六年级数学下册课件-4.1.2 比例的基本性质2-人教版
六年级数学下册课件-4.1.2 比例的基本性质-人教版
4.5∶2.7 = 10 ∶6
内项 外项
6 ∶10 = 9 ∶15
内项 外项
2、指出下面比例的外项和内项
。
(外项)
3
2
(内项)
(内项)
=9
6
(外项)
(外项) (内项)
1.8 = 0.6
1.5
0.5
(内项) (外项)
3:2=9:6
1.8 : 1.5 = 0.6 : 0.5
计算比例中两个外项和两个内项的积,你发现了什么?
30 ≠ 24 所以: 6∶3 和 8∶5
不能组成比例.
做一做
应用比例的基本性质,判断下面两个比 能不能组成比例.
34 1.2∶ 4 和 5 ∶5
因为: 1.2 × 5 = 6
3 ×4 = 3 455
6≠ 3
所以: 1.2∶43
5 和
54∶5
不能组成比例.
知识回顾:
3、判断下面每组中的两个比能否组成比例?
(1) 6:15 和 8:20
因为 6 :15 2 5
8
:
20
2 5
2 5
2 5
所以 6 :15 8 :20
根据比例的意义判断:
因为158 120 620 120 120 120
所以 6 :15 8 :20
根据比例的基本性质判断:
知识回顾:
4、判断下面每组中的两个比能否组成比例?
(2) 8:2和1:4
a 3 b 5
2、判断。
(1)在比例中,两个外项的积减去两个
内项的积,差是0。( )
(2)18:30和3:5可以组成比例。( )
√ (3)如果4X=3Y,(X和Y均不为0),
六年级下册数学课件-4.1(第2课时)比例的基本性质(共22张PPT)人教版
六年级下册数学课件-4.1(第2课时) 比例的 基本性 质(共2 2张PPT )人教 版
六年级下册数学课件-4.1(第2课时) 比例的 基本性 质(共2 2张PPT )人教 版
巩固练习
1.Байду номын сангаас应用比例的基本性质,判断下面哪组中的两个比可以组成比例。
(1)6:3和8:5
(2)0.2:2.5和4:50
解: 6×5=30 3×8=24 不能组成比例
人教版 六年级数学下册 第4单元 比例
4.1 比例的意义和基本性质(第2课时)
比例的基本性质
复习导入
1、比例的意义:像这样表示两个比相等的式子叫做比例。
2、比和比例之间的异同点:
意义 项数 举例
比 两个数相除
2
2:3 10:15
比例 两个比相等的式子
4
2:3=10:15
式子
等式
3、注意:判断两个比能否组成比例时:
①、判断两个比的比值是否相等
②、一定要注意单位名称
复习导入
1、应用比例的意义,判断哪两个比可以组成比例。
6∶3和8∶5
0.2∶2.5和4∶50
2、尝试写出几个比值是1.5的比
2.4:1.6=1.5 60:40=1.5
你能把它们组成比例吗?
2.4:1.6=60:40
六年级下册数学课件-4.1(第2课时) 比例的 基本性 质(共2 2张PPT )人教 版
解: 0.2×50=10 2.5×4=10 0.2:2.5=4:50 可以组成比例
易错点
比和比例有什么联系和区别?
比
比例
意义 两个数相除又叫做两个数的比 表示两个比相等的式子
各部分名称
6:2=3 前项 后项 比值
人教版六年级数学下册《比例的基本性质》课件PPT.
内项积: 1 × 6 = 2 3
0.6 ∶0.2 = 3 ∶ 1 44
外项积: 0.6 × 1 = 0.15 4
内项积: 0.2 × 3 = 0.15 4
例题
80 ∶ 2 = 200 ∶5
内项 外项
外项积是:80 × 5 = 400 内项积是:2 × 200=400
2 × 200= 80 × 5
在比例里,两个外项的积等于两个内项的积.
2 ∶3 = 4 ∶6
6 ∶4 = 3 ∶2
2 ∶4 = 3 ∶6
6 ∶3 = 4 ∶2
4 ∶2 = 6 ∶3
3 ∶6 = 2 ∶4
4 ∶6 = 2 ∶3
3 ∶2 = 6 ∶4
拓展
(1)在比例里,两个内项的积是18,
其中一个外项是2,另一个外项是(9)。
(2)如果5a=3b,那么,ab
=
(3) , (5)
不能组成比例.
做一做
应用比例的意义或者基本性质,判断下面哪组中 的两个比可以组成比例.
