基于阿尔奇定律的双重介质模型溶质运移试验研究

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

河南科技
Henan Science and Technology
化工与材料工程
总第873期第2期2024年1月
收稿日期:2023-06-07
基金项目:“一带一路”水与可持续发展科技基金项目(2021490511)。

作者简介:江文彬(1995—),男,硕士生,研究方向:水文地质;丁力(1996—),男,硕士生,研究方向:地
质工程与地质资源。

通信作者:闫亚景(1986—),女,博士,讲师,研究方向:岩土力学和斜坡稳定性研究。

基于阿尔奇定律的双重介质模型溶质运移试验
研究
江文彬


闫亚景
江承阳
吕玲君
孙天宇
(华北水利水电大学,河南
郑州
450046)

要:【目的】由于天然孔隙介质中存在物理化学非均质性,在这种复杂的非均质性含水层中,以
往的现场试验数据显示溶质在非均质介质运移过程中无法用菲克扩散定律对流弥散方程(Advection-Dispersion Equation ,ADE )来描述。

本研究采用高密度电法证实溶质在非均质介质中非菲克运移。

【方法方法】本研究采用石英砂、沸石两种不同基质构建双重介质物理模型(Models of Dual-Domain Mass Transfer ,DDMT ),采用高密度电法测定系统ERT21实时检测和采集数据,在实验室利用Nacl 溶液开展示踪试验,利用阿尔奇定律分析溶质运移试验研究。

【结果】试验结果浓度
穿透曲线在后期发生“拖尾”现象;在沸石柱实验中,观察到流体电导率(σf )和体积电导率(σb )之间的滞后现象,这表明流体在不可动领域和可动领域之间的交换。

而在沙子柱试验中,未观察到σf 和σb 之间的滞后现象,可以忽略质量传递行为;滞后现象的形状与大小由水动力学特征和基质属性控制,水动力学是影响拖尾时长的因素之一,渗透系数会影响溶质运移的过程。

【结论】通过试验观察和地球物理数据分析,直接量化了实验室尺度下的异常质量传递行为,通过地球物理方法测量的导电率(σb )对于移动和不动领域都具有敏感性,从而提供了与标准采样方法相比的独特优势。

关键词:双重介质模型;阿尔奇定律;流动域;不动域;高密度电阻率法中图分类号:P641
文献标志码:A
文章编号:1003-5168(2024)02-0080-06
DOI :10.19968/ki.hnkj.1003-5168.2024.02.015
Experimental Study on Solute Transport in Dual Porosity Model Based
on Archie ´s Law
JIANG Wenbin
DING Li YAN Yajing JIANG Chengyang LYU Lingjun SUN Tianyu
(North China University of Water Resources and Electric Power,Zhengzhou 450046,China)
Abstract:[Purposes ]Due to the physical and chemical heterogeneity in natural porous media,conven⁃
tional field test data indicates that solute transport in such complex,heterogeneous aquifers cannot be de⁃scribed by the Advection-Dispersion Equation (ADE)of Fick diffusion.This study employs high-density electrical methods to confirm non-Fickian solute transport in heterogeneous media.[Methods ]The study constructs dual-domain mass transfer models by two different substrates,quartz sand,and zeolite.The
ERT21system is employed for real-time monitoring and data collection through high-density electrical methods.Tracer experiments with sodium chloride solution are conducted in the laboratory,and the solute
transport experiments are analyzed using Archie´s law.[Findings ]The experiment reveals a "tail"phe⁃nomenon in the concentration breakthrough curve during the later stages.In the zeolite column experi⁃ment,a lag between fluid electrical conductivity (σf )and bulk electrical conductivity (σb )is observed,indicating exchanges between immobile and mobile domains.In the sand column experiment,no lag be⁃tween σf and σb is observed,suggesting negligible mass transfer behavior.The shape and size of the lag phenomenon are controlled by hydrodynamic characteristics and matrix properties,with hydraulic char⁃acteristics being one of the factors affecting the duration of the tailing.Permeability influences the solute transport process.[Conclusions ]Through experimental observation and geophysical data analysis,this study quantifies abnormal mass transfer behavior at the laboratory scale.The conductivity measured through geophysical methods (σb )is sensitive to both mobile and immobile domains,offering unique ad⁃
vantages compared to standard sampling methods.Keywords:dual porosity model;Archie´s law;mobile domains;immobile domains;high-density resistiv⁃
ity method 0
引言
溶质在饱和多孔介质中的示踪剂试验通常显示出异常的非菲克示踪剂运移,包括前期示踪剂突破、质量高估和低估、拖尾现象及浓度随时间逐渐降低和后期升高。

