重庆市万州区2019-2020学年中考第一次质量检测数学试题含解析

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

重庆市万州区2019-2020学年中考第一次质量检测数学试题
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.如图,矩形ABCD 的顶点A 、C 分别在直线a 、b 上,且a ∥b ,∠1=60°,则∠2的度数为( )
A .30°
B .45°
C .60°
D .75°
2.式子2x +在实数范围内有意义,则x 的取值范围是( ) A .x >﹣2
B .x≥﹣2
C .x <﹣2
D .x≤﹣2
3.一个几何体的俯视图如图所示,其中的数字表示该位置上小正方体的个数,那么这个几何体的主视图是( )
A .
B .
C .
D .
4.下列图形中,线段MN 的长度表示点M 到直线l 的距离的是( )
A .
B .
C .
D .
5.下列运算中,正确的是( )
A .(ab 2)2=a 2b 4
B .a 2+a 2=2a 4
C .a 2•a 3=a 6
D .a 6÷
a 3=a 2 6.如图所示是由几个完全相同的小正方体组成的几何体的三视图.若小正方体的体积是1,则这个几何体的体积为( )
A .2
B .3
C .4
D .5
7.如图,在平面直角坐标系xOy 中,正方形ABCD 的顶点D 在y 轴上,且(3,0)A -,(2,)B b ,则正方形
ABCD 的面积是( )
A .13
B .20
C .25
D .34
8.若代数式2
x 有意义,则实数x 的取值范围是( ) A .x >0
B .x≥0
C .x≠0
D .任意实数
9.下列运算结果为正数的是( ) A .1+(–2)
B .1–(–2)
C .1×(–2)
D .1÷(–2)
10.若※是新规定的某种运算符号,设a ※b=b 2 -a ,则-2※x=6中x 的值() A .4
B .8
C .
2
D .-2
11.如图,⊙O 的半径OC 与弦AB 交于点D ,连结OA ,AC ,CB ,BO ,则下列条件中,无法判断四边形OACB 为菱形的是( )
A .∠DAC=∠DBC=30°
B .OA ∥B
C ,OB ∥AC C .AB 与OC 互相垂直
D .AB 与OC 互相平分
12.如图,为测量一棵与地面垂直的树OA 的高度,在距离树的底端30米的B 处,测得树顶A 的仰角∠ABO 为α,则树OA 的高度为( )
A .
30
tan α
米 B .30sinα米 C .30tanα米 D .30cosα米
二、填空题:(本大题共6个小题,每小题4分,共24分.) 13.一个多项式与32
12
x y -
的积为5243343x y x y x y z --,那么这个多项式为 . 14.边长为6的正六边形外接圆半径是_____.
15.如图,在△ABC 中,CA=CB ,∠ACB=90°,AB=4,点D 为AB 的中点,以点D 为圆心作圆,半圆恰好经过三角形的直角顶点C ,以点D 为顶点,作90°的∠EDF ,与半圆交于点E ,F ,则图中阴影部分
的面积是____.
16.如图,自左至右,第1个图由1个正六边形、6个正方形和6个等边三角形组成;第2个图由2个正六边形、11个正方形和10个等边三角形组成;第3个图由3个正六边形、16个正方形和14个等边三角形组成;…按照此规律,第n 个图中正方形和等边三角形的个数之和为______个.
17.正八边形的中心角为______度.
18.如图,正方形ABCD 中,AB=2,将线段CD 绕点C 顺时针旋转90°得到线段CE ,线段BD 绕点B 顺时针旋转90°得到线段BF ,连接BF ,则图中阴影部分的面积是_____.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤. 19.(6分)计算:﹣22+2cos60°+(π﹣3.14)0+(﹣1)2018 20.(6分)解不等式组,并将解集在数轴上表示出来.