1.4∶2 和 7∶10
比例的意义:
比例的基本性质:
因为: 1.4 ∶ 2 =0.7
因为: 1.4 × 10 = 14
7∶10 = 0.7
2 × 7 = 14
0.7 = 0.7
14 = 14
所以: 1.4∶2 和 7∶10 所以: 1.4∶2 和 7∶10
这叫做比例的基本性质.
做一做
应用比例的基本性质,判断下面哪组中的两个比 可以组成比例.
6∶3 和 8∶5
0.2∶2.5 和 4∶50
因为: 6 × 5 = 30
因为: 0.2 × 50 = 10
3 × 8 = 24
2.5 × 4 = 10
六年级数学下册课件-4.1.2 比例的基本性质 -人教版(共13张PPT)
学习目标
1.理解并掌握比的基本性质。 2.能应用比的基本性质化简比。 教学重点:比的基本性质,化简比的方法。 教学难点:化简比与求比值的区别。
复习导入
你还记得除法中有什么性质? 分数中又有什么性质吗?
2÷3=(2×2)÷(3×2)=4÷6
在除法里,被除数和除数同时乘(或除以) 一个相同的数(0除外),商0.75︰2
0.75︰2 =(0.75×100)︰(2×100)
=75︰200
=3︰8
不管哪种方法,最后的结果应该是一个 最简的整数比,而不是一个数。
求比值和化简比。
比
最简单的整数比
25 ∶100 ∶
4.2∶1.4
1∶4 5∶3 3∶1
比值
0.25
3
课堂小结
你学会了哪 些知识?
运用比的基本性质,我们可以把比化成最简单 的整数比。
4︰6 = 2︰3
前项、后项同时除以2
前、后项必须是 整数,而且互质。
情景导入
(1) “神舟”五号搭载了两面联合国旗, 一面长15cm,宽10cm,另一面长180cm, 宽120cm。
这两面联合国旗 长和宽的最简单整 数比是分别是多少?
(1) “神舟”五号搭载了两面联合国旗,一 面长15cm,宽10cm,另一面长180cm,宽 120cm。
15︰10 = (15÷5) ︰(10÷5) =3︰2
同时除以15和10的最大公约数
180︰120 = (180÷60) ︰(120÷60) =3︰2
同时除以180和120的最大公约数
(2)把下面各比化成最简单的整数比。
12 6︰ 9
同时乘6和9的最小公倍数
12 6︰ 9
=(16
六年级数学下册课件-4.1.2 比例的基本性质-人教版(共21张PPT)
2.4 60 1.6 40
2.4 × 40= 1.6 × 60
在分数形式的比例中,等号两端的 分子和分母分别交叉相乘,积相等。
5 25 2 10
5 × 10= 2 × 25
在分数形式的比例中,等号两端的 分子和分母分别交叉相乘,积相等。
在比例里,两个外项的积等于两 个内项的积,这叫做比例的基本 性质。
如果用字母表示比例的四个项, 即a:b=c:d,那么根据比例的基本
性质可以写成__a_d__=_b_c_____。
如果把比例写成分数形式,请你 说一说外项和内项。
2.4 60
1.6 40
内项
外项
如果把比例写成分数形式,请你 说一说外项和内项。
分子、分母交叉相乘的积有什么关系?
2.4 60 1.6 40
内项
外项
做一做
指出下面比例的外项和内项.
4.5∶2.7 = 10 ∶6
内项 外项
11
∶=
6 ∶4
23
6 ∶10 = 9 ∶15
内项 外项
0.6 ∶0.2 = 3 ∶ 1 44
内项 外项
内项 外项
内项
外项
组成比例的两个外项和两个内项,你发现有 什么关系?
两个外项的积是:3 × 4 = 12 两个内项的积是:6× 2 = 12
比例的基本性质
复习 :
什么是比例? 什么样的两个比才能组成比例?
比和比例有什么区别?
