八年级数学上册第五章相交线与平行线单元试卷培优测试卷

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

八年级数学上册第五章相交线与平行线单元试卷培优测试卷
一、选择题
1.给出下列4个命题:①同旁内角互补;②相等的角是对顶角;③等角的补角相等;④两直线平行,同位角相等.其中,假命题的个数为( ) A .1
B .2
C .3
D .4
2.下列结论中:①同一平面内,两条不相交的直线被第三条直线所截,形成的同旁内角互补;②在同一平面内,若,//a b b c ⊥,则a c ⊥; ③直线外一点到直线的垂线段叫点到直线的距离;④同一平面内,过一点有且只有一条直线与已知直线平行,正确的个数有( ) A .1个
B .2个
C .3个
D .4个
3.已知直线12l l //,一块含60°角的直角三角板如图所示放置,125∠=︒,则2∠等于( )
A .30°
B .35°
C .40°
D .45°
4.下列说法:①垂直于同一条直线的两条直线互相平行;②相等的角是对顶角;③两条直线被第三条直线所截,同位角相等;④两点之间直线最短,其中正确的有( ) A .0个
B .1个
C .2个
D .3个
5.如图,AB ∥CD ,直线MN 与AB 、CD 分别交于点E 、F ,FG 平分∠EFD ,EG ⊥FG 于点G ,若∠CFN =110°,则∠BEG =( )
A .20°
B .25°
C .35°
D .40°
6.下列说法:①两点确定一条直线;②连接两点的线段叫做两点的距离;③两点之间,线段最短;④由两条射线组成的图形叫做角;⑤若AB =BC ,则点B 是线段AC 的中点.其中正确的有( )
A .1个
B .2个
C .3个
D .4个
7.如图,25AOB ︒∠=,90AOC ︒∠=,点B ,O ,D 在同一直线上,则COD ∠的度数为( )
A .65
B .25
C .115
D .155
8.现有以下命题:①斜边中线和一个锐角分别对应相等的两个直角三角形全等;②一组对边平行,另一组对边相等的四边形是平行四边形;③在圆中,平分弦的直径垂直于弦;④平行于同一条直线的两直线互相平行.其中真命题的个数为( ) A .1个
B .2个
C .3个
D .4个
9.如图,1∠与2∠是同位角的共有( )个
A .1个
B .2个
C .3个
D .4个
10.下列命题是真命题的有( )个 ①对顶角相等,邻补角互补
②两条直线被第三条直线所截,同位角的平分线平行 ③垂直于同一条直线的两条直线互相平行 ④过一点有且只有一条直线与已知直线平行 A .0
B .1
C .2
D .3
11.如图,直线a ∥b ,则∠A 的度数是( )
A .28°
B .31°
C .39°
D .42°
12.在如图所示的四个汽车标识图案中,能用平移变换来分析其形成过程的是( )
A .
B .
C .
D .
二、填空题
13.如图,Rt △AOB 和Rt △COD 中,∠AOB =∠COD =90°,∠B =40°,∠C =60°,点D 在
边OA 上,将图中的△COD 绕点O 按每秒10°的速度沿顺时针方向旋转一周,在旋转的过程中,在第________秒时,边CD 恰好与边AB 平行.
14.如图,将一张长方形纸片ABCD 沿EF 折叠,使顶点C ,D 分别落在点C′、D′处,C′E 交AF 于点G ,若∠CEF=64°,则∠GFD′=_____________.
15.如图,BC AE ⊥,垂足为C ,过C 作CD AB .若48ECD ∠=︒,则
B ∠=__________.
16.如图,已知AB ,CD ,EF 互相平行,且∠ABE =70°,∠ECD =150°,则∠BEC =________°.
17.如果一张长方形的纸条,如图所示折叠,那么∠α等于____.
18.一副直角三角板叠放如图①所示,现将含30角的三角板固定不动,把含45角的三角板CDE 由图①所示位置开始绕点C 逆时针旋转(a DCF α=∠且018)0a <<,使两块三角板至少有一组边平行.如图,30a =︒②时,//AB CD .
