所示,一光滑宽阔的斜面,倾角为θ,高为h ,重力加速度为g 。
现有一小球在A 处贴着斜面以水平速度v 0射出,最后从B 处离开斜面,下列说法中正确的是( )
A .小球的运动轨迹为抛物线
B .小球的加速度为g tan θ
C .小球到达B 12sin h g
θD .小球到达B 02sin v h g
θ【答案】AC 【解析】 【分析】 【详解】
A .小球受重力和支持力两个力作用,合力沿斜面向下,与初速度垂直,做类平抛运动,轨迹为抛物线,A 正确;
B .小球所受合力为重力沿斜面向下的分力,根据牛顿第二定律
sin mg ma θ=
因此加速度
sin a g θ=
B 错误;
小球沿斜面方向做匀加速运动
21
sin sin 2
h g t θθ=⋅ 可得运动时间
12sin h t g
θ=
C 正确;
D .水平位移应是AB 线段在水平面上的投影,到达B 点的沿水平x 方向的位移
002sin g
x h t v v θ==
沿水平y 方向的位移
cot y h θ=
因此水平位移
0222sin v s x y h g
θ=+>
D 错误。
故选AC 。
8.如图所示,倾角为θ=37°的斜面放在水平地面上,小球从斜面顶端P 点以初速度v 0水平抛出,刚好落在斜面中点处。
现将小球以初速度2v 0水平抛出,不计空气阻力,小球下落后均不弹起,sin37°=0.6,c os37°=0.8,重力加速度为g ,则小球两次在空中运动过程中( )
A .时间之比为1:2
B .时间之比为12
C .水平位移之比为1:4
D .竖直位移之比为1:2
【答案】BD 【解析】 【分析】 【详解】
第一次落到斜面中点,假设第二定落到水平面上,根据
212
h gt =
可知
122
t t =水平方向做匀速直线运动,根据
x vt
=
代入数据可知
1222
x x = 由于第一次恰好落到斜面中点处,因此第二定一定落到水平面上,假设成立。
因此运动时间之比1:2 ;水平位移之比为1:22 ;竖直位移之比为1:2。
BD 正确,AC 错误。
故选BD 。
9.如图,地面上固定有一半径为R 的半圆形凹槽,O 为圆心,AB 为水平直径。
现将小球(可视为质点)从A 处以初速度v 1水平抛出后恰好落到D 点;若将该小球从A 处以初速度v 2水平抛出后恰好落到C 点,C 、D 两点等高,OC 与水平方向的夹角θ=60°,不计空气阻力,则下列说法正确的是( )
A .小球从开始运动到落到凹槽上,前后两次的时间之比为1∶2
B .v 1:v 2=1∶3
C .小球从开始运动到落到凹槽上,速度的变化量两次相同
D .小球从开始运动到落到凹槽上,前后两次的平均速度之比为1∶2 【答案】BC 【解析】 【分析】 【详解】
A .平抛运动竖直方向上是自由落体运动,两次都落到同一高度,因此运动时间相同,A 错误;
B .第一次水平位移
o 11(1cos60)2x R R =-=
第二次水平位移
o 13(1+cos60)2
x R R ==
由于运动时间相同,因此
112213
v x v x == B 正确;
C .由于两次的加速度相同,运动时间相同,因此速度变化量相同,C 正确;
D
.第一次位移
1s R =
第二次位移
23s R =
平均速度等于位移与时间的比,由于运动时间相同,因此平均速度之比为1∶3 ,D 错误。
故选BC 。
10.如图所示,从同一条竖直线上两个不同点分别向右平抛两个小球P 和Q ,初速度分别为12v v 、,结果它们同时落到水平面上的M 点处(不考虑空气阻力)。
下列说法中正确的是( )
A .一定是Q 先抛出的,并且12v v >
B .一定是P 先抛出的,并且12v v <
C .Q 落地的瞬时速度与水平方向的夹角比P 大
D .P 落地的瞬时速度与水平方向的夹角比Q 大 【答案】BD 【解析】 【分析】 【详解】 AB .根据2
12
h gt =
得 2
t h g
可知P 的运动时间大于Q 的运动时间,所以P 先抛出;
两者水平位移相等,P 的运动时间长,则P 的初速度小于Q 的初速度。
选项B 正确,A 错误;
CD .小球落地的瞬时速度与水平方向的夹角
2