比是表示两个数相除,是一个式子, 只有两个项。
比例是表示两个比相等的式子, 是一个等式,有四个数。
应用比例的意义,判断哪两个比可以组成比例。(1) 6∶10和源自∶156∶10 = 9∶15
人教版六年级下册数学 第2课时 比例的基本性质课件
探索与发现
2.4 : 1.6 = 60 : 40
内项
外项
如果把上面的比例写成分数形式:2.4 60
1.6 40
2.4和40仍然是外项,1.6和60仍然是内项。
( 外项 )(内项)
2.4 60 1.6 40
(内项)(外项)
1.6×60 = 2.4×40
探索与发现
2.4∶1.6 = 60∶40 2.4 60 1.6 40
1.6×60 = 2.4×40
在比例里,两个外项的积等于两个内项 的积,这叫做比例的基本性质。
学以致用
指出下面比例的外项和内项。
4.5 : 2.7 = 10 : 6
内项 外项
1 2
:1 3
=
12
:
8
内项
外项
学以致用
填空。
(1)在a:7=9:b中,(7、9)是内项,(a、b)是外
项,a×b=( 63 )。
(2)一个比例的两个内项分别是3和8,则两个外项
的积是( 24 ),两个外项可能是(4)和(6)。
(3)在一个比例里,两个外项互为倒数,那么两个
内项的积是( 是( 7 )。
1
),如果一个外项是
3 7
,另一个外项
3
(4)在比例里,两个内项的积是18,其中一个外项
是2,另一个外项是( 9 ) 。
学以致用
1.认识比例各部分的名称,理 解比例的基本性质。
2.会根据比例的基本性质判断 两个比是否可以组成比例。
探索与发现 组成比例的四个数,叫做比例的项。两端的两项叫
做比例的外项,中间的两项叫做比例的内项。
例如: 2.4 ∶1.6 = 60 ∶40
内项 外项
六年级数学下册课件-4.1.2 比例的基本性质22-人教版
把图A按比例放大得到图B,按 比例缩小得到图C。根据图中的
数据组成比例。
6厘米 9厘米 3厘米
8厘米
12厘米
4厘米
谢谢
(1)14:21和 6:9(2)43 :130和125 :1
(3)9 :30和12 :15(4)1.4 :2和7:10
改动一个数字ቤተ መጻሕፍቲ ባይዱ组成 比例
学校航模小组有男生18人,女生15人; 美术组有男生24人,女生20人。
(1)航模组男、女生人数的比和美术 组男、女生人数的比能组成比例吗? (2)如果可以组成比例,指出比例的 内项和外项。
3.6 :1.8=0.5 :025 0.5 :0.25=3.6 :1.8
哪一组中的四个数可以组成比例? 把组成的比例写出来。
(1)6、4、18和12 (2)4、5、6和8 6:4=18 :12 4:6=12 :18
4 :12=6:18 12:4=18 :6
应用比例的基本性质,判断下面哪 几组的两个比可以组成比例。把组 成的比例写出来。
比例的基本性质
3 :6 = 2 :4
内项
外项
2 :4=3 :6 3 :2=6 :4 2 :3=4 :6
观察这些比例,你有什么发现?
在比例里,两个外项的积等于两
个内项的积 ?
如果5用:4字=1母5:表12示比0.例2:的1=四0.个6:项3 , 律即可31以a ::表b41示=成c= :32 d:,a×21那b么=c这×个d 规
比例的基本性质
在比例里,两个内项的积等 于两个外项的积,这叫做比 例的基本性质。
3 :6=2 : 4 32
=
64
应用比例的基本性质,判断下面 的两个比能否组成比例。如能组成
六年级数学下册课件-4.1.2比例的基本性质12-人教版
第1篇一、总则为确保施工现场的安全,预防高处坠落事故的发生,根据《建设工程安全生产管理条例》、《中华人民共和国特种设备安全法》等相关法律法规,结合施工现场实际情况,特制定本规定。
二、适用范围本规定适用于所有进入施工现场的安全网及其配件的检验工作。
三、检验机构1. 施工单位应委托具有相应资质的检验机构进行安全网的进场检验。
2. 检验机构应具备以下条件:- 具有独立法人资格;- 具有相应的检验资质;- 具备必要的检验设备和人员;- 具有良好的信誉和服务。
四、检验内容1. 安全网的外观质量检验:- 检查安全网是否有破损、撕裂、脱线等现象;- 检查安全网是否有明显的污渍、霉变等现象;- 检查安全网的颜色、规格是否符合要求。
2. 安全网的物理性能检验:- 检查安全网的断裂强度、抗拉强度、伸长率等物理性能是否符合国家标准;- 检查安全网的耐候性、耐腐蚀性等性能是否符合国家标准。
3. 安全网的配件检验:- 检查安全网的绳索、钩环、绳结等配件是否完好;- 检查配件的规格、型号是否符合要求;- 检查配件的质量是否符合国家标准。