其特征是污染物的储存和反弹,或采样后一段时间内污染物浓度的明显增加。

这些特性通常通过移动的孔隙空间的传送和取样来实现观察,并且这些传输特性无法用基于菲克扩散定律的对流—弥散方程(Adrection —Dispersion Equation ,ADE )来描述非反应性溶质经过长期迁移后的浓度时空分布,如图1所示。

例如:实验室设计的均匀砂柱穿透试验。

对于传统溶质,在空间某点上随时间观察到浓度(浓度突破曲线)几乎呈高斯分布[1-3]。

然而大量野外和实验室的穿透曲线通常显示异常的示踪剂早期突破,拖尾或随时间的推移浓度逐渐升高[4-7]。

由于多孔介质的非均质性或裂隙介质特性,溶质在迁移过程中,空间浓度分布明显偏离高斯对称分布,同时位移方差也会随时间呈非线性增长,此时不能用传
统ADE 来解释溶质运移[8],这种反常迁移过程为非菲克弥散(Non-Fickion Dispersion )。

因此,了解这种异常运输的原因和影响对于地下水管理显得尤其重要,对地下水修复和含水层储存和恢复也起着重要作用[9]。

为了更合理地解释非菲克行为,相关学者已经提出了不同复杂性的运输模型。

从简单的速率限制双重介质模型[10](Dual-Domain Single-kate mass Transfer ,DDMT )到存在描述异常传输的更复杂的模型,包括在空间上非局部的分数对流-色散方程模型[11-12]和在时间上非局部的,包括连续时间随机游走模型[13-14](Continuous Time Ran-dom Walk ,CTRW )。

本研究基于简单的概念模型双重介质模型(DDMT ),其最初是由Barenblatt 等[10]于1960年提
出,该模型将含水层划分为动域和不动域[10,15-17]
,并
提出了溶质运移。

在这个概念模型中,对流发生在移动域和不动域中,溶质迁移在动域以对流为主,在不动域以扩散为主,假设溶质活动域和不动域之间的质量交换可以用单一的速率表征[18-20]。

其中溶质被捕获到缓慢释放回移动域,导致非菲克运输[21]。

这种缓慢而延长的释放是DDMT 模型中拖尾和污染物存储和反弹的来源。

DDMT 模型的优势在于其简单性,但对于其他模型来说可能太过于简单,传质速率和长度尺度的分布比假定的一个速率更合适,并且这个过程可以用多速率传质模型来解释[22-24]。

DDMT 模型可能在模拟浓度历史方面不及这些更复杂的模型,但是当将高密度电法与标准流体样品结合试验时,对异常的运输行为进行解释就具有了简便性。

高密度电法[25]集电测深和电剖面装置于一体,可以有效地探测密闭模型电阻率。

基于电法具有实
图1溶质穿透曲线
非菲克迁移菲克迁移浓度/(g ·m L -1)
1.00.80.60.40.20
0.5
1.0
1.5
2.0
时间/h
时、无损、便捷的特性,并具有在水文地质方面的应用以及在环境污染监测方面的优势,国内外学者开始关注电法在多孔介质中溶质运移的运用。

近年来,随着地球物理方法在水文地质和工程勘察领域应用的不断发展,高密度电法的研究取得了很大的进展。

本研究在分析研究现状的基础上,构建基于石英砂、沸石两种不同基质的双重介质物理模型,使用Nacl 溶液作为示踪剂开展基质属性、水动力学特征对溶质运移的影响试验。

本研究为研究污染物在地下水中的迁移过程及修复提供参考。

1
试验材料及方法1.1
材料表征
实验室的示踪试验选用石英砂、沸石作为基质进行溶质试验,选用的石英砂的密度为2.64g·cm -3,选用四种(a )0.3~0.5mm 、(b )0.5~2mm 、(c )2.8~4.0mm 、(d )8.0~10.0mm 不同粒径的石英砂。