273(1)1
5(4)2
x x x x -<-⎧⎪
⎨-+≥⎪⎩①② 21.(6分)新定义:如图1(图2,图3),在△ABC 中,把AB 边绕点A 顺时针旋转,把AC 边绕点A 逆时针旋转,得到△AB′C′,若∠BAC+∠B′AC′=180°,我们称△ABC 是△AB′C′的“旋补三角形”,△AB'C′的中线AD 叫做△ABC 的“旋补中线”,点A 叫做“旋补中心”
(特例感知)(1)①若△ABC 是等边三角形(如图2),BC=1,则AD= ; ②若∠BAC=90°(如图3),BC=6,AD= ;
(猜想论证)(2)在图1中,当△ABC 是任意三角形时,猜想AD 与BC 的数量关系,并证明你的猜想; (拓展应用)(3)如图1.点A ,B ,C ,D 都在半径为5的圆上,且AB 与CD 不平行,AD=6,点P 是四边形ABCD 内一点,且△APD 是△BPC 的“旋补三角形”,点P 是“旋补中心”,请确定点P 的位置(要求尺规作图,不写作法,保留作图痕迹),并求BC 的长.
22.(8分)数学兴趣小组为了解我校初三年级1800名学生的身体健康情况,从初三随机抽取了若干名学生,将他们按体重(均为整数,单位:kg)分成五组(A:39.5~46.5;B:46.5~53.5;C:53.5~60.5;D:60.5~67.5;E:67.5~74.5),并依据统计数据绘制了如下两幅尚不完整的统计图.
补全条形统计图,并估计我校初三年级体重介于47kg至53kg的学生大约有多少名.
23.(8分)为加快城乡对接,建设美丽乡村,某地区对A、B两地间的公路进行改建,如图,A,B两地之间有一座山.汽车原来从A地到B地需途经C地沿折线ACB行驶,现开通隧道后,汽车可直接沿直线AB行驶,已知BC=80千米,∠A=45°,∠B=30°.开通隧道前,汽车从A地到B地要走多少千米?开通隧道后,汽车从A地到B地可以少走多少千米?(结果保留根号)
24.(10分)某报社为了解市民对“社会主义核心价值观”的知晓程度,采取随机抽样的方式进行问卷调查,调查结果分为“A.非常了解”、“B.了解”、“C.基本了解”三个等级,并根据调查结果绘制了如下两幅不完整的统计图.这次调查的市民人数为________人,m=________,n=________;补全条形统计图;若该市约有市民100000人,请你根据抽样调查的结果,估计该市大约有多少人对“社会主义核心价值观”达到“A.非常了解”的程度.
25.(10分)已知抛物线y=ax 2+bx+c .
(Ⅰ)若抛物线的顶点为A (﹣2,﹣4),抛物线经过点B (﹣4,0) ①求该抛物线的解析式;
②连接AB ,把AB 所在直线沿y 轴向上平移,使它经过原点O ,得到直线l ,点P 是直线l 上一动点. 设以点A ,B ,O ,P 为顶点的四边形的面积为S ,点P 的横坐标为x ,当4+62≤S≤6+82时,求x 的取值范围;
(Ⅱ)若a >0,c >1,当x=c 时,y=0,当0<x <c 时,y >0,试比较ac 与l 的大小,并说明理由. 26.(12分)平面直角坐标系xOy 中,横坐标为a 的点A 在反比例函数y 1═k
x
(x >0)的图象上,点A′与点A 关于点O 对称,一次函数y 2=mx+n 的图象经过点A′. (1)设a=2,点B (4,2)在函数y 1、y 2的图象上. ①分别求函数y 1、y 2的表达式;
②直接写出使y 1>y 2>0成立的x 的范围;
(2)如图①,设函数y 1、y 2的图象相交于点B ,点B 的横坐标为3a ,△AA'B 的面积为16,求k 的值; (3)设m=
1
2
,如图②,过点A 作AD ⊥x 轴,与函数y 2的图象相交于点D ,以AD 为一边向右侧作正方形ADEF ,试说明函数y 2的图象与线段EF 的交点P 一定在函数y 1的图象上.