4. 安全网的标识检验:- 检查安全网是否有生产厂家的标识;- 检查安全网的标识是否清晰、完整;- 检查安全网的标识是否符合国家标准。
五、检验程序1. 施工单位在安全网进场前,应向检验机构提交以下资料:- 安全网的采购合同;- 安全网的产品合格证;- 安全网的检验报告。
2. 检验机构接到资料后,应在规定时间内进行检验。
3. 检验机构完成检验后,应出具检验报告,并将检验报告提交给施工单位。
4. 施工单位收到检验报告后,应对检验结果进行确认,如对检验结果有异议,可向检验机构提出复检申请。
六、检验标准1. 安全网的外观质量应符合GB 5725-2009《安全网》的要求;2. 安全网的物理性能应符合GB 5725-2009《安全网》的要求;3. 安全网的配件应符合GB 5725-2009《安全网》的要求;4. 安全网的标识应符合GB 5725-2009《安全网》的要求。
六年级数学下册课件-4.1.2 比例的基本性质(12)-人教版
40cm 1.6cm
2.4cm
操场上的国旗:
60cm
2.4 : 1.6 = 3
2
教室里的国旗: 60 : 40 = 3
2
2.4 ︰ 1.6 = 60 ︰ 40
内项 外项 组成比例的四个数,叫做比例的项。 中间的两项叫做比例的内项,
两端的两项叫做比例的外项。
2.4 ︰ 1.6 = 60 ︰ 40
内项 外项
外项积是:2.4×40=96 内项积是:1.6×60=96
2.4︰1.6 = 60︰40
若是写成分数形式
= 2.4
60 交叉相乘
1.6
40
外项仍然是2.4×40=96 内项仍然是1.6×60=96
2.4 ︰ 1.6 = 60 ︰ 40
内项 外项
在比例里,两个外项的积等于两个内 项的积,这叫做比例的基本性质。 谁能用字母表示这个性质吗?
比例的基本性质
⒈ 什么叫做比例? 表示两个比相等的式子叫比例。
2、谁知道比的基本性质?
比的前项和后项同时乘上或除以相 同的数(0除外),比值不变。
3、应用比例的意义判断下面的 比
例是否正确。
1. 24 :6 = 2 :0.5 (√)
2.
1 5
:1 7
= 5 :7
(×)
3. 4.5 :0.9 = 1 : 1 (√) 5 25
如果把4,15看作外项
4 : 5 = 12 :15 15 : 12 = 5 :4
4 : 12 = 5 :15 15 : 5 = 12 : 4
如果把4,15看作内项
5 : 4 = 15 : 12 12 : 4 = 15 : 5 5 : 15 = 4 : 12 12 : 15 = 4 : 5
六年级数学下册课件-4.1.2 比例的基本性质(11)-人教版(共14张PPT)
课前口算,求比值:
14:28= 0.5 2.4:0.6= 4
2:10= 0.2
1 :3 = 2 23
1 :1= 4 6 83
4 : 3 = 16
5
4
15
美好情景
2:1和20:10能组成比例吗?
在2:1=20:10
2:20和1:10,还能组成比例吗?
在2:1=20:10
10:1和20:2,还能组成比例吗?
),两
个外项分别是(
),符合比例的基本性质吗?
美好交流
1.组成比例的四个数,叫做比例的( 项 )。两端的两项叫做比例的 ( 外项),中间的两项叫做比例的( 内项)。在12:2=48:8中,12 和8叫做比例的( 外项),2和48叫做比例的( 内项)。
2.自己写出一些比例,仿照例子填表。分别算一算比例中两个外项的积和两个内 项的积,你发现了什么规律?
• (1)6:3和8:5
(2)0.2:2.5和4:50
• (3)1 :1 和 1 : 1 36 2 4
31 (4)1.2:4 和 5 :5
美好拓展
1.下面的每个比例式里,两个内项的积都是1,试写出两个不同的比例。
(1)( ):a=b:( ) (2)( ):a=b:( )
可以看出所写出的
两个外项互为倒数。
a b
=
c d
,
那么ad=bc或b c=a d
3.在一个比例
6 24 7 28
中,两个内项分别是(
7和24),两
•个外项分别是( 6和28),符合比例的基本性质吗?符合
美好回顾
a:b=c:d,a、d是
外项,b、C是内项。
a b
=
c d
人教版小学数学六年级下册4.1.2比例的基本性质PPT课件 (4)
做一做 计算下面比例的外项积和内项积.
4.5∶2.7 = 10 ∶6
6 ∶10 = 9 ∶15
外项积:4.5 × 6 = 27 外项积: 6 × 15 = 90
内项积:2.7 × 10 = 27 内项积: 10 × 9 = 90
11
∶
=
6 ∶4
23
外项积: 1 × 4 = 2 2
如果把比例写成分数形式,请你 说一说外项和内项。
分子、分母交叉相乘的积有什么关系?