tan y v gt g t x v x t
θ=
=
= 由于P 的运动时间大于Q 的运动时间,所以P 落地的瞬时速度与水平方向的夹角比Q 大,选项C 错误,D 正确。
故选BD 。
二、第六章 圆周运动易错题培优(难)
11.两个质量分别为2m 和m 的小木块a 和b (可视为质点)放在水平圆盘上,a 与转轴OO ’的距离为L ,b 与转轴的距离为2L ,a 、b 之间用强度足够大的轻绳相连,木块与圆盘的最大静摩擦力为木块所受重力的k 倍,重力加速度大小为g .若圆盘从静止开始绕转轴缓慢地加速转动,开始时轻绳刚好伸直但无张力,用ω表示圆盘转动的角速度,下列说法正确的是( )
A .a 、b 所受的摩擦力始终相等
B .b 比a 先达到最大静摩擦力
C .当2kg
L
ω=a 刚要开始滑动 D .当23kg
L
ω=b 所受摩擦力的大小为kmg 【答案】BD 【解析】 【分析】 【详解】
AB .木块随圆盘一起转动,静摩擦力提供向心力,由牛顿第二定律可知,木块受到的静摩擦力f =mω2r ,则当圆盘从静止开始绕转轴缓慢地加速转动时,木块b 的最大静摩擦力先达到最大值;在木块b 的摩擦力没有达到最大值前,静摩擦力提供向心力,由牛顿第二定律可知,f=mω2r ,a 和b 的质量分别是2m 和m ,而a 与转轴OO ′为L ,b 与转轴OO ′为2L ,所以结果a 和b 受到的摩擦力是相等的;当b 受到的静摩擦力达到最大后,b 受到的摩擦力与绳子的拉力合力提供向心力,即
kmg +F =mω2•2L ①
而a 受力为
f′-F =2mω2L ②
联立①②得
f′=4mω2L -kmg
综合得出,a 、b 受到的摩擦力不是始终相等,故A 错误,B 正确; C .当a 刚要滑动时,有
2kmg+kmg =2mω2L +mω2•2L
解得
34kg
L
ω=
选项C 错误;
D. 当b 恰好达到最大静摩擦时
2
02kmg m r ω=⋅
解得
02kg
L
ω=
因为
32432kg kg kg
L L L >>
,则23kg
L
ω=时,b 所受摩擦力达到最大值,大小为kmg ,选项D 正确。
故选BD 。
12.如图所示,叠放在水平转台上的物体 A 、B 及物体 C 能随转台一起以角速度 ω 匀速转动,A ,B ,C 的质量分别为 3m ,2m ,m ,A 与 B 、B 和 C 与转台间的动摩擦因数都为 μ ,A 和B 、C 离转台中心的距离分别为 r 、1.5r 。
设最大静摩擦力等于 滑动摩擦力,下列说法正确的是(重力加速度为 g )( )
A .
B 对 A 的摩擦力一定为 3μmg B .B 对 A 的摩擦力一定为 3m ω2r
C .转台的角速度需要满足g
r
μω
D .转台的角速度需要满足23g
r
μω 【答案】BD 【解析】 【分析】 【详解】
AB .对A 受力分析,受重力、支持力以及B 对A 的静摩擦力,静摩擦力提供向心力,有
()()233f m r m g ωμ=
故A 错误,B 正确;
CD .由于A 、AB 整体、C 受到的静摩擦力均提供向心力,故对A 有
()()233m r m g ωμ
对AB 整体有
()()23232m m r m m g ωμ++
对物体C 有
()21.52m r mg ωμ
解得
g
r
μω
故C 错误, D 正确。
故选BD 。
13.如图,质量为m 的物块,沿着半径为R 的半球形金属壳内壁滑下,半球形金属壳竖直放置,开口向上,滑到最低点时速度大小为v ,若物体与球壳之间的摩擦因数为μ,则物体在最低点时,下列说法正确的是( )
A .滑块对轨道的压力为2
v mg m R
+
B .受到的摩擦力为2
v m R
μ
C .受到的摩擦力为μmg
D .受到的合力方向斜向左上方
【答案】AD 【解析】 【分析】 【详解】
A .根据牛顿第二定律
2
N v F mg m R
-=
根据牛顿第三定律可知对轨道的压力大小
2
N
N v F F mg m R
'==+ A 正确;
BC .物块受到的摩擦力
2
N ()v f F mg m R
μμ==+
BC 错误;
D .水平方向合力向左,竖直方向合力向上,因此物块受到的合力方向斜向左上方,D 正确。
