措勤县第二中学2018-2019学年高二上学期数学期末模拟试卷含解析

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

措勤县第二中学2018-2019学年高二上学期数学期末模拟试卷含解析 班级__________ 座号_____ 姓名__________ 分数__________
一、选择题
1. 如图,在正六边形ABCDEF 中,点O 为其中心,则下列判断错误的是( )
A . =
B .∥
C .
D .
2. 已知函数f (x )=a x +b (a >0且a ≠1)的定义域和值域都是[﹣1,0],则a+b=( )
A .﹣
B .﹣
C .﹣
D .﹣或﹣
3. 函数f (x )=kx +b
x +1,关于点(-1,2)对称,且f (-2)=3,则b 的值为( )
A .-1
B .1
C .2
D .4
4. 在平面直角坐标系中,把横、纵坐标均为有理数的点称为有理点.若a 为无理数,则在过点P (a ,﹣)的所有直线中( )
A .有无穷多条直线,每条直线上至少存在两个有理点
B .恰有n (n ≥2)条直线,每条直线上至少存在两个有理点
C .有且仅有一条直线至少过两个有理点
D .每条直线至多过一个有理点
5. 函数f (x )=x 2﹣2ax ,x ∈[1,+∞)是增函数,则实数a 的取值范围是( ) A .R
B .[1,+∞)
C .(﹣∞,1]
D .[2,+∞)
6. 如图,正方体ABCD ﹣A 1B 1C 1D 1的棱线长为1,线段B 1D 1上有两个动点E ,F ,且EF=,则下列结论
中错误的是( )
A .AC ⊥BE
B .EF ∥平面ABCD
C .三棱锥A ﹣BEF 的体积为定值
D .异面直线A
E ,B
F 所成的角为定值
7. 执行如图所示的程序框图,如果输入的t =10,则输出的i =( )
A .4
B .5
C .6
D .7 8. sin3sin1.5cos8.5,,的大小关系为( )
A .sin1.5sin3cos8.5<<
B .cos8.5sin3sin1.5<< C.sin1.5cos8.5sin3<<
D .cos8.5sin1.5sin3<<
9. 已知点P (1,﹣),则它的极坐标是( )
A .
B .
C .
D .
10.如果集合 ,A B ,同时满足{}{}{}{}1,2,3,41,1,1A
B B A B =≠≠,A =,就称有序集对
(),A B 为“ 好集对”. 这里有序集对(),A B 是指当A B ≠时,(),A B 和(),B A 是不同的集对, 那么
“好集对” 一共有( )个
A .个
B .个
C .个
D .个 11.已知命题“p :∃x >0,lnx <x ”,则¬p 为( )
A .∃x ≤0,lnx ≥x
B .∀x >0,lnx ≥x
C .∃x ≤0,lnx <x
D .∀x >0,lnx <x
12.命题“若a >b ,则a ﹣8>b ﹣8”的逆否命题是( )
A .若a <b ,则a ﹣8<b ﹣8
B .若a ﹣8>b ﹣8,则a >b
C .若a ≤b ,则a ﹣8≤b ﹣8
D .若a ﹣8≤b ﹣8,则a ≤b
二、填空题
13.已知数列{}n a 中,11a =,函数32
12()3432
n n a f x x x a x -=-
+-+在1x =处取得极值,则 n a =_________.
14.设x ,y 满足约束条件
,则目标函数z=2x ﹣3y 的最小值是 .
15.【盐城中学2018届高三上第一次阶段性考试】已知函数f (x )=lnx -m
x
(m ∈R )在区间[1,e]上取得最小值4,则m =________.
16.已知函数为定义在区间[﹣2a ,3a ﹣1]上的奇函数,则a+b= .
17.设函数f (x )=
,则f (f (﹣2))的值为 .
18.将全体正整数排成一个三角形数阵:按照以上排列的规律,第n 行(n ≥3)从左向右的第3个数为 .
三、解答题
19.(本小题满分12分)
已知圆C :02
2
=++++F Ey Dx y x 的圆心在第二象限,半径为2,且圆C 与直线043=+y x 及y 轴都
相切.
(1)求F E D 、、;
(2)若直线022=+-y x 与圆C 交于B A 、两点,求||AB .
20.对于定义域为D的函数y=f(x),如果存在区间[m,n]⊆D,同时满足:
①f(x)在[m,n]内是单调函数;
②当定义域是[m,n]时,f(x)的值域也是[m,n].
则称[m,n]是该函数的“和谐区间”.
(1)证明:[0,1]是函数y=f(x)=x2的一个“和谐区间”.
(2)求证:函数不存在“和谐区间”.
(3)已知:函数(a∈R,a≠0)有“和谐区间”[m,n],当a变化时,求出n﹣m的最大值.
21.已知圆C:(x﹣1)2+y2=9内有一点P(2,2),过点P作直线l交圆C于A,B两点.
(1)当l经过圆心C时,求直线l的方程;
(2)当弦AB被点P平分时,求直线l的方程.
22.某种产品的广告费支出x与销售额y(单位:百万元)之间有如下对应数据:
x 2 4 5 6 8 y 30 40 60 50
70
(1)画出散点图; (2)求线性回归方程;
(3)预测当广告费支出7(百万元)时的销售额.
23.【常州市2018届高三上武进区高中数学期中】已知函数()()2
21ln f x ax a x x =+--,R a ∈.
⑴若曲线()y f x =在点()()
1,1f 处的切线经过点()2,11,求实数a 的值; ⑵若函数()f x 在区间()2,3上单调,求实数a 的取值范围; ⑶设()1
sin 8
g x x =,若对()10,x ∀∈+∞,[]20,πx ∃∈,使得()()122f x g x +≥成立,求整数a 的最小值.
24.解不等式|2x ﹣1|<|x|+1.
措勤县第二中学2018-2019学年高二上学期数学期末模拟试卷含解析(参考答案) 一、选择题
1. 【答案】D
【解析】
解:由图可知,
,但
不共线,故