2.4 60
1.6
40
2.4×40 = 1.6×60
在比例里,两个外项的积等于两 个内项的积,这叫做比例的基本 性质。
巩固练习
1、应用比例的基本性质判断下面的比例是否正
确:(1)6 :3 = 8 :5
(错)
(2)0.2 :2.5 = 4 :50 (对)
(2) 20∶5和1∶4
20∶5 ≠ 1∶4
(4) 80∶2和200∶5
80∶2 = 200∶5
组成比例的四个数,叫做比例的项。 两端的两项叫做比例的外项,中间的 两项叫做比例的内项。
内项
外项
做一做
指出下面比例的外项和内项.
4.5∶2.7 = 10 ∶6
内项 外项
1
1
∶
=
6 ∶4
23
6 ∶10 = 9 ∶15
(3)2:3 = 1 :1 23
(错)
(4)1.2 :0.6 = 10 :5 (对)
2、用比例的意义判断下面的比例 是否正确:
⑴ 3 : 5 = 9 : 15
(对)
⑵ 2.5 : 5 = 25 : 0.5 (错)
⑶
六年级数学下册课件-4.1.2 比例的基本性质17-人教版
1 2
:
1 4
1 3
×
1 4
=
1 12
1 6
×
1 2
=
1 12
可以组成比例
1 3
∶
1 6
=
1 2
∶
1 4
(4) 1.2∶34
和
4 5
∶5
1.2×5=6
3 4
×
4 5
=
3 5
不能组成比例
2.括号里应该填几?
3.5 : ( 5 )=1.4 : 2
解析:根据比例的基本性质,两个外项3.5和2 的积是7,则两个内项的积也应该是7,其中 一个内项是1.4,另一个内项是7÷1.4=?。
解析:根据比例的基本性质,3和40可以是外项,也可以是内项。
3 ∶8=15 ∶4 0 3 ∶15=8 ∶40 40 ∶8=15 ∶3 40 ∶15=8 ∶3
8 ∶3=40 ∶15 8 ∶40=3 ∶15 15 ∶3=40 ∶8 15 ∶40=3 ∶8
可以应用比例的基本性质来判断两个比是否能组成比例吗? 到现在为止,判断两个比能否组成比例有几种方法?
三.巩固应用
1. 应用比例的基本性质,判断下面哪组中的
两个比可以组成比例。
(1)6 ∶3和8 ∶5(2)0.2 ∶2.5和4 ∶50
6×5=30 3×8=24
0.2×50=10 2.5×4=10
不能组成比例 可以组成比例
0.2 ∶2.5=4 ∶50
我们用比例 的基本性质 来判断吧!
(3)13
:
1和 6时 比例的基本性质
学习目标:
1.知道比例的各部分名称。 2.理解比例的基本性质。
3.学习用性质判断两个比是否能组成比例的方法,并正确 地写出比例。
六年级数学下册课件-4.1.2 比例的基本性质1-人教版
学以致用
1. 李叔叔承包了两块水稻田,面积分别 是0.5公顷和0.8公顷。秋收时,两块水稻田 的产量分别为3.75吨和6吨。
(2)如果可以组成比例,指出比例的内项和外项。
0.5:0.8=3.75: 6 内项 外项
答:比例的内项是0.8和3.75,比例的外项是0.5和6。
学以致用
1、把下面的等式改写成比例
3 ×40 = 8 ×15
2.5 ×0.4 = 0.5 × 2
学以致用
1、哪组中的四个数可以组成比例?把
组成的比例写出来。
(1)4, 5, 12 和 15 (2)2, 3, 4 和 5
(3)1.6, 6.4, 2 和 5
(4)—1—
,—1— ,—1— 和
1
——
236 4
两个外项的积是( 5)a 。
比例的基本性质:两个外项的积等于两个内项的积。
学以致用
1. 李叔叔承包了两块水稻田,面积分别 是0.5公顷和0.8公顷。秋收时,两块水稻田 的产量分别为3.75吨和6吨。
(1)两块水稻田的产量之比和面积之比,是否可以组成比例?
0.5:0.8=3.75:6 0.5×6=3 0.8×3.75=3
比例的基本性质
情景导入
你能写出几个比值是1.5的比吗?试一试吧!
2.4:1.6=1.5 60:40=1.5 4.5:3=1.5 5.4:3.6=1.5
你能把它们组成比例吗?