故选AD 。
14.如图甲所示,半径为R 、内壁光滑的圆形细管竖直放置,一可看成质点的小球在圆管内做圆周运动,当其运动到最高点A 时,小球受到的弹力F 与其过A 点速度平方(即v 2)
的关系如图乙所示。
设细管内径略大于小球直径,则下列说法正确的是( )
A .当地的重力加速度大小为R b
B .该小球的质量为
a b
R C .当v 2=2b 时,小球在圆管的最高点受到的弹力大小为a D .当0≤v 2<b 时,小球在A 点对圆管的弹力方向竖直向上 【答案】BC 【解析】 【分析】 【详解】
AB .在最高点,根据牛顿第二定律
2
mv mg F R
-= 整理得
2
mv F mg R
=- 由乙图斜率、截距可知
a mg =, m a R b
=
整理得
a m R
b =
,b g R
= A 错误,B 正确;
C .由乙图的对称性可知,当v 2=2b 时
F a =-
即小球在圆管的最高点受到的弹力大小为a ,方向竖直向下,C 正确; D .当0≤v 2<b 时,小球在A 点对圆管的弹力方向竖直向下,D 错误。
故选BC 。
15.高铁项目的建设加速了国民经济了发展,铁路转弯处的弯道半径r 是根据高速列车的速度决定的。
弯道处要求外轨比内轨高,其内外轨高度差h 的设计与r 和速率v 有关。
下列说法正确的是( )
A .r 一定的情况下,预设列车速度越大,设计的内外轨高度差h 就应该越小
B .h 一定的情况下,预设列车速度越大,设计的转弯半径r 就应该越大
C .r 、h 一定,高速列车在弯道处行驶时,速度越小越安全
D .高速列车在弯道处行驶时,速度太小或太大会对都会对轨道产生很大的侧向压力 【答案】BD 【解析】 【分析】 【详解】
如图所示,两轨道间距离为L 恒定,外轨比内轨高h ,两轨道最高点连线与水平方向的夹角为θ。
当列车在轨道上行驶时,利用自身重力和轨道对列车的支持力的合力来提供向心力,有
2
=tan h v F mg mg m L r
θ==向
A . r 一定的情况下,预设列车速度越大,设计的内外轨高度差h 就应该越大,A 错误;
B .h 一定的情况下,预设列车速度越大,设计的转弯半径r 就应该越大,B 正确;
C .r 、h 一定,高速列车在弯道处行驶时,速度越小时,列车行驶需要的向心力过小,而为列车提供的合力过大,也会造成危险,C 错误;
D .高速列车在弯道处行驶时,向心力刚好有列车自身重力和轨道的支持力提供时,列车对轨道无侧压力,速度太小内轨向外有侧压力,速度太大外轨向内有侧压力,D 正确。
故选BD 。
16.如图所示,匀速转动的水平圆盘上放有质量分别为2kg 和3kg 的小物体A 、B ,A 、B 间用细线沿半径方向相连。
它们到转轴的距离分别为R A =0.2m 、R B =0.3m 。
A 、B 与盘面间的最大静摩擦力均为重力的0.4倍。
g 取10m/s 2,现极其缓慢地增大圆盘的角速度,则下列说法正确的是( )
A .小物体A 达到最大静摩擦力时,
B 受到的摩擦力大小为12N B .当A 恰好达到最大静摩擦力时,圆盘的角速度为4rad/s
C 230
D .当A 恰好达到最大静摩擦力时,剪断细线,A 将做向心运动,B 将做离心运动 【答案】AC
【分析】 【详解】
A .当增大原盘的角速度,
B 先达到最大静摩擦力,所以A 达到最大静摩擦力时,B 受摩擦力也最大,大小为
f B=km B
g =0.4⨯3⨯10N=12N
故A 正确;
B .当A 恰好达到最大静摩擦力时,圆盘的角速度为ω,此时细线上的拉力为T ,由牛顿第二定律,对A
2A A A k T R m g m ω-=
对B
2B B B T km g m R ω+=
联立可解得
s 13
102
rad/ω=
故B 错误;
C. 当细线上开始有弹力时,此时B 物体受到最大摩擦力,由牛顿第二定律,有
2B B 1B k m R m g ω=
可得
1230
rad/s 3
ω=
故C 正确;
D. 当A 恰好达到最大静摩擦力时,剪断细线,A 物体摩擦力减小,随圆盘继续做圆周运动,而B 不再受细线拉力,最大摩擦力不足以提供向心力,做离心运动,故D 错误。