27.(12分)为响应学校全面推进书香校园建设的号召,班长李青随机调查了若干同学一周课外阅读的时间t (单位:小时),将获得的数据分成四组,绘制了如下统计图(A :07t <≤,B :714t <≤,C :
1421t <≤,D :21t >),根据图中信息,解答下列问题:
(1)这项工作中被调查的总人数是多少?
(2)补全条形统计图,并求出表示A 组的扇形统计图的圆心角的度数;
(3)如果李青想从D 组的甲、乙、丙、丁四人中先后随机选择两人做读书心得发言代表,请用列表或画树状图的方法求出选中甲的概率.
参考答案
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1.C
【解析】
试题分析:过点D作DE∥a,∵四边形ABCD是矩形,∴∠BAD=∠ADC=90°,∴∠3=90°﹣∠1=90°﹣60°=30°,∵a∥b,∴DE∥a∥b,∴∠4=∠3=30°,∠2=∠5,∴∠2=90°﹣30°=60°.故选C.
考点:1矩形;2平行线的性质.
2.B
【解析】
【分析】
x+≥,再解不等式即可.
根据二次根式有意义的条件可得20
【详解】
x+≥,
解:由题意得:20
x≥-,
解得:2
故选:B.
【点睛】
此题主要考查了二次根式有意义的条件,关键是掌握二次根式中的被开方数是非负数.
3.A
【解析】
一一对应即可.
【详解】
最左边有一个,中间有两个,最右边有三个,所以选A.
【点睛】
理解立体几何的概念是解题的关键.
4.A
【解析】
解:图B、C、D中,线段MN不与直线l垂直,故线段MN的长度不能表示点M到直线l的距离;
图A中,线段MN与直线l垂直,垂足为点N,故线段MN的长度能表示点M到直线l的距离.故选A.5.A
【解析】
【分析】
直接利用积的乘方运算法则以及合并同类项法则和同底数幂的乘除运算法则分别分析得出答案.
【详解】
解:A、(ab2)2=a2b4,故此选项正确;
B、a2+a2=2a2,故此选项错误;
C、a2•a3=a5,故此选项错误;
D、a6÷a3=a3,故此选项错误;
故选:A.
【点睛】
此题主要考查了积的乘方运算以及合并同类项和同底数幂的乘除运算,正确掌握运算法则是解题关键.6.C
【解析】
【详解】
根据左视图发现最右上角共有2个小立方体,综合以上,可以发现一共有4个立方体,
主视图和左视图都是上下两行,所以这个几何体共由上下两层小正方体组成,俯视图有3个小正方形,所以下面一层共有3个小正方体,结合主视图和左视图的形状可知上面一层只有最左边有个小正方体,故这个几何体由4个小正方体组成,其体积是4.
故选C.
【点睛】
错因分析容易题,失分原因:未掌握通过三视图还原几何体的方法.
7.D
作BE⊥OA于点E.则AE=2-(-3)=5,△AOD≌△BEA(AAS),
∴OD=AE=5,
2222
3534
AD AO OD
∴=+=+=,
∴正方形ABCD的面积是343434
=,故选D.
8.C
【解析】
【分析】
根据分式和二次根式有意义的条件进行解答.
【详解】
解:依题意得:x2≥1且x≠1.
解得x≠1.
故选C.
【点睛】
考查了分式有意义的条件和二次根式有意义的条件.解题时,注意分母不等于零且被开方数是非负数.9.B
【解析】
【分析】
分别根据有理数的加、减、乘、除运算法则计算可得.