探索新知
2.4:1.6 =60:40
内项 外项
组成比例的四个数,叫做比例的项。两端的两 项叫做比例的外项,中间的两项叫做比例的内项。
探索新知 (一)比例各项的认识
如: 2.4:1.6=60:40
六年级数学下册课件-4.1.2 比例的基本性质3-人教版
3、如果 6:x = y:9,那么xy =( 54); 如果 a:7 = 6:b,那么ab=( 42 )。
4、如果7A=8B,那么A : B = ( 8):( 7); B : A = ( )7:( )8
第二关:明察秋毫(判一判)
1、一个比例的两个外项分别是4和5,那么内项的
积一定是20。
谢谢
因为:6×12=72 9×9=81
6×12≠9×9
1:1 和 5:1
25 84
因为:1 ×
2
1
4=
1 8
1×
5
5
8=
1 8
1×
2
1
4=
15×
5 8
所以:两个比不能组成比例 所以:两个比能组成比例,组
成的比例是:1
2
:
1 5
=
5:1 84
第四关:神机妙算(想一想)
四、已知24×3=8×9,根据比例的基本性质 ,你能写出比例吗?你能写出几个?
1
2=
2
:
8 3
内 项 外 项
6
9 内项
10 = 15
外项
内项
27 = 9 31
外项
任务二 探究比例的基本性质
思考并讨论:
1、独立计算:比例中两个外项的积和两个内项的 积分别是多少?
2、组内交流:比较一下,你能发现什么
3、全班汇报 4、举例验证 5、小结:在比例里,两个外项的积等于两个内项的积。这叫
能否组成比例。
1:1 1:1 3 62 4
因为: 1
3
×1
4
=
1 12
×1 = 1 1
2
6 12
1×
六年级数学下册教案-4.1.2,比例的基本性质2-人教版(Word最新版)
六年级数学下册教案-4.1.2,比例的基本性质2-人教版通过整理的六年级数学下册教案-4.1.2,比例的基本性质2-人教版相关文档,渴望对大家有所扶植,感谢观看!学科数学年级/册六年级下册教材版本人教版课题名称第四单元《比例的基本性质》教学目标[来源:学科网ZXXK] 如何利用新旧学问的联接点,让学生理解、驾驭比例的基本性质进行机敏的应用。
重难点分析重点分析学问点本身内容抽象,正确推断两个比是否可以组成比例,并且利用比例的基本性质把等式改写成比例式,以及求简洁的项值,该学问点涉及到倒数。
难点分析学生须要有引导的去视察规律,推理归纳性质,并且逆向思维比较薄弱。
教学方法1、通过猜一个数体会逆向思维。
2、通过猜两个数在逆向思维基础上结合直观演示推理。
教学环节教学过程导入一、复习回顾以及相识比例各部分的名称1、什么是比例?2、怎样推断两个比是否可以组成比例?3、推断下面两个比是否可以组成比例,为什么? 4、介绍比例各部分的名称2.4:1.6=60:40中,组成比例的四个数“2.4、1.6、60、40”叫做这个比例的项。
两端的两项“2.4和40”叫做比例的外项。
中间的两项1.6和60”叫做比例的內项。
【设计意图:简洁的情境,简洁的问答,精确定位教学的起点,沟通比例各部分的名称,嫁接新知探究的支点。
】学问讲解(难点突破)二、探究比例的基本性质1、猜数猜数嬉戏1 (1)这里有个比例“15∶5=□∶3”,等号右边的内项看不清了,该内项应当是什么数?[来源:] (2)你是怎样推断的?(通过算出15:5的比值3,利用比值3×外项3得出内项9。
)猜数嬉戏2 (1)老师这里也有一个比例“12∶□=□∶2”,不过它的两个內项看不清了,想一想,这两个内项可能是哪两个数?(如1和24,2和12,……)(2)为什么?(求比值推断)(3)还有不同答案吗?(4)你能举出项不是整数的例子吗?(5)这样的例子举得完吗?2、猜想细致视察这组等式,你有什么发觉?(两个外项的积等于两个内项的积;两个內项的位置可以交换……)3、验证(1)是不是全部的比例都有这样的规律呢,有什么好方法?(举例验证)(2)我们应当怎样举例呢?用2、3、4、6这四个数组成比例,你能写出几个不同比例?示范:①随意写一个简洁的比;②求出比值;③依据比值写出另一个比的一项,求出另一项;④组成比例;⑤算出外项的积和內项的积。
六年级数学下册课件-4.1.2 比例的基本性质19-人教版
比例各项的认识
2.4:1.6=60:40
内项 外项
如果把上面的比例写成分数形式: 12..64=4600
2.4和40仍然是外项,1.6和60仍然是内项。
计算下面比例中两个外项的积和两个内项的积。 比较一下,你能发现什么?