请你在图③、图④、图⑤内,各画一种符合要求的图形,标出a ,并完成各项填空: 图③中α=_______________时,___________//___________﹔图④中
α=_____________时,___________//___________﹔图⑤中α=_______________时,
___________//___________﹔
19.如图,AB ∥CD ,∠1=64°,FG 平分∠EFD ,则∠EGF=__________________°.
20.观察下列图形:已知a b ,在第一个图中,可得∠1+∠2=180°,则按照以上规律:
112n P P ∠+∠+∠++∠=…_________度.
三、解答题
21.如图1,D 是△ABC 延长线上的一点,CE //AB . (1)求证:∠ACD =∠A+∠B ;
(2)如图2,过点A 作BC 的平行线交CE 于点H ,CF 平分∠ECD ,FA 平分∠HAD ,若∠BAD =70°,求∠F 的度数.
(3)如图3,AH //BD ,G 为CD 上一点,Q 为AC 上一点,GR 平分∠QGD 交AH 于R ,QN 平分∠AQG 交AH 于N ,QM //GR ,猜想∠MQN 与∠ACB 的关系,说明理由.
22.如图,两个形状,大小完全相同的含有30°、60°的三角板如图放置,PA 、PB 与直线MN 重合,且三角板PAC ,三角板PBD 均可以绕点P 逆时针旋转. (1)①如图1,∠DPC = 度.
②我们规定,如果两个三角形只要有一组边平行,我们就称这两个三角形为“孪生三角形”,如图1,三角板BPD 不动,三角板PAC 从图示位置开始每秒10°逆时针旋转一周
(0°<旋转<360°),问旋转时间t 为多少时,这两个三角形是“孪生三角形”. (2)如图3,若三角板PAC 的边PA 从PN 处开始绕点P 逆时针旋转,转速3°
/秒,同时三角板PBD 的边PB 从PM 处开始绕点P 逆时针旋转,转速2°
/秒,在两个三角板旋转过程中,(PC 转到与PM 重合时,两三角板都停止转动).设两个三角板旋转时间为t 秒,以下两个结论:①CPD
BPN
∠∠为定值;②∠BPN +∠CPD 为定值,请选择你认为对的结论加以证
明.
23.如图,直线MN ∥GH ,直线l 1分别交直线MN 、GH 于A 、B 两点,直线l 2分别交直线MN 、GH 于C 、D 两点,且直线l 1、l 2交于点E ,点P 是直线l 2上不同于C 、D 、E 点的动点.
(1)如图①,当点P 在线段CE 上时,请直写出∠NAP 、∠HBP 、∠APB 之间的数量关系: ;
(2)如图②,当点P 在线段DE 上时,(1)中的∠NAP 、∠HBP 、∠APB 之间的数量关系还成立吗?如果成立,请说明成立的理由;如果不成立,请写出这三个角之间的数量关系,并说明理由.
(3)如果点P 在直线l 2上且在C 、D 两点外侧运动时,其他条件不变,请直接写出∠NAP 、∠HBP 、∠APB 之间的数量关系 . 24.如图,已知:点A C 、、B 不在同一条直线,AD BE .
(1)求证:180B C A ∠+∠-∠=︒.
(2)如图②,AQ BQ 、分别为DAC EBC ∠∠、的平分线所在直线,试探究C ∠与
AQB ∠的数量关系;
(3)如图③,在(2)的前提下,且有AC
QB ,直线AQ BC 、交于点P ,
QP PB ⊥,请直接写出::DAC ACB CBE ∠∠∠=______________.
25.问题情境:如图1,AB CD ,130PAB ∠=,120PCD ∠=.求 APC ∠ 度数. 小明的思路是:如图2,过 P 作 PE
AB ,通过平行线性质,可得
5060110APC ∠=+=.
问题迁移:
(1)如图3,AD BC ,点 P 在射线 OM 上运动,当点 P 在 A 、 B 两点之间运动时,ADP α∠=∠,BCP β∠=∠.CPD ∠ 、 α∠ 、 β∠ 之间有何数量关系?请说明理由;
(2)在(1)的条件下,如果点 P 在 A 、 B 两点外侧运动时(点 P 与点 A 、 B 、
O 三点不重合),请你直接写出 CPD ∠ 、 α∠ 、 β∠ 间的数量关系.