【详解】
解:A、1+(﹣2)=﹣(2﹣1)=﹣1,结果为负数;
B、1﹣(﹣2)=1+2=3,结果为正数;
C、1×(﹣2)=﹣1×2=﹣2,结果为负数;
D、1÷(﹣2)=﹣1÷2=﹣1
2
,结果为负数;
故选B.【点睛】
本题主要考查有理数的混合运算,熟练掌握有理数的四则运算法则是解题的关键. 10.C 【解析】
解:由题意得:226x +=,∴24x =,∴x=±1.故选C . 11.C 【解析】
(1)∵∠DAC=∠DBC=30°, ∴∠AOC=∠BOC=60°, 又∵OA=OC=OB ,
∴△AOC 和△OBC 都是等边三角形, ∴OA=AC=OC=BC=OB ,
∴四边形OACB 是菱形;即A 选项中的条件可以判定四边形OACB 是菱形; (2)∵OA ∥BC ,OB ∥AC , ∴四边形OACB 是平行四边形, 又∵OA=OB ,
∴四边形OACB 是菱形,即B 选项中的条件可以判定四边形OACB 是菱形;
(3)由OC 和AB 互相垂直不能证明到四边形OACB 是菱形,即C 选项中的条件不能判定四边形OACB 是菱形;
(4)∵AB 与OC 互相平分, ∴四边形OACB 是平行四边形, 又∵OA=OB ,
∴四边形OACB 是菱形,即由D 选项中的条件能够判定四边形OACB 是菱形. 故选C. 12.C 【解析】
试题解析:在Rt △ABO 中, ∵BO=30米,∠ABO 为α, ∴AO=BOtanα=30tanα(米). 故选C .
考点:解直角三角形的应用-仰角俯角问题.
二、填空题:(本大题共6个小题,每小题4分,共24分.) 13.22262x xy y z -++ 【解析】
试题分析:依题意知(
)
()
524334
325243343212332x y x y x y x y z x y x y x y x y z ⎛⎫-⎛⎫
--÷-=--⨯ ⎪ ⎪⎝⎭⎝⎭
=22262x xy y z -++ 考点:整式运算
点评:本题难度较低,主要考查学生对整式运算中多项式计算知识点的掌握。

同底数幂相乘除,指数相加减。

14.6 【解析】 【分析】
根据正六边形的外接圆半径和正六边形的边长将组成一个等边三角形,即可求解. 【详解】
解:正6边形的中心角为360°÷6=60°,那么外接圆的半径和正六边形的边长将组成一个等边三角形, ∴边长为6的正六边形外接圆半径是6,故答案为:6. 【点睛】
本题考查了正多边形和圆,得出正六边形的外接圆半径和正六边形的边长将组成一个等边三角形是解题的关键. 15.π﹣1. 【解析】 【分析】
连接CD ,作DM ⊥BC ,DN ⊥AC ,证明△DMG ≌△DNH ,则S 四边形DGCH =S 四边形DMCN ,求得扇形FDE 的面积,则阴影部分的面积即可求得. 【详解】
连接CD ,作DM ⊥BC ,DN ⊥AC .
∵CA=CB ,∠ACB=90°,点D 为AB 的中点,∴DC=
1
2
AB=1,四边形DMCN 是正方形,
则扇形FDE 的面积是:
2
902360
π⨯=π. ∵CA=CB ,∠ACB=90°,点D 为AB 的中点,∴CD 平分∠BCA . 又∵DM ⊥BC ,DN ⊥AC ,∴DM=DN .
∵∠GDH=∠MDN=90°,∴∠GDM=∠HDN .在△DMG 和△DNH 中,∵DMG DNH
GDM HDN DM DN ∠=∠⎧⎪
∠=∠⎨⎪=⎩

∴△DMG ≌△DNH (AAS ),∴S 四边形DGCH =S 四边形DMCN =1. 则阴影部分的面积是:π﹣1.
故答案为π﹣1.
【点睛】
本题考查了三角形的全等的判定与扇形的面积的计算的综合题,正确证明△DMG≌△DNH,得到S四边形DGCH
=S四边形DMCN是关键.
16.9n+1.