(1) 2.4:1.6=60:40 你发现了什么? 2.4× 40=96 1.6× 60=96
两个外项的积等于两 个内项的积。
计算下面比例中两个外项的积和两个内项的积。 比较一下,你能发现什么?
(2)
3 5
=
9 15
3× 15= 45
5× 9= 45
两个外项的积等于 两个内项的积。
先计算,再观察,你有什么发现吗?
你能举个例子,验证你的发现吗?
如=480
8× 60=480
比例的基本性质
在比例里,两个外项的积等于两 个内项的积。这叫做比例的基本性质。
做一做
判断下面哪组中的两个比可以组成比例。
(1)6:3和8:5
6:3=2
8:5=
8 5
不能组成比例
(2)0.2:2.5和4:50 0.2×50=10 2.5×4=10 可以组成比例 0.2:2.5=4:50
人教版六年级数学下册第四单元
比例的基本性质
复习
什么叫做比例?
表示两个比相等的式子 叫做比例。
2.4:1.6和60:40 能不能组成比例?
2.4:1.6=3
2
60:40=23
像这样表示两个比相等的式子叫做比例。
探索新知
比例各项的认识
2.4:1.6=60:40
内项 外项 组成比例的四个数,叫做比例的项。 两端的两项叫做比例的外项, 中间的两项叫做比例的内项。
4-1-2比例的基本性质(课件)- 六年级下册数学 人教版 (2)
(3) 1 : 1 和 1 :1 36 24
(4)
1.2 :
3 4
和
4 5
:5
做一做 应用比例的基本性质,判断下面哪组中的两个 比可以组成比例。
(1) 6∶3 和 8∶5
因为 6 × 5 = 30 3 × 8 = 24
所以 6∶3 和 8∶5 不能组成比例。
(2) 0.2∶2.5 和 4∶50
因为 0.2 × 50 = 10 2.5 × 4 = 10
2.4 1.6
60 40
( 内项) (外项)
能不能把这个比例改写成一个等式?
2.4 ×40 = 1.6 ×60
练习
根据比例的基本性质,把下面各比例改写成乘法算式。
0.5 5
= 0.2 2
0.5×2 =( 5 )×(0.2 )
2 5
︰
1 2
=
3 5
︰
3 4
2 5
×3 4
=( 1 2
)×(
3 5
)
8︰25=40︰125 ( 8 )×(125) = 25 40 ( )×( )
比例的基本性质
复习
回顾 一
回顾 表示二两个比相
等的式子叫做 比例。
复习
回顾 一
回顾 两 是二个 否比相的等比。值
复习
谁能来说一个比例?
自学书本41页
比例的各部分的名称
2.4 ∶1.6 = 60 ∶40
内项 外项
组成比例的四个数,叫做比例的项。 两端的两项叫做比例的外项, 中间的两项叫做比例的内项。
7
3
填一填
3、在比例里,两个内项的积是18, 其中一个外项是2,另一个外项 是( 9)。
填一填
人教版六年级下册数学4.2 比例的基本性质(课件)
24-6=18
18:( )=9:3
答:第二项变成6才能使等式成立。
6.根据比例24:8=9:3回答下列问题。
(2)如果第三项乘2,第四项应该怎样变化 才能使等式成立?
24:8=18:( )
3
6
答:第四项应该加上3或乘2才能使等式成立。
课堂回顾
前项:2 后项:5 比值:0.4
2个数组成,是个式子
两个数相除, 又叫做两个数的比
(1) 6:3 和 8:50
(2) 0.2 : 2.5 和 4 : 50
2.在括号里填上合适的数,使比例成立。
100
20
5
100
1.5
6
4
3
8
x
5
6
2.5 0.4
1.4
1.4
2.5
5.下面的括号里可以填多少?你是怎样思考的? 48
24:( 1 )=( 48 ):2
48
48
1
24 16
2 3 4
比的前项和后项同时 乘或除以相同的数 (0除外),比值不变
外项:2、10 内项:5、4
4个数组成,是个等式 表示两个比相等 的式子叫做比例
在比例里, 两个外项的积等于 两个内项的积
六年级数学下册(RJ) 教学课件
第 4 单元 比例
1. 比例的意义和基本性质 第 2 课时 比例的基本性质
教 材 内 容
复习导入
判பைடு நூலகம்下面的比能否组成比例 (1)4:2和5:2.5
因为2=2 利用比的意义进行判断 所有4:2=5:2.5
探
索 比例
新
2.4:1.6=60:40
知
比例
2.4:1.6=60:40
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
A.