沸石的粒径在0.4~5.0mm 之间,平均粒径为8~10mm 。

具体如图2所示。

相较于石英砂的单峰孔径分布,沸石介质的孔径分布呈多范围、多峰值的特点,说明沸石内部孔道更为发达,内部结构更为复杂。

石英砂颗粒表面均匀,颗粒内部无孔隙。

而沸石表面粗糙,颗粒内部则有很多大小不一的小孔。

1.2
柱子试验
该试验采用的装置如图3所示,其由长36cm 、内径10cm 的亚克力有机玻璃管制成。

在装置外部布置五个电极,垂直间距3cm ,电极对称中间布置电导电极管和布置两根测压管。

试验装置采用一进一出,用氯化钠溶液作为离子示踪剂,使用蠕动泵从柱底向上注入溶液,调节转速控制试验的水流流速。

记录测压管水头,通过量筒测量出水口在一定时间段内的流量,分别算出不同条件下的渗透率。

试验前需要将沸石多次清洗,避免内部黏土对试验产生影响[13]。

试验过程中采用高密度电法,电导电极管
测定的电阻率值与溶质浓度成正比。

通过以上步骤,即完成了一轮试验。

通过调节不同转速,可以分析沸石中溶质的运移规律,并在不同粒径下,研究石英砂中溶质的运移规律。

1.3
监测方法
该项工作使用高密度电法测定系统ERT21(南京九州勘探技术公司研制开发)和电化学分析仪器电导电极管(上海仪电科学仪器股份有限公司提供)完成电导率的测量工作。

本研究由电导电极测定液体的电导率定义为流体电导率。

电阻率量测及分
析系统主要由电阻测定装置、不锈钢电极、数据采集及分析程序组成。

试验采用的电极为铜棒电极,长度为50mm ,直径为4mm ,电极尺寸相对模型尺寸较小,对试验测定的结果干扰可以忽略不计。

高密度电法基本工作原理与常规电阻率法大体相同,该试验采用四线法测电阻,高密度电法测试方法有很多,本研究采用四线法测电阻率,即由两个电流电极、两个电势电极计算得到电阻率值,并通过扫描测定方法,按预先设定的电极组合进行测定,得到不同区域范围内介质视电阻率大小及空间分布。

常用的四线电极排列方式有偶极排列(dipole-dipole array )和温纳排列(wenner array ),如图4所示。

在供电电极(A 和B )间通入大小为I(A )的电流,并测量任意两电位电极(M 和N )处的电位差ΔU(V ),得到M 和N 处均匀介质电阻率(Ω·m ),见式(1)、式(2)。

ρ=∆U MN I æèççççççççö
ø
÷÷÷÷
÷÷÷÷2π1MA -1MB +1NB -1NA =Κ∆U MN I (1)图2石英砂和沸石材料
A
B
C
D
E
F
图3试验装置
电导
率管
测压管
内部网络
蠕动泵供水测量电极
K =

1MA -1MB +1NB -1
NA
(2)
式中:I为注入的电流,A ;ΔU 是M 和N 之间的
测量电位,V ;K 为装置系数,与电极排布方式等有关。

MA 、MB 、NB 和NA 分别表示电极M 和A 、M 和B 、N 和B 以及N 和A 之间的相对间距,m 。

由以上方法
得到的电阻率反映深度为电势电极间距、位置为电势电极间连线中点处介质的综合导电性,称为视电阻率。

根据电导率与电阻率的倒数关系,将由Linux 系统下量测的电导率定义为体电导率。

根据阿尔奇定律,σf 和σb 之间最常用的关系是经验公式见式(3)[26]。

σb =ασf θm
(3)
式中:α为曲折度的无量纲拟合参数;m 为胶结因子。

2
结果与分析
2.1不同基质
示踪剂在两种基质中的穿透曲线如图5所示。

由图5可知,示踪剂穿过石英砂时,穿透曲线比较对称,体电导率与流体电导率呈线性关系。

说明水流经过石英砂时流动状态比较均匀,而示踪剂穿过沸石介时,穿透曲线是不对称,有明显拖尾现象,体电导率与流体电导率呈明显的非线性关系。

水流经过沸石介质时,由于沸石内部孔隙复杂不均,导致流动状态是不均的;相较于石英砂,试验数据显示了一个非线性、滞后的体电导率和流体电导率之间的关系,与对流—弥散定律和阿尔齐定律相矛盾。