故选AC 。
17.如图所示,12O O 两轮紧挨在一起靠摩擦力传动而同时转动,其中A 、B 是两轮边缘上的点,C 为1O 上的一点,且C 点到1O 的距离与B 点到2O 的距离相等,则下列说法正确的是( )
A .BC 两点线速度大小相等
B .AB 两点角速度相等
C .BC 两点角速度相等
D .AB 两点线速度大小相等
【答案】D 【解析】
【详解】
BD .A 、B 两点靠传送带传动,线速度大小相等,即
A B =v v
根据v r ω=可知半径不同因此角速度不相等,选项B 错误,D 正确; AC .A 、C 共轴转动,角速度相同,即
A C =ωω
根据v r ω=可知A 线速度大于C 的线速度,所以
B C B C ,v v ωω≠≠
选项AC 错误。
故选D 。
18.修正带是中学生必备的学习用具,其结构如图所示,包括上下盖座、大小齿轮、压嘴座等部件,大小齿轮分别嵌合于大小轴孔中,大小齿轮相互吻合,a 、b 点分别位于大小齿轮的边缘,c 点位于大齿轮的半径中点,当纸带匀速走动时( )
A .a 、b 点的线速度大小相同
B .a 、c 点的线速度大小相同
C .b 、c 点的角速度相同
D .大小齿轮的转动方向相同 【答案】A 【解析】 【分析】 【详解】
AD .a 、b 点是同缘传动,边缘点的线速度大小相同,方向相反,即
a b v v =
A 正确,D 错误;
B .a 、c 点是同轴传动,角速度相等,即
a c ωω=
根据v r ω=知线速度与半径成正比,半径不同,线速度不同,B 错误; C .a b v v =,根据v r ω=知角速度与半径成反比,有
12a b b a r r ωω==:::
所以
22b a c ωωω==
故选A 。
19.如图所示,水平的木板B 托着木块A 一起在竖直平面内做匀速圆周运动,从水平位置a 沿逆时针方向运动到最高点b 的过程中( ) ①B 对A 的支持力越来越大 ②B 对A 的支持力越来越小 ③B 对A 的摩擦力越来越大 ④B 对A 的摩擦力越来越小
A .①③
B .①④
C .②③
D .②④
【答案】D 【解析】 【分析】 【详解】
以A 物体作为研究对象,设指向圆心的加速度为a ,a 与水平方向的夹角为θ ,竖直方向根据牛顿第二定律
sin BA mg F ma θ-=
得
sin BA F mg ma θ=-
可知沿逆时针方向运动到最高点过程中,θ增大,支撑力减小,故①错误,②正确。
水平方向根据牛顿第二定律
cos BA f ma θ=
可知沿逆时针方向运动到最高点过程中,θ增大,摩擦力减小,故③错误,④正确。
故选D 。
20.如图所示,一根轻杆,在其B 点系上一根细线,细线长为R,在细线下端连上一质量为 m 小球.以轻杆的A 点为顶点,使轻杆旋转起来,其B 点在水平面内做匀速圆周运动,轻杆的
轨迹为一个母线长为L 的圆锥,轻杆与中心轴AO 间的夹角为α.同时小球在细线的约束下开始做圆周运动,轻杆旋转的角速度为ω,小球稳定后,细线与轻杆间的夹角β = 2α.重力加速度用g 表示,则( )
A .细线对小球的拉カ为mg /sina
B .小球做圆周运动的周期为π/ω
C .小球做圆周运动的线速度与角速度的乘积为gtan2a
D .小球做圆周运动的线速度与角速度的比值为(L+R)sina 【答案】D 【解析】 【分析】 【详解】
细线的拉力满足cos F mg α=,得cos mg
F α
=
,选项A 错误;小球达到稳定状态后做匀速圆周运动,其周期与轻杆旋转的周期相同,周期2T πω
=
的
,选项B 错误;小球做圆周运
动,根据题意有tan(2)mg mv ααω-=得,小球的线速度与角速度的乘积是
tan v g ωα=,选项C 错误;小球做圆周运动的线速度与角速度的比值即是半径,根据题
意得()sin r L R α=+,选项D 正确. 综上所述本题答案是:D
三、第八章 机械能守恒定律易错题培优(难)
21.一足够长的水平传送带上放置质量为m =2kg 小物块(物块与传送带之间动摩擦因数为
0.2μ=),现让传送带从静止开始以恒定的加速度a =4m/s 2开始运动,当其速度达到