1 5
:
1 8
B. 10:16 C. 3 : 5
(3) 4 : 5 与( B ) 能组成比例。
A.
1 4
:
1 5
B. 8:10 C. 15 : 12
(4) 7 : 9 与( A ) 能组成比例。
A. 70 : 90
B.
1 7
:
1 9
C.
3:4
谢谢
如果用字母表示比例的四个项, 即a:b=c:d,那么根据比例的基本
性质可以写成__a_d__=_b_c_____。
如果把比例写成分数形式,请你 说一说外项和内项。
2.4 60
1.6 40
内项
外项
如果把比例写成分数形式,请你 说一说外项和内项。
分子、分母交叉相乘的积有什么关系?
2.4 60 1.6 40
(1)6 : 3和 8 : 5 (2 ) 0.2 : 2.5和4 : 50
(3)13∶
1 6
11
=∶
24
3
(4)1.2
:
4
4 5:5
选择题(把正确答案的序号填入括号内)
(1)( C )与 3 : 5 能组成比例。
A. 10:6 B.
1 3
:
1 5
C. 30 : 50
(2)( B )与 5 : 8 能组成比例。
45∶15 ≠ 10∶6
(2) 20∶5和1∶4
20∶5 ≠ 1∶4
(4) 80∶2和200∶5
80∶2 = 200∶5
6∶10 = 9∶15
组成比例的四个数,叫做比例的项。 两端的两项叫做比例的外项,中间的 两项叫做比例的内项。
6∶10 = 9∶15 内项
外项
组成比例的四个数,叫做比例的项。 两端的两项叫做比例的外项,中间的 两项叫做比例的内项。
3 × 4 = 6× 2
例题
2.4 ∶1.6 = 60 ∶40
内项 外项
两个外项的积是:2.4 × 40 = 96 两个内项的积是:1.6× 60 = 96
2.4× 40= 1.6 × 60
做一做 计算下面比例的外项积和内项积.
4.5∶2.7 = 10 ∶6
6 ∶10 = 9 ∶15
外项积:4.5 × 6 = 27 外项积: 6 × 15 = 90
2.4×40 = 1.6×60
2.4 60 1.6 40
2.4 × 40= 1.6 × 60
在分数形式的比例中,等号两端的 分子和分母分别交叉相乘,积相等。
5 25 2 10
5 × 10= 2 × 25
在分数形式的比例中,等号两端的 分子和分母分别交叉相乘,积相等。
在比例里,两个外项的积等于两 个内项的积,这叫做比例的基本 性质。
内项积:2.7 × 10 = 27 内项积: 10 × 9 = 90
11
∶=
6 ∶4
23
外项积: 1 × 4 = 2 2
内项积: 1 × 6 = 2 3
0.6 ∶0.2 = 3 ∶ 1 44
外项积: 0.6 × 1 = 0.15 4
内项积: 0.2 × 3 4
= 0.15
在比例里,两个外项的积等于两 个内项的积,这叫做比例的基本 性质。
内项
外项
做一做
指出下面比例的外项和内项.
4.5∶2.7 = 10 ∶6
内项 外项
11
∶=
6 ∶4
23
6 ∶10 = 9 ∶15
内项 外项
0.6 ∶0.2 = 3 ∶ 1 44
内项 外项
内项 外项
内项
外项
组成比例的两个外项和两个内项,你发现有 什么关系?
两个外项的积是:3 × 4 = 12 两个内项的积是:6× 2 = 12
在分数形式的比例中,等号两端的 分子和分母分别交叉相乘,积相等。
填空:
1、在比例5 : 6=1.5 : 1.8里,外项是( )和
( ),内项是( )和( )。
2、已知
x
3
=
y
5
,
所以5 x=(
)
3、若3 x=5 y,则 x : y=( ) : ( )
应用比例的基本性质,判断下面哪组 中的两个比可以组成比例。
比例的基本性质
复习 :
什么是比例? 什么样的两个比才能组成比例?
比和比例有什么区别?
比是表示两个数相除,是一个式子, 只有两个项。
比例是表示两个比相等的式子, 是一个等式,有四个数。
应用比例的意义,判断哪两个比可以组成比例。
(1) 6∶10和9∶15
6∶10 = 9∶15
(3) 45∶15和10∶6