【解析】
【分析】
【详解】
∵第1个图由1个正六边形、6个正方形和6个等边三角形组成,
∴正方形和等边三角形的和=6+6=12=9+1;
∵第2个图由11个正方形和10个等边三角形组成,
∴正方形和等边三角形的和=11+10=21=9×2+1;
∵第1个图由16个正方形和14个等边三角形组成,
∴正方形和等边三角形的和=16+14=10=9×1+1,
…,
∴第n个图中正方形和等边三角形的个数之和=9n+1.
故答案为9n+1.
17.45°
【解析】
【分析】
运用正n边形的中心角的计算公式360
n

计算即可.
【详解】
解:由正n边形的中心角的计算公式可得其中心角为360
45
8

=︒,
故答案为45°.
【点睛】
本题考查了正n边形中心角的计算.
18.6﹣π
【解析】
过F 作FM ⊥BE 于M ,则∠FME=∠FMB=90°,
∵四边形ABCD 是正方形,AB=2,
∴∠DCB=90°,DC=BC=AB=2,∠DCB=45°,
由勾股定理得:2,
∵将线段CD 绕点C 顺时针旋转90°得到线段CE ,线段BD 绕点B 顺时针旋转90°得到线段BF , ∴∠DCE=90°,2,∠FBE=90°-45°=45°,
∴BM=FM=2,ME=2,
∴阴影部分的面积
BCD BFE DCE DBF S S S S S =++-V V 扇形扇形=12×2×2+12×4×2+2902360π⨯290(22)π⨯=6-π. 故答案为:6-π.
点睛:本题考查了旋转的性质,解直角三角形,正方形的性质,扇形的面积计算等知识点,能求出各个部分的面积是解此题的关键.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19.-1
【解析】
【分析】
原式利用乘方的意义,特殊角的三角函数值,零指数幂法则计算即可求出值.
【详解】
解:原式=﹣4+1+1+1=﹣1.
【点睛】
此题考查了实数的运算,熟练掌握运算法则是解本题的关键.
20.原不等式组的解集为﹣4<x≤1,在数轴上表示见解析.
【解析】
分析:根据解一元一次不等式组的步骤,大小小大中间找,可得答案
详解:解不等式①,得x >﹣4,
解不等式②,得x≤1,
把不等式①②的解集在数轴上表示如图

原不等式组的解集为﹣4<x≤1.
点睛:本题考查了解一元一次不等式组,利用不等式组的解集的表示方法是解题关键.
21.(1)①2;②3;(2)AD=BC;(3)作图见解析;BC=4;
【解析】
【分析】
(1)①根据等边三角形的性质可得出AB=AC=1、∠BAC=60,结合“旋补三角形”的定义可得出
AB′=AC′=1、∠B′AC′=120°,利用等腰三角形的三线合一可得出∠ADC′=90°,通过解直角三角形可求出AD的长度;
②由“旋补三角形”的定义可得出∠B′AC′=90°=∠BAC、AB=AB′、AC=AC′,进而可得出△ABC≌△AB′C′(SAS),根据全等三角形的性质可得出B′C′=BC=6,再利用直角三角形斜边上的中线等于斜边的一半即可求出AD的长度;(2)AD=BC,过点B′作B′E∥AC′,且B′E=AC′,连接C′E、DE,则四边形AC C′B′
为平行四边形,根据平行四边形的性质结合“旋补三角形”的定义可得出∠BAC=∠AB′E、BA=AB′、
CA=EB′,进而可证出△BAC≌△AB′E(SAS),根据全等三角形的性质可得出BC=AE,由平行四边形的对角线互相平分即可证出AD=BC;(3)作AB、CD的垂直平分线,交于点P,则点P为四边形ABCD
的外角圆圆心,过点P作PF⊥BC于点F,由(2)的结论可求出PF的长度,在Rt△BPF中,利用勾股定理可求出BF的长度,进而可求出BC的长度.
【详解】
(1)①∵△ABC是等边三角形,BC=1,
∴AB=AC=1,∠BAC=60,
∴AB′=AC′=1,∠B′AC′=120°.