2.2
不同流速
以0.4g/L 和1.20g/L 两种不同浓度的氯化钠溶液作为离子示踪剂进行溶质运移试验。

基于电法测定系统温纳方法测定的电阻率值的倒数算出体电导率值(σb )和依靠电导率信号采集系统测量流体电导
率(σf ),
两者同步测量。

分别绘出电导率随时间变化的关系曲线,如图5、图6所示。

在分选良好不同粒径的砂柱中,σb 和σf 几乎同时变化,但粒径越小,后期拖尾越小。

由图6可知,在沸石材料中,对不同流速下试验结果电导率—时
60mL/min
120mL/min 150mL/min
210mL/min
0.3~0.5mm 0.5~2.0mm 2.8~4.0mm
8.0~10.0mm
图4温纳排列及偶极排列
(a )温纳排列
A (+I )
B (-I )
M
N
ΔU MN
ΔU MN
N M
B (-I )A (+I )(b )偶极排列
(b )不同流速下体电导率与流体电导率滞后程度
图6不同速率沸石试验结果
30002500200015001000500
电导率/(μs /c m )
4
8
12
16
2024283236
40
4448
时间/h
(a )不同流速下沸石电导率值随时间变化
流体电导率/(μs/cm )
120011001000900
800
60mL/min 120mL/min
150mL/min 210mL/min 体电导率/(μs /c m )
8001000120014001600180020002200240026002800
30002500200015001000500电导率/(μs /c m )
时间/h
(a )同一流速,不同粒径下电导率值随时间变化
(b )同一流速,不同粒径下体电导率与流体电导率滞后程度
0.3~0.5mm 0.5~2mm 2.8~4.0mm 8.0~10.0mm
800750700650600550500450
400
体电导率/(μs /c m )
80010001200140016001800200022002400260028003000
流体电导率/(μs/cm )
4
8
12
16
20
24283236
40
44
48
图5
不同粒径石英砂试验结果
间曲线进行分析,σb 和σf 出现明显的拖尾现象(图6a )。

且流速越小,拖尾时间越长。

σb 和σf 之间随时间变化,流速越小,滞后越明显(图6b )。

3
讨论
同一流速、同一粒径条件下,沸石和石英砂试验结果表明,沸石示踪剂试验中的滞后现象是固定域与移动域之间质量交换的证据,在石英砂中没有观察到滞后符合对流—弥散现象,如图7所示。

石英砂化学物质是纯二氧化硅,有内部孔隙可以作为固定域与移动域储存和释放溶质。

粒径越小就会出现类似的滞后现象,是由于越小粒径中固定孔隙率越小导致溶质短暂储存,这种固定域与移动域之间的质量交换可以忽略。

4
结论
本研究通过高密度电法仪器对多孔介质中溶质运移进行了实时试验并对试验结果进行了分析,得出以下结论。

①试验结果证实,体电导率值(σb )与流体电导
率(σf )可以用来直接解释的传质性能。

在沸石示踪
剂测试中观察到的体电导率值(σb )与流体电导率(σf )之间的滞后是动域和不动域之间溶质交换的证据,并且不能被解释为大规模的异质性。

在砂柱中,没有观察到体电导率值(σb )与流体电导率(σf )之间的滞后,与对流—弥散现象可以忽略不计的运输现象相一致。

②试验证实了DDMT 模型中流动性较小的孔隙
空间不仅是一个拟合参数,地球物理方法可以监测溶质交换进出这种流动性较小的孔隙空间。

地球
物理方法提供了一种快速、无创的方法来跟踪溶质的运输。

③证实沸石示踪剂试验中体电导率和流体电导
率之间的滞后现象是由于是固定域和移动域之间质量交换;流速和孔隙空间是影响质量交换的因素,流速越小,孔隙度越低,交换速率越慢则拖尾越久。