v =12m/s 后,立即以相同大小的加速度做匀减速运动,经过一段时间后,传送带和小物块均静止不动。
下列说法正确的是( )
A .小物块0到4s 内做匀加速直线运动,后做匀减速直线运动直至静止
B .小物块0到3s 内做匀加速直线运动,之后做匀减速直线运动直至静止
C .物块在传送带上留下划痕长度为12m
D .整个过程中小物块和传送带间因摩擦产生的热量为80J
【答案】ACD
【解析】
【分析】
【详解】
物块和传送带的运动过程如图所示。
AB.由于物块的加速度
a1=µg=2m/s2
小于传送带的加速度a2=4 m/s2,所以前面阶段两者相对滑动,时间1
2
v
t
a
==3s,此时物块的速度v1=6 m/s,传送带的速度v2=12 m/s
物块的位移
x1=
1
2
a1t12=9m
传送带的位移
x2=
1
2
a2t12=18m
两者相对位移为
121
x x x
∆=-=9m
此后传送带减速,但物块仍加速,B错误;
当物块与传送带共速时,由匀变速直线运动规律得
12- a2t2=6+ a1t2
解得t2=1s
因此物块匀加速所用的时间为
t1+ t2=4s
两者相对位移为2x∆= 3m,所以A正确。
C.物块开始减速的速度为
v3=6+ a1t2=8 m/s
物块减速至静止所用时间为
3
3
1
v
t
a
==4s
传送带减速至静止所用时间为
3
4
2
v
t
a
==2s
该过程物块的位移为
x 3=
1
2
a 1t 32=16m 传送带的位移为
x 2=
1
2
a 2t 42=8m 两者相对位移为
3x ∆=8m
回滑不会增加划痕长度,所以划痕长为
12x x x ∆=∆+∆=9m+3m=12m
C 正确;
D .全程相对路程为
L =123x x x ∆+∆+∆=9m+3m+8m=20m
Q =µmgL =80J
D 正确; 故选ACD 。
22.如图所示,一根轻弹簧一端固定于O 点,另一端与可视为质点的小滑块连接,把滑块放在倾角为θ=30°的固定光滑斜面上的A 点,此时弹簧恰好水平。
将滑块从A 点由静止释放,经B 点到达位于O 点正下方的C 点。
当滑块运动到B 点时弹簧与斜面垂直,且此时弹簧恰好处于原长。
已知OB 的距离为L ,弹簧始终在弹性限度内,重力加速度为g ,则滑块由A 运动到C 的过程中( )
A .滑块的加速度先减小后增大
B .滑块的速度一直在增大
C .滑块经过B gL
D .滑块经过C 2gL 【答案】BC 【解析】 【分析】 【详解】
AB .弹簧原长为L ,在A 点不离开斜面,则
sin 3(
)sin c 3300os 0L
k mg L ︒≤-︒
︒ 在C 点不离开斜面,则有
(
)cos30cos30cos30L
k L mg -︒≤︒︒
从A 点滑至C 点,设弹簧与斜面夹角为α(范围为30°≤α≤90°);从B 点滑至C 点,设弹簧
与斜面的夹角为β,则
2sin 30cos mg
kx ma β︒-=
可知下滑过程中加速度一直沿斜面向下且减小,选项A 错误,B 正确; C .从A 点滑到B 点,由机械能守恒可得
21cos302
p B mgL E mv ︒+=
解得
2cos302
32
p p B E E v gL g m
g L L m
︒+=+=>
选项C 正确;
D .从A 点滑到C 点,由机械能守恒可得
2
1cos302
P C L mg
E mv '+=︒
解得
43
2222cos303p p C gL E E L
v g gL m
m
'=
+>+︒= 选项D 错误。
故选BC 。
23.如图所示,两个质量均为m 的小滑块P 、Q 通过铰链用长为L 的刚性轻杆连接,P 套在固定的竖直光滑杆上,Q 放在光滑水平地面上,轻杆与竖直方向夹角α=30°.原长为
2
L
的轻弹簧水平放置,右端与Q 相连,左端固定在竖直杆O 点上。
P 由静止释放,下降到最低点时α变为60°.整个运动过程中,P 、Q 始终在同一竖直平面内,弹簧在弹性限度内,忽略一切摩擦,重力加速度为g 。
则P 下降过程中( )
A .P 、Q 组成的系统机械能守恒
B .P 、Q 的速度大小始终相等
C 31