故选D .
【点评】本题考查平行向量与共线向量、相等向量的意义,属基础题.
2. 【答案】B
【解析】解:当a >1时,f (x )单调递增,有f (﹣1)
=+b=﹣1,f (0)=1+b=0,无解; 当0<a <1时,f (x )单调递减,有f (﹣1)
==0,f (0)=1+b=﹣1,
解得
a=,b=﹣2; 所以
a+b==
﹣;
故选:B
3. 【答案】
【解析】解析:选B.设点P (m ,n )是函数图象上任一点,P 关于(-1,2)的对称点为Q (-2-m ,4-n ),
则⎩
⎪⎨⎪⎧n =
km +b m +1
4-n =k (-2-m )+b -1-m ,恒成立.
由方程组得4m +4=2km +2k 恒成立, ∴4=2k ,即k =2,
∴f (x )=2x +b x +1,又f (-2)=-4+b -1=3,
∴b =1,故选B. 4. 【答案】C
【解析】解:设一条直线上存在两个有理点A (x 1,y 1),B (x 2,y 2),
由于
也在此直线上,
所以,当x 1=x 2时,有x 1=x 2=a 为无理数,与假设矛盾,此时该直线不存在有理点;
当x1≠x2时,直线的斜率存在,且有,
又x2﹣a为无理数,而为有理数,
所以只能是,且y2﹣y1=0,
即;
所以满足条件的直线只有一条,且直线方程是;
所以,正确的选项为C.
故选:C.
【点评】本题考查了新定义的关于直线方程与直线斜率的应用问题,解题的关键是理解新定义的内容,寻找解题的途径,是难理解的题目.
5.【答案】C
【解析】解:由于f(x)=x2﹣2ax的对称轴是直线x=a,图象开口向上,
故函数在区间(﹣∞,a]为减函数,在区间[a,+∞)上为增函数,
又由函数f(x)=x2﹣2ax,x∈[1,+∞)是增函数,则a≤1.
故答案为:C
6.【答案】D
【解析】解:∵在正方体中,AC⊥BD,∴AC⊥平面B1D1DB,BE⊂平面B1D1DB,∴AC⊥BE,故A正确;∵平面ABCD∥平面A1B1C1D1,EF⊂平面A1B1C1D1,∴EF∥平面ABCD,故B正确;
∵EF=,∴△BEF的面积为定值×EF×1=,又AC⊥平面BDD1B1,∴AO为棱锥A﹣BEF的高,∴三棱锥A﹣BEF的体积为定值,故C正确;
∵利用图形设异面直线所成的角为α,当E与D1重合时sinα=,α=30°;当F与B1重合时tanα=,∴异面
直线AE、BF所成的角不是定值,故D错误;
故选D.
7. 【答案】
【解析】解析:选B.程序运行次序为 第一次t =5,i =2; 第二次t =16,i =3; 第三次t =8,i =4;
第四次t =4,i =5,故输出的i =5. 8. 【答案】B 【解析】
试题分析:由于()cos8.5cos 8.52π=-,因为8.522
π
ππ<-<,所以cos8.50<,又()sin3sin 3sin1.5π=-<,
∴cos8.5sin3sin1.5<<. 考点:实数的大小比较.
9. 【答案】C
【解析】解:∵点P 的直角坐标为,∴ρ=
=2.
再由1=ρcos θ,﹣
=ρsin θ,可得
,结合所给的选项,可取θ=﹣