∵AD为等腰△AB′C′的中线,
∴AD⊥B′C′,∠C′=30°,
∴∠ADC′=90°.
在Rt△ADC′中,∠ADC′=90°,AC′=1,∠C′=30°,
∴AD=AC′=2.
②∵∠BAC=90°,
∴∠B′AC′=90°.
在△ABC和△AB′C′中,,
∴△ABC≌△AB′C′(SAS),
∴B′C′=BC=6,
∴AD=B′C′=3.
故答案为:①2;②3.
(2)AD=BC.
证明:在图1中,过点B′作B′E∥AC′,且B′E=AC′,连接C′E、DE,则四边形ACC′B′为平行四边形.∵∠BAC+∠B′AC′=140°,∠B′AC′+∠AB′E=140°,
∴∠BAC=∠AB′E.
在△BAC和△AB′E中,,
∴△BAC≌△AB′E(SAS),
∴BC=AE.
∵AD=AE,
∴AD=BC.
(3)在图1中,作AB、CD的垂直平分线,交于点P,则点P为四边形ABCD的外接圆圆心,过点P 作PF⊥BC于点F.
∵PB=PC,PF⊥BC,
∴PF为△PBC的中位线,
∴PF=AD=3.
在Rt△BPF中,∠BFP=90°,PB=5,PF=3,
∴BF==1,
∴BC=2BF=4.
【点睛】
本题考查了等边三角形的性质、等腰三角形的判定与性质、平行四边形的性质、解直角三角形、勾股定理以及全等三角形的判定与性质,解题的关键是:(1)①利用解含30°角的直角三角形求出AD=AC′;②牢
记直角三角形斜边上的中线等于斜边的一半;(2)构造平行四边形,利用平行四边形对角线互相平分找出AD=AE=BC;(3)利用(2)的结论结合勾股定理求出BF的长度.
22.576名
【解析】
试题分析:根据统计图可以求得本次调查的人数和体重落在B组的人数,从而可以将条形统计图补充完整,进而可以求得我校初三年级体重介于47kg至53kg的学生大约有多少名.
试题解析:
本次调查的学生有:32÷16%=200(名),
体重在B组的学生有:200﹣16﹣48﹣40﹣32=64(名),
补全的条形统计图如右图所示,
我校初三年级体重介于47kg至53kg的学生大约有:1800×64
200
=576(名),
答:我校初三年级体重介于47kg至53kg的学生大约有576名.
23.(1)开通隧道前,汽车从A地到B地要走2)千米;(2)汽车从A地到B地比原来少走的路程为23)]千米.
【解析】
【分析】
(1)过点C作AB的垂线CD,垂足为D,在直角△ACD中,解直角三角形求出CD,进而解答即可;
(2)在直角△CBD中,解直角三角形求出BD,再求出AD,进而求出汽车从A地到B地比原来少走多少路程.
【详解】
(1)过点C作AB的垂线CD,垂足为D,
∵AB⊥CD,sin30°=CD
BC
,BC=80千米,
∴CD=BC•sin30°=80×1
2
=40(千米),
AC=
CD
402
sin45︒
=(千米),
AC+BC=80+
1
-
8
(千米),
答:开通隧道前,汽车从A地到B地要走(80+
1
-
8
)千米;
(2)∵cos30°=BD
BC
,BC=80(千米),
∴BD=BC•cos30°=80×
3
=403
2
(千米),
∵tan45°=CD
AD
,CD=40(千米),
∴AD=
CD
40
tan45︒
=(千米),
∴AB=AD+BD=40+403(千米),
∴汽车从A地到B地比原来少走多少路程为:AC+BC﹣AB=80+
1
-
8
﹣40﹣403=40+40(23)
-(千
米).
答:汽车从A地到B地比原来少走的路程为[40+40(23)
-]千米.
