高考数学一轮复习第八篇立体几何第1讲 空间几何体的结构三视图和直
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
卜人入州八九几市潮王学校第1讲空间几何体的构造、三视图和直观图
【2021年高考会这样考】
1.几何体的展开图、几何体的三视图仍是高考的热点.
【复习指导】
2.要熟悉一些典型的几何体模型,如三棱柱、长(正)方体、三棱锥等几何体的三视图.
根底梳理
1.多面体的构造特征
(1)棱柱的侧棱都互相平行,上下底面是全等的多边形.
(2)棱锥的底面是任意多边形,侧面是有一个公一共顶点的三角形.
(3)棱台可由平行于底面的平面截棱锥得到,其上下底面是相似多边形.
2.旋转体的构造特征
(1)圆柱可以由矩形绕一边所在直线旋转一周得到.
(2)圆锥可以由直角三角形绕一条直角边所在直线旋转一周得到.
(3)圆台可以由直角梯形绕直角腰所在直线旋转一周或者等腰梯形绕上下底面中心所在直线旋转半周得到,也可由平行于底面的平面截圆锥得到.
(4)球可以由半圆面绕直径旋转一周或者圆面绕直径旋转半周得到.
3.空间几何体的三视图
空间几何体的三视图是用平行投影得到,这种投影下,与投影面平行的平面图形留下的影子,与平面图形的形状和大小是全等和相等的,三视图包括正视图、侧视图、俯视图.
4.空间几何体的直观图
空间几何体的直观图常用斜二测画法来画,根本步骤是:
(1)画几何体的底面
在图形中取互相垂直的x轴、y轴,两轴相交于点O,画直观图时,把它们画成对应的x′轴、y′轴,两轴相交于点O′,且使∠x′O′y′=45°或者135°,图形中平行于x轴、y轴的线段,在直观图中平行于x′轴、y′轴.图形中平行于x轴的线段,在直观图中长度不变,平行于y轴的线段,长度变为原来的一半.
(2)画几何体的高
在图形中过O点作z轴垂直于xOy平面,在直观图中对应的z′轴,也垂直于x′O′y′平面,图形中平行于z轴的线段,在直观图中仍平行于z′轴且长度不变.
一个规律
三视图的长度特征:“长对正,宽相等,齐〞,即正视图和侧视图一样高,正视图和俯视图一样长,侧视图和俯视图一样宽.假设相邻两物体的外表相交,外表的交线是它们的分界限,在三视图中,要注意实、虚线的画法.
两个概念
(1)正棱柱:侧棱垂直于底面的棱柱叫做直棱柱,底面是正多边形的直棱柱叫做正棱柱.反之,正棱柱的底面是正多边形,侧棱垂直于底面,侧面是矩形.
(2)正棱锥:底面是正多边形,顶点在底面的射影是底面正多边形的中心的棱锥叫做正棱锥.特别地,各棱均相等的正三棱锥叫正四面体.反过来,正棱锥的底面是正多边形,且顶点在底面的射影是底面正多边形的中心.
双基自测
1.(A教材习题改编)以下说法正确的选项是().
A.有两个面平行,其余各面都是四边形的几何体叫棱柱
B.有两个面平行,其余各面都是平行四边形的几何体叫棱柱
C.有一个面是多边形,其余各面都是三角形的几何体叫棱锥
D.棱台各侧棱的延长线交于一点
答案D
2.(2021·模拟)用任意一个平面截一个几何体,各个截面都是圆面,那么这个几何体一定是().
A.圆柱B.圆锥
C.球体D.圆柱、圆锥、球体的组合体
解析当用过高线的平面截圆柱和圆锥时,截面分别为矩形和三角形,只有球满足任意截面都是圆面.
答案C
3.(2021·)某几何体的三视图如下列图,那么它的体积是().
A.8-B.8-
C.8-2π D.
解析圆锥的底面半径为1,高为2,该几何体体积为正方体体积减去圆锥体积,即V=22×2-×π×12×2=8-π,正确选项为A.
4.(2021·)假设某几何体的三视图如下列图,那么这个几何体的直观图可以是
().解析所给选项里面,A、C选项的正视图、俯视图不符合,D选项的侧视图不符合,只有选项B符合.
答案B
5.(2021·)一个几何体的三视图如下列图(单位:m)那么该几何体的体积为________m3.
解析由三视图可知该几何体是组合体,下面是长方体,长、宽、高分别为3、2、1,上面是一个圆锥,底面圆半径为1,高为3,所以该几何体的体积为3×2×1+π×3=6+π(m3).
答案6+π
考向一空间几何体的构造特征
【例1】►(2021·质检)假设).
