中考总复习+线段最值问题的方法技巧+++讲义+2023—2024学年人教版九年级数学下册+
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
线段最值问题的方法技巧
模型介绍:几何最值中比较常见的是线段最值与线段和差最值,主要来源于两个公理,一是两点之间线段最短,二是垂线段最短,由这两个公理衍生出一些基本定理和基本图形.
常用到的定理是:三角形两边之和大于第三边,两边之差小于第三边.
解题思路:利用平移、对称或旋转来变换线段和点的位置,使动点变定点,或找出动点的运动轨迹( 经常在某直线或某圆周上) ,使之符合基本定理或基本图形来求线段最值或线段和差最值.
类型1 平移变换
方法技巧基本型
平移变换线段AB平移,注意线段AB不能发生旋转,与定点或动点(一般情况下在直线上移动)之间连线组成线段和差最值,利用平行四边形的对边平行且相等来变换线段的位置.
例1、如图,已知直线b‖c,点A,B分别在直线b,c 上,且AB⊥b,C,D是平面内的两点,DE‖AB,CE‖b,若AB=2,DE=6,CE=3,求DA+AB+BC的最小值.
练习题
1、如图,OA 是⊙O的半径,OA=3,AD⊥OA,AD=7,B是⊙O上一动点,过点B作CB‖AD,且CB=1(点C 在点B 的上方),连接DC,求DC的最小值和最大值.
2、如图,直线b‖c,且两条平行线间的距离是2,C是直线b,c外一点,且点し均且线c的距离CG=4,点A,B分别在直线b,c上,且AB与直线b所夹的锐角是45°,E是直线c上一点,EG=8,且过点E的直线EF与直线c 所夹的锐角是30°,M是EF上一点,连接AM,求BC+AM 的最小值.
类型2 对称变换
方法技巧基本型
对称变换一个点或多个点在同一条直线上移动或在不同直线上移动,利用垂直平分线上的点到线段两端点的距离相等来变换线段的位置.
例1、如图,P是直线l上任意一点,A,B是直线l上方的两点,A,B两点到直线l 的距离分别是1,4即AM=1,BN=4,已知AB=5,求PA+PB的最小值.
练习题
1、如图,AB=4,P 为AB 的中点,顶点为P 且在AB 上方的两条射线PM,PN形成的夹
,求CD的最大值. 角∠MPN=120°,C是PM 上一点,D是PN上一点,且AC=3,BD=4
3
2、如图,在矩形ABCD和矩形CEFG中,AD=2AB=6,E是DC上一点,G是BC上一点,CD=3CE,BC=2CG,M是BC上一动点,连接AM,N是AM的中点,连接ND,NF,求D N−FN 的最大值.
3、问题提出
(1)如图1,点A,B分别在直线l的两侧,分别过点A,B作直线l的垂线,垂足分别为M,N,AM=2,BN=3,MN=5,P是直线l上一点,求PA+PB的最小值.
问题探究
(2)如图2,点A,B分别在直线l的同一侧,分别过点A,B作直线l的垂线,垂足分别为M,N,AM=3,BN=4,MN=7,P是直线l上一点,求PA+PB的最小值.
问题解决
(3)如图3,某市进行河滩治理,将原来一条废弃的小河通过规划后建成一条集旅游、休闲、餐饮于一体的景点.如图,OM,ON是两条互相垂直的旅游大道,A,B是位于河中的两座休闲小岛,且岛A与OM的距离为20m,与ON的距离为30m,岛B与OM的距离为40m,与ON的距离为20m.现计划在旅游大道OM处选一点P,修建桥梁PA,PB,通往A,B两岛,并修建桥梁AB,将A,B两岛连起来,计算所修建的所有桥梁的最短长度.(结果保留根号)
类型3旋转变换
方法技巧基本型
旋转变换通过旋转变换,把由三角形内一点发出的三条线段(星型线) 转化为两定点之间的折线(化星为折),再利用“两点之间,线段最短”求最小值(化折为直).
例1、问题提出:
如图1,△ABC是边长为 1 的等边三角形,P 为△ABC 内部一点,连接PA,PB,PC,求PA+PB+PC 的最小值.
方法分析:
通过旋转,可把所求问题中的PA,PB,PC 由分散变为集中,再利用“两点之间,线段最短”求最小值.
问题解决:
如图2,将△BPA绕点B逆时针旋转60°至,△BP′A′,过点A′作A′E⊥CB交CB的延长线于点E,连接PP′,A′C,设A′C与AB相交于点D,易知BA′=BA=BC=1,∠A′BC=∠A′BA+∠ABC=120°,由BP′=BP,∠P′BP=60°,知△P′BP为等边三角形,因此,PB=P′P,故PA+PB+PC=P'A'+P'P+PC,当点A′,P′,P,C共线时,PA+PB+PC最小,最小值是,A′C的长,再在Rt△A'BE 和Rt△A′CE中解直角三角形,即可求出A′C的长.
学以致用:
(1)如图3,在△ABC 中,∠BAC=30°,AB=4,CA=3,P 为△ABC 内部一点,连接PA,PB,PC,则PA+PB+PC 的最小值为;
(2)如图4,在△ABC中,∠BAC=45°,AB=2√2,CA=3,P为△ABC 内部一点,连接PA,PB,PC,则√2PA+PB+PC的最小值为 .
练习题
【问题背景】
数学活动小组在学习《确定圆的条件》时,曾遇到这样一个问题:如图1,草原上有三个放牧点,要修建一个牧民定居点,使得定居点到三个放牧点的距离相等,那么如何确定定居点的位置?
(1)请用无刻度的直尺和圆规在图2中画出定居点O的位置,使点O到点A,B,C的距离相等.(不写作法,保留作图痕迹)
【问题探索】
聪明的小智在解决这个问题之后,继续提出新的问题,如图3,在平面内是否存在一点P,使点P到△ABC三个顶点的距离之和最小?
通过不断探究,小智发现可以借助旋转的思想解决这个问题,如图4,把△APC绕点A逆时针旋转60°,得到△AP'C',连接PP',可知△APP′为等边三角形,因此PA+PB+PC=PP'+PB+P'C',由两点之间,线段最短,可知PA+PB+PC的最小值即为点B,P,P′,C′共线时线段BC′的长.【类比探究】
(2)如图5,在Rt△ABC中,∠ACB=90°,AC=1,∠ABC=30°,点P为△ABC内一点,连接AP,BP,CP,求PA+PB+PC的最小值.
【实际应用】
(3)如图6,现要在矩形公园ABCD内,选择一点P,从点P铺设三条输水管道PB,PC,PE,
要求PE⊥AD.若AB=4,BC=6,请直接写出输水管道长度的最小值.。