参考文献:
[1]CHILDS E C.Dynamics of fluids in Porous Media [J ].Engineering Geology ,1973,7(2):174-175.
[2]BRIAN B ,HARVEY S.Springer Netherlands [M ].Dordrecht :Springer Netherlands ,2001:241-263.
[3]BEAR J.Dynamics of fluids in porous media [J ].
(a )石英砂电阻率值随时间变化
(b )沸石电阻率值随时间变化
(c )石英砂体电导率与流体电导率滞后程度(d )沸石体电导率与流体电导率滞后程度
30002500200015001000500
电导率/(μs /c m )
时间/h
4
8
12
16
20
24
28
32
36
40流体电导率体电导率
30002500200015001000500
电导率值(μs /c m )时间/h
048121620
2428
3236404448
流体电导率
体电导率
800750700650600550500450400
体电导率/(μs /c m )
流体电导率/(μs/cm )
800
1000120014001600180020002200240026002800
120011001000900800
体电导率/(μs /c m )
流体电导率/(μs/cm )
800
1000120014001600180020002200240026002800
图7同一粒径、同一流速石英砂与沸石试验结果
American Elsevier Pub.Co.,1972.
[4]任理,秦耀东,王济.非均质饱和土壤盐分优先运移的随机模拟[J].土壤学报,2001(1):104-113.
[5]任理,王济,秦耀东.非均质土壤饱和稳定流中盐分运移的传递函数模拟[J].水科学进展,2000(4):392-400.
[6]王开丽,黄冠华.二维强非均质含水层中渗透系数空间变异对污染物迁移的影响[J].水利学报,2010,41(4):437-445.
[7]BIANCHI M,ZHENG C M,WILSON C,et al.Spa‐tial connectivity in a highly heterogeneous aquifer:from cores to preferential flow paths[J].Water Resour Res,2011,47(5):05524-1,18.
[8]郭芷琳,马瑞,张勇,等.地下水污染物在高度非均质介质中的迁移过程:机理与数值模拟综述[J].中国科学:地球科学,2021,51(11):1817-1836.
[9]CULKIN S L,SINGHA K,DAY-LEWIS F D.Impli‐cations of rate-limited mass transfer for aquifer storage and re‐covery[J].Ground Water,2008,46(4):591-605.
[10]BARENBLATT G I,ZHELTOV I P,KOCHINA I N. Basic concepts in the theory of seepage of homogeneous liq‐uids in fissured rocks[J].Journal of Applied Mathematics and Mechanics,1960,24(5):1286-1303.
[11]MEERSCHAERT M M,BENSON D A,BÄUMER B.Multidimensional advection and fractional dispersion[J]. Physical Review E,1999,59(5):5026-5028.
[12]BENSON D A,WHEATCRAFT S W,MEERSCHA-ERT M M.Application of a fractional advection‐dispersion equation[J].Water Resour Res,2000,36(6):1403-1412.
[13]DENTZ M,BERKOWITZ B.Transport behavior of a passive solute in continuous time random walks and multi‐rate mass transfer[J].Water Resour Res,2003,39(5).
[14]BERKOWITZ B,CORTIS A,DENTZ M,et al. Modeling non‐fickian transport in geological formations as a continuous time random walk[J].Reviews of Geophysics,2006,44(2).
[15]GARDNER R W,BROOKS H R.A descriptive theory of leaching[J].Soil Sci,1957,83(4):295-304.
[16]DEANS H A.A mathematical model for dispersion
in the direction of flow in porous media[J].Society of Petro‐leum Engineers Journal,1963,3(1):49-52.
[17]COATS K H,SMITH B D.Dead-end pore volume and dispersion in porous media[J].Society of Petroleum Engi‐neers Journal,1964,4(1):73-84.
[18]FEEHLEY E C,ZHENG C,MOLZ J F.A dual‐domain mass transfer approach for modeling solute transport in heterogeneous aquifers:application to the macrodispersion experiment(MADE)site[J].Water Resour Res,2000,36(9):2501-2515.
[19]ZHENG C M,GORELICK S M.Analysis of solute transport in flow fields influenced by preferential flowpaths at the decimeter scale.[J].Ground Water,2003,41(2):142-155.
[20]ZHENG C M,BIANCHI M,GORELICK S M.Les‐sons learned from25years of research at the MADE site.[J]. Ground Water,2011,49(5):649-662.
[21]GENUCHTEN M T H,WIERENGA P J.Mass transfer studies in sorbing porous Media I.Analytical solutions [J].Wiley,1974,44(4):473-480.
[22]HAGGERTY R,GORELICK S M.Multiple-rate mass transfer for modeling diffusion and surface reactions in media with pore-scale heterogeneity[J].Water Resources Re‐search,1995,31(10):2383-2400.
[23]CARRERA J,SÁNCHEZ-VILA X,BENET I,et al. On matrix diffusion:formulations,solution methods and qualitative effects[J].Hydrogeology Journal,1998,6(1):178-190.
[24]HAGGERTY R,MCKENNAS A,MEIGS L C.On the late‐time behavior of tracer test breakthrough curves[J]. Water Resour Res,2000,36(12):3467-3479.
[25]闫亚景,闫永帅,赵贵章,等.基于高密度电法的天然边坡水分运移规律研究[J].岩土力学,2019,40(7):2807-2814.
[26]ARCHIE G E.The electrical resistivity log as an aid in determining some reservoir characteristics[J].Transactions of the AIME,1942,146(1):54-62.。

相关文档
最新文档