【点睛】
本题考查了勾股定理的运用以及解一般三角形,求三角形的边或高的问题一般可以转化为解直角三角形的问题,解决的方法就是作高线.
24.(1)500,12,32;(2)补图见解析;(3)该市大约有32000人对“社会主义核心价值观”达到“A.非常了解”的程度.
【解析】
【分析】
(1)根据项目B 的人数以及百分比,即可得到这次调查的市民人数,据此可得项目A ,C 的百分比;(2)
根据对“社会主义核心价值观”达到“A .非常了解”的人数为:32%×500=160,补全条形统计图;(3)根据
全市总人数乘以A 项目所占百分比,即可得到该市对“社会主义核心价值观”达到“A 非常了解”的程度的人数.
【详解】
试题分析:
试题解析:(1)280÷
56%=500人,60÷500=12%,1﹣56%﹣12%=32%, (2)对“社会主义核心价值观”达到“A .非常了解”的人数为:32%×
500=160, 补全条形统计图如下:
(3)100000×32%=32000(人),
答:该市大约有32000人对“社会主义核心价值观”达到“A .非常了解”的程度.
25.(Ⅰ)①y=x 2+3x ②当22时,x 142-232-或3222≤x≤212
(Ⅱ)ac≤1 【解析】
【分析】
(I )①由抛物线的顶点为A (-2,-3),可设抛物线的解析式为y=a (x+2)2-3,代入点B 的坐标即可求出a 值,此问得解,②根据点A 、B 的坐标利用待定系数法可求出直线AB 的解析式,进而可求出直线l 的解析式,分点P 在第二象限及点P 在第四象限两种情况考虑:当点P 在第二象限时,x <0,通过分割图形求面积法结合22,即可求出x 的取值范围,当点P 在第四象限时,x >0,通过分割图形求面积法结合2,即可求出x 的取值范围,综上即可得出结论,(2)由当x=c 时y=0,可得出b=-ac-1,由当0<x <c 时y >0,可得出抛物线的对称轴x=2b a
-
≥c,进而可得出b≤-2ac,结合b=-ac-1即可得出ac≤1. 【详解】
(I)①设抛物线的解析式为y=a(x+2)2﹣3,
∵抛物线经过点B(﹣3,0),
∴0=a(﹣3+2)2﹣3,
解得:a=1,
∴该抛物线的解析式为y=(x+2)2﹣3=x2+3x.
②设直线AB的解析式为y=kx+m(k≠0),
将A(﹣2,﹣3)、B(﹣3,0)代入y=kx+m,
得:,解得:,
∴直线AB的解析式为y=﹣2x﹣2.
∵直线l与AB平行,且过原点,
∴直线l的解析式为y=﹣2x.
当点P在第二象限时,x<0,如图所示.
S△POB=×3×(﹣2x)=﹣3x,S△AOB=×3×3=2,
∴S=S△POB+S△AOB=﹣3x+2(x<0).
∵3+6≤S≤6+2,
∴,即,
解得:≤x≤,
∴x的取值范围是≤x≤.
当点P′在第四象限时,x>0,
过点A作AE⊥x轴,垂足为点E,过点P′作P′F⊥x轴,垂足为点F,则
S四边形AEOP′=S梯形AEFP′﹣S△OFP′=•(x+2)﹣•x•(2x)=3x+3.
∵S△ABE=×2×3=3,
∴S=S四边形AEOP′+S△ABE=3x+2(x>0).
∵3+6≤S≤6+2,
∴,即,
解得:≤x≤,
∴x的取值范围为≤x≤.
综上所述:当3+6≤S≤6+2时,x的取值范围为是≤x≤或≤x≤.
(II)ac≤1,理由如下:
∵当x=c时,y=0,
∴ac2+bc+c=0,
∵c>1,
∴ac+b+1=0,b=﹣ac﹣1.
由x=c时,y=0,可知抛物线与x轴的一个交点为(c,0).