A.等腰四棱锥的腰与底面所成的角都相等
B.等腰四棱锥的侧面与底面所成的二面角都相等或者互补
C.等腰四棱锥的底面四边形必存在外接圆
D.等腰四棱锥的各顶点必在同一球面上
[审题视点]可借助几何图形进展判断.
解析如图
,等腰四棱锥的侧棱均相等,其侧棱在底面的射影也相等,那么其腰与底面所成角相等,即A正确;底面四边形必有一个外接圆,即C正确;在高线上可以找到一个点O,使得该点到四棱锥各个顶点的间隔
答案B
三棱柱、四棱柱、正方体、长方体、三棱锥、四棱锥是常见的空间几何体,也是重要的几何模型,有些问题可用上述几何体举特例解决.
【训练1】
①以直角三角形的一边为轴旋转一周所得的旋转体是圆锥;
②以直角梯形的一腰为轴旋转一周所得的旋转体是圆台;
③圆柱、圆锥、圆台的底面都是圆;
④一个平面截圆锥,得到一个圆锥和一个圆台.
).
A.0B.1 C.2D.3
解析①②③④错,必须用平行于圆锥底面的平面截圆锥才行.
考向二空间几何体的三视图
【例2】►(2021·全国)在一个几何体的三视图中,正视图和俯视图如下列图,那么相应的侧视图可以为().[审题视点]由正视图和俯视图想到三棱锥和圆锥.
解析由几何体的正视图和俯视图可知,该几何体应为一个半圆锥和一个有一侧面(与半圆锥的轴截面为同一三角形)垂直于底面的三棱锥的组合体,故其侧视图应为D.
答案D
(1)空间几何体的三视图是该几何体在三个两两垂直的平面上的正投影,并不是从三个方向看到的该几何体的侧面表示的图形.
(2)在画三视图时,重叠的线只画一条,能看见的轮廓线和棱用实线表示,挡住的线要画成虚线.
【训练2】(2021·)假设某几何体的三视图如下列图,那么这个几何体的直观图可以是().
解析A中正视图,俯视图不对,故A错.B中正视图,侧视图不对,故B错.C中侧视图,俯视图不对,故C错,应选D.
答案D
考向三空间几何体的直观图
【例3】►正三角形ABC的边长为a,那么△ABC的平面直观图△A′B′C′的面积为().
A.a2
B.a2
C.a2
D.a2
[审题视点]画出正三角形△ABC的平面直观图△A′B′C′,求△A′B′C′的高即可.
解析如图①②所示的实际图形和直观图.
由斜二测画法可知,A′B′=AB=a,O′C′=OC=a,
在图②中作C′D′⊥A′B′于D′,
那么C′D′=O′C′=a.
∴S△A′B′C′=A′B′·C′D′=×a×a=a2.
答案D
直接根据程度放置的平面图形的直观图的斜二测画法规那么即可得到平面图形的面积是其直观图面积的2倍,这是一个较常用的重要结论.
【训练3】如图,
矩形O′A′B′C′是程度放置的一个平面图形的直观图,其中O′A′=6cm,O′C′=2cm,那么原图形是().
A.正方形B.矩形
C.菱形D.一般的平行四边形
解析
将直观图复原得▱OABC,那么
∵O′D′=O′C′=2(cm),
OD=2O′D′=4(cm),
C′D′=O′C′=2(cm),∴CD=2(cm),
OC===6(cm),
OA=O′A′=6(cm)=OC,
故原图形为菱形.
答案C
阅卷报告9——无视几何体的放置对三视图的影响致错
【问题诊断】空间几何体的三视图是该几何体在两两垂直的三个平面上的正投影.同一几何体摆放的角度不同,其三视图可能不同,有的考生往往无视这一点.
【防范措施】应从多角度细心观察.
【例如】►一个几何体的正视图为一个三角形,那么这个几何体可能是以下几何体中的________(填入所有可能的几何体前的编号).
①三棱锥;②四棱锥;③三棱柱;④四棱柱;⑤圆锥;⑥圆柱.
错因无视几何体的不同放置对三视图的影响,漏选③.实录①②⑤
正解①三棱锥的正视图是三角形;②当四棱锥的底面是四边形放置时,其正视图是三角形;③把三棱柱某一侧面当作底面放置,其底面正对着我们的视线时,它的正视图是三角形;④对于四棱柱,不管怎样放置,其正视图都不可能是三角形;
⑤当圆锥的底面程度放置时,其正视图是三角形;⑥圆柱不管怎样放置,其正视图也不可能是三角形.
答案①②③⑤
【试一试】(2021·)右图是
①存在三棱柱,其正(主)视图、俯视图如右图;②存在四棱柱,其正(主)视图、俯视图如右图;③).A.3B.2
C.1 D.0
[尝试解答]如图①②③的正(主)视图和俯视图都与原题一样,应选A.
答案A。