即点P 的极坐标为 (2,),
故选 C .
【点评】本题主要考查把点的直角坐标化为极坐标的方法,属于基础题.
10.【答案】B 【解析】
试题分析:因为{}{}{}{}1,2,3,41,1,1A
B B A B =≠≠,A =,所以当{1,2}A =时,{1,2,4}B =;当
{1,3}A =时,{1,2,4}B =;当{1,4}A =时,{1,2,3}B =;当{1,2,3}A =时,{1,4}B =;当{1,2,4}A =时,{1,3}B =;当{1,3,4}A =时,{1,2}B =;所以满足条件的“好集对”一共有个,故选B.
考点:元素与集合的关系的判断.
【方法点晴】本题主要考查了元素与集合关系的判断与应用,其中解答中涉及到集合的交集和集合的并集运算与应用、元素与集合的关系等知识点的综合考查,着重考查了分类讨论思想的应用,以及学生分析问题和解答问题的能力,试题有一定的难度,属于中档试题,本题的解答中正确的理解题意是解答的关键.1111]
11.【答案】B
【解析】解:因为特称命题的否定是全称命题,所以,命题“p :∃x >0,lnx <x ”,则¬p 为∀x >0,lnx ≥x .
故选:B .
【点评】本题考查命题的否定,特称命题与全称命题的否定关系,基本知识的考查.
12.【答案】D
【解析】解:根据逆否命题和原命题之间的关系可得命题“若a >b ,则a ﹣8>b ﹣8”的逆否命题是:若a ﹣8≤b ﹣8,则a ≤b . 故选D .
【点评】本题主要考查逆否命题和原命题之间的关系,要求熟练掌握四种命题之间的关系.比较基础.
二、填空题
13.【答案】1
231n --
【解析】