把x=0代入y=ax2+bx+c,得y=c,
∴抛物线与y轴的交点为(0,c).
∵a>0,
∴抛物线开口向上.
∵当0<x<c时,y>0,
∴抛物线的对称轴x=﹣≥c,
∴b≤﹣2ac.
∵b=﹣ac﹣1,
∴﹣ac﹣1≤﹣2ac,
∴ac≤1.
【点睛】
本题主要考查了待定系数法求二次(一次)函数解析式、三角形的面积、梯形的面积、解一元一次不等式组、二次函数图象上点的坐标特征以及二次函数的性质,解题的关键是:(1)①巧设顶点式,代入点B的坐标求出a值,②分点P在第二象限及点P在第四象限两种情况找出x的取值范围,(2)根据二次函数图象上点的坐标特征结合二次函数的性质,找出b=-ac-1及b≤-2ac.
26.(1)y1=8
x
,y2=x﹣2;②2<x<4;(2)k=6;(3)证明见解析.
【解析】
分析:(1)由已知代入点坐标即可;
(2)面积问题可以转化为△AOB面积,用a、k表示面积问题可解;(3)设出点A、A′坐标,依次表示AD、AF及点P坐标.
详解:(1)①由已知,点B(4,2)在y1═k
x
(x>0)的图象上
∴k=8
∴y 1=8x
∵a=2
∴点A 坐标为(2,4),A′坐标为(﹣2,﹣4)
把B (4,2),A (﹣2,﹣4)代入y 2=mx+n 得,
2=42m n m n +⎧⎨-=-+⎩
, 解得12m n =⎧⎨=-⎩
, ∴y 2=x ﹣2;
②当y 1>y 2>0时,y 1=8x
图象在y 2=x ﹣2图象上方,且两函数图象在x 轴上方, ∴由图象得:2<x <4;
(2)分别过点A 、B 作AC ⊥x 轴于点C ,BD ⊥x 轴于点D ,连BO ,
∵O 为AA′中点,
S △AOB =12
S △AOA′=8 ∵点A 、B 在双曲线上
∴S △AOC =S △BOD
∴S △AOB =S 四边形ACDB =8
由已知点A 、B 坐标都表示为(a ,
k a )(3a ,3k a ) ∴1()2823k k a a a
⨯+⨯=, 解得k=6;
(3)由已知A (a ,k a ),则A′为(﹣a ,﹣k a
). 把A′代入到y=12x n +,得:﹣1=2
k a n a -+, ∴n=12k a a -,
∴A′B 解析式为y=﹣1122k x a a +-. 当x=a 时,点D 纵坐标为k a a
-, ∴AD=2k a a - ∵AD=AF ,
∴点F 和点P 横坐标为22+
=k k a a a a
-, ∴点P 纵坐标为1211222
k k a a a a ⨯+-=. ∴点P 在y 1═k x (x >0)的图象上. 点睛:本题综合考查反比例函数、一次函数图象及其性质,解答过程中,涉及到了面积转化方法、待定系数法和数形结合思想.
27.(1)50人;(2)补全图形见解析,表示A 组的扇形统计图的圆心角的度数为108°;(3)
12
. 【解析】
分析:(1)、根据B 的人数和百分比得出样本容量;(2)、根据总人数求出C 组的人数,根据A 组的人数占总人数的百分比得出扇形的圆心角度数;(3)、根据题意列出树状图,从而得出概率.
详解:(1)被调查的总人数为19÷
38%=50人; (2)C 组的人数为50﹣(15+19+4)=12(人),
补全图形如下:
表示A 组的扇形统计图的圆心角的度数为360°
×1550
=108°; (3)画树状图如下,
共有12个可能的结果,恰好选中甲的结果有6个, ∴P (恰好选中甲)=61122
=. 点睛:本题主要考查的是条形统计图和扇形统计图以及概率的计算法则,属于基础题型.理解频数、频率与样本容量之间的关系是解题的关键.。

相关文档
最新文档