-mgL D .P 达到最大动能时,Q 受到地面的支持力大小为2mg 【答案】CD 【解析】 【分析】
【详解】
A.根据能量守恒知,P 、Q、弹簧组成的系统机械能守恒,而P、Q组成的系统机械能不守恒,选项A错误;
B .在下滑过程中,根据速度的合成与分解可知
cos sin
P Q
v v
αα
=
解得
tan
P
Q
v
v
α
=
由于α变化,故P、Q的速度大小不相同,选项B错误;
C.根据系统机械能守恒可得
(cos30cos60)
P
E mgL
=︒-︒
弹性势能的最大值为
31
2
P
E mgL
-
=
选项C正确;
D.P由静止释放,P开始向下做加速度逐渐减小的加速运动,当加速度为零时,P的速度达到最大,此时动能最大,对P、Q和弹簧组成的整体受力分析,在竖直方向,根据牛顿第二定律可得
200
N
F mg m m
-=⨯+⨯
解得
F N=2mg
选项D正确。
故选CD。
24.质量是m的物体(可视为质点),从高为h,长为L的斜面顶端,由静止开始匀加速下滑,滑到斜面底端时速度是v,则()
A.到斜面底端时重力的瞬时功率为
B.下滑过程中重力的平均功率为
C.下滑过程中合力的平均功率为
D.下滑过程中摩擦力的平均功率为
【答案】AB
【解析】
试题分析:A 、根据P=mgv cosα可知,滑到底端的重力的瞬时功率为为:P=mgvcosα=mgv .故A 正确.B 、物体运动的时间为:t=
=
,则重力做功的平均功率
为:P===.故B 正确.C 、物体做匀加速直线运动的加速度为:a=,则
合力为:F 合=ma=,合力做功为:W 合=F 合L=,则合力的平均功率为:
.故C 错误.D 、根据动能定理得:mgh ﹣W f =mv 2,解得克服摩擦力做功
为:W f =mgh ﹣mv 2,则摩擦力做功的平均功率为:=
﹣
.故D 错
误.
考点:功率、平均功率和瞬时功率.
25.某汽车质量为5t ,发动机的额定功率为60kW ,汽车在运动中所受阻力的大小恒为车重的0.l 倍。
若汽车以0.5m/s 2的加速度由静止开始匀加速启动,经过24s ,汽车达到最大速度。
取重力加速度g =10m/s 2,在这个过程中,下列说法正确的是( ) A .汽车的最大速度为12m/s B .汽车匀加速的时间为24s C .汽车启动过程中的位移为120m D .4s 末汽车发动机的输出功率为60kW 【答案】AC 【解析】 【分析】 【详解】
A .当阻力与牵引力平衡时,汽车速度达到最大值,由汽车的功率和速度关系可得
max P Fv fv ==
解得
3max
36010m/s 12m/s 0.10.151010
P P v f mg ⨯====⨯⨯⨯ 故A 正确;
B .汽车以0.5m/s 2的加速度运动时,当汽车的功率达到额定功率时,汽车达到了匀加速运动阶段的最大速度, 由汽车的功率和速度关系可得
m P F v '=
由牛顿第二定律,可得此时汽车的牵引力为
-0.1F mg ma '=
由以上方程可得
8m/s m v = 37.510N F '=⨯
这一过程能维持的时间
18s 16s 0.5
m v t a =
== 故B 错误;
C .匀加速过程中汽车通过的位移为
22111
0.516m=64m 22
x at =
=⨯⨯ 启动过程中,由动能定理得
2
11max 1()2
F x P t t kmgx mv '+--=
解得,汽车启动过程中的位移为
x =120m
故C 正确;
D .由B 项分析可知,4s 末汽车还在做匀加速运动,实际功率小于额定功率,所以4s 末汽车发动机的输出功率小于60kW ,故D 错误; 故选AC 。
26.如图,将一质量为2m 的重物悬挂在轻绳一端,轻绳的另一端系一质量为m 的环,环套在竖直固定的光滑直杆上,光滑的轻小定滑轮与直杆的距离为d ,杆上的A 点与定滑轮等高,杆上的B 点在A 点正下方距离A 为d 处.现将环从A 点由静止释放,不计一切摩擦阻力,下列说法中正确的是()
A .环到达
B 处时,重物上升的高度2
d B .环能下降的最大距离为
43
d C .环到达B 处时,环与重物的速度大小之比为
22
D .环从A 到B 减少的机械能等于重物增加的机械能 【答案】BD 【解析】。