点:1、利用导数求函数极值;2、根据数列的递推公式求通项公式.
【方法点晴】本题主要考查等比数列的定义以及已知数列的递推公式求通项,属于中档题.由数列的递推公式求通项常用的方法有:累加法、累乘法、构造法,形如1(0,1)n n a qa p p q -=+≠≠的递推数列求通项往往用构造法,利用待定系数法构造成1()n n a m q a m -+=+的形式,再根据等比数例求出{}n a m +的通项,进而得出{}n a 的通项公式. 14.【答案】 ﹣6 .
【解析】解:由约束条件
,得可行域如图,
使目标函数z=2x ﹣3y 取得最小值的最优解为A (3,4), ∴目标函数z=2x ﹣3y 的最小值为z=2×3﹣3×4=﹣6. 故答案为:﹣6.
15.【答案】-3e 【解析】f ′(x )=1x +2m x =2
x m x +,令f ′(x )=0,则x =-m ,且当x<-m 时,f ′(x )<0,f (x )单调递减,
当x>-m 时,f ′(x )>0,f (x )单调递增.若-m ≤1,即m ≥-1时,f (x )min =f (1)=-m ≤1,不可能等于4;
若1<-m ≤e ,即-e ≤m<-1时,f (x )
min =f (-m )=ln (-m )+1,令ln (-m )+1=4,得m =-e 3(-e ,-
1);若-m>e ,即m<-e 时,f (x )min =f (e )=1-m e ,令1-m
e
=4,得m =-3e ,符合题意.综上所述,m
=-3e.
16.【答案】 2 .
【解析】解:∵f(x)是定义在[﹣2a,3a﹣1]上奇函数,∴定义域关于原点对称,
即﹣2a+3a﹣1=0,
∴a=1,
∵函数为奇函数,
∴f(﹣x)==﹣,
即b•2x﹣1=﹣b+2x,
∴b=1.
即a+b=2,
故答案为:2.
17.【答案】﹣4.
【解析】解:∵函数f(x)=,
∴f(﹣2)=4﹣2=,
f(f(﹣2))=f()==﹣4.
故答案为:﹣4.
18.【答案】3+.
【解析】解:本小题考查归纳推理和等差数列求和公式.前n﹣1行共有正整数1+2+…+(n﹣1)个,
即个,
因此第n行第3个数是全体正整数中第3+个,
即为3+.
故答案为:3+.
三、解答题
19.【答案】(1) 22=D ,24-=E ,8=F ;(2)2=AB . 【解析】

题解析:(1)由题意,圆C 方程为2)()(2
2
=-+-b y a x ,且0,0><b a ,
∵圆C 与直线043=+y x 及y 轴都相切,∴2-=a ,
25
|
43|=+b a ,∴22=b , ∴圆C 方程为2)22()2(2
2=-++y x ,
化为一般方程为0824222
2=+-++y x y x ,
∴22=D ,24-=E ,8=F .
(2)圆心)22,2(-C 到直线022=+-y x 的距离为12
|
22222|=+--=d ,
∴21222||22=-=-=d r AB . 考点:圆的方程;2.直线与圆的位置关系.1 20.【答案】
【解析】解:(1)∵y=x 2
在区间[0,1]上单调递增.
又f (0)=0,f (1)=1, ∴值域为[0,1],
∴区间[0,1]是y=f (x )=x 2
的一个“和谐区间”.
(2)设[m ,n]是已知函数定义域的子集.
∵x ≠0,[m ,n]⊆(﹣∞,0)或[m ,n]⊆(0,+∞),
故函数
在[m ,n]上单调递增.
若[m ,n]是已知函数的“和谐区间”,则
故m 、n 是方程
的同号的相异实数根.
∵x 2
﹣3x+5=0无实数根,
∴函数不存在“和谐区间”.
(3)设[m ,n]是已知函数定义域的子集.
∵x ≠0,[m ,n]⊆(﹣∞,0)或[m ,n]⊆(0,+∞),
故函数在[m,n]上单调递增.
若[m,n]是已知函数的“和谐区间”,则
故m、n是方程,即a2x2﹣(a2+a)x+1=0的同号的相异实数根.
∵,
∴m,n同号,只须△=a2(a+3)(a﹣1)>0,即a>1或a<﹣3时,
已知函数有“和谐区间”[m,n],
∵,
∴当a=3时,n﹣m取最大值
21.【答案】
【解析】
【分析】(1)求出圆的圆心,代入直线方程,求出直线的斜率,即可求直线l的方程;
(2)当弦AB被点P平分时,求出直线的斜率,即可写出直线l的方程;
【解答】解:(1)已知圆C:(x﹣1)2+y2=9的圆心为C(1,0),因为直线l过点P,C,所以直线l的斜率为2,所以直线l的方程为y=2(x﹣1),即2x﹣y﹣2=0.
(2)当弦AB被点P平分时,l⊥PC,直线l的方程为,即x+2y﹣6=0.
22.【答案】
【解析】解:(1)
(2)
设回归方程为=bx+a
则b=
﹣5
/
﹣5
=1380﹣5×5×50/145﹣5×52
=6.5
故回归方程为=6.5x+17.5
(3)当x=7时, =6.5×7+17.5=63,
所以当广告费支出7(百万元)时,销售额约为63(百万元).
【点评】本题考查线性回归方程的求法和应用,本题解题的关键是利用最小二乘法求出线性回归方程的系数,
这是解答正确的主要环节.
23.【答案】⑴2a =⑵11,,64
⎛⎤⎡⎫-∞⋃+∞ ⎪⎥⎢⎝
⎦⎣⎭
⑶2
【解析】试题分析:(1)根据题意,对函数f x ()求导,由导数的几何意义分析可得曲线y f x =() 在点11f (,())处的切线方程,代入点
211(,),计算可得答案; (2)由函数的导数与函数单调性的关系,分函数在(23,)
上单调增与单调减两种情况讨论,综合即可得答案; (3)由题意得,2min max f x g x +≥()(), 分析可得必有()()215
218
f x ax a x lnx +--≥
= ,对f x ()求导,对a 分类讨论即可得答案. 试题解析:

()()()
211'ax x f x x
-+=

∴若函数()f x 在区间()2,3上单调递增,则210y ax =-≥在()2,3恒成立,
410{
610a a -≥∴-≥,得1
4
a ≥;
若函数()f x 在区间()2,3上单调递减,则210y ax =-≤在()2,3恒成立,
410{
610a a -≤∴-≤,得1
6
a ≤,
综上,实数a 的取值范围为11,,64⎛
⎤⎡⎫-∞⋃+∞ ⎪⎥⎢⎝




⑶由题意得,()()min max 2f x g x +≥,
()max 1
28g x g π⎛⎫== ⎪⎝⎭,
()min 158f x ∴≥,即()()215
21ln 8
f x ax a x x =+--≥,
由()()()()()2
22112111'221ax a x ax x f x ax a x x x
+---+=+--==, 当0a ≤时,
()10f <,则不合题意; 当0a >时,由()'0f x =,得1
2x a
=或1x =-(舍去),
当1
02x a <<时,()'0f x <,()f x 单调递减,
当12x a
>时,()'0f x >,()f x 单调递增.
()min 115
28
f x f a ⎛⎫∴=≥ ⎪⎝⎭,即117ln 428a a --≥,
整理得,()117
ln 2228a a -⋅≥,
设()1ln 2h x x x =-,()2
11
02h x x x
∴=+>',()h x ∴单调递增, a Z ∈,2a ∴为偶数,
又()172ln2
48h =-<,()17
4ln488
h =->,
24a ∴≥,故整数a 的最小值为2。

24.【答案】
【解析】解:根据题意,对x 分3种情况讨论: ①当x <0时,原不等式可化为﹣2x+1<﹣x+1, 解得x >0,又x <0,则x 不存在, 此时,不等式的解集为∅.
②当
时,原不等式可化为﹣2x+1<x+1,
解得x>0,又,
此时其解集为{x|}.
③当时,原不等式可化为2x﹣1<x+1,解得,
又由,
此时其解集为{x|},
∅∪{x|}∪{x|}={x|0<x<2};
综上,原不等式的解集为{x|0<x<2}.
【点评】本题考查绝对值不等式的解法,涉及分类讨论的数学思想,关键是用分段讨论法去掉绝对值,化为与之等价的不等式来解.。

相关文档
最新文档