26.如图,已知C 为两条相互平行的直线AB ,ED 之间一点,ABC ∠和CDE ∠的角平分线相交于F ,180FDC ABC ∠+∠=︒.
(1)求证://AD BC ;
(2)连结CF ,当//CF AB ,且3
2
CFB DCF ∠=
∠时,求BCD ∠的度数;
(3)若DCF CFB ∠=∠时,将线段BC 沿直线AB 方向平移,记平移后的线段为PQ (B ,C 分别对应P ,Q ,当20PQD QDC ∠-∠=︒时,请直接写出DQP ∠的度数______.
27.钱塘江汛期即将来临,防汛指挥部在一危险地带两岸各安置了一探照灯,便于夜间查看江水及两岸河堤的情况.如图,灯A 射线自AM 顺时针旋转至AN 便立即回转,灯B 射线自BP 顺时针旋转至BQ 便立即回转,两灯不停交叉照射巡视.若灯A 转动的速度是a °/秒,灯B 转动的速度是b °/秒,且a 、b 满足|a ﹣3b|+(a+b ﹣4)2=0.假定这一带长江两岸河堤是平行的,即PQ ∥MN ,且∠BAN =45°. (1)求a 、b 的值;
(2)若灯B 射线先转动30秒,灯A 射线才开始转动,在灯B 射线到达BQ 之前,A 灯转动几秒,两灯的光束互相平行?
(3)如图,两灯同时转动,在灯A 射线到达AN 之前,若射出的光束交于点C ,过C 作CD ⊥AC 交PQ 于点D ,则在转动过程中,∠BAC 与∠BCD 的数量关系是否发生变化?若不变,请求出其数量关系;若改变,请求出其取值范围.
28.[感知发现]:如图,是一个“猪手”图,AB∥CD,点E在两平行线之间,连接BE,DE ,我们发现:∠E=∠B+∠D
证明如下:过E点作EF∥AB.
∴∠B=∠1(两直线平行,内错角相等.)
又AB∥CD(已知)
∴CD∥EF(如果两条直线都与第三条直线平行,那么这两条直线也互相平行.)
∴∠2=∠D(两直线平行,内错角相等.)
∴∠1+∠2=∠B+∠D(等式的性质1.)
即:∠E=∠B+∠D
[类比探究]:如图是一个“子弹头”图,AB∥CD,点E在两平行线之间,连接BE,DE.试探究∠E+∠B+∠D=360°.写出证明过程.
[创新应用]:
(1).如图一,是两块三角板按如图所示的方式摆放,使直角顶点重合,斜边平行,请直接写出∠1的度数.
(2).如图二,将一个长方形ABCD按如图的虚线剪下,使∠1=120o,∠FEQ=90°.请直接写出∠2的度数.
【参考答案】***试卷处理标记,请不要删除
一、选择题 1.B 解析:B 【分析】
根据平行线的判定方法对①进行判断;据对顶角的定义对②进行判断;根据平行线的性质对④进行判断;根据补角的定义对③进行判断. 【详解】
两直线平行,同旁内角互补,所以①错误; 相等的角不一定是对顶角,所以②错误; 等角的补角相等,所以③正确;
两条平行直线被第三条直线所截,同位角相等,所以④正确;; 故选B. 【点睛】
本题主要考查了平行线的性质及判定,对顶角的性质等,熟练掌握各性质定理是解答此题的关键.
2.B
解析:B 【分析】
根据平行线的性质,点到直线的距离依次判断. 【详解】
解:①同一平面内,两条不相交的直线(即两直线平行)被第三条直线所截,形成的同旁内角互补,说法正确;
②在同一平面内,若,//a b b c ⊥,则a c ⊥,说法正确; ③直线外一点到直线的垂线段叫点到直线的距离,说法错误; ④同一平面内,过一点有且只有一条直线与已知直线平行,说法错误; 正确的说法有2个,
故选:B.
【点睛】
此题考查平行线的性质,点到直线的距离,正确理解定义是解题的关键.
3.B
解析:B
【分析】
过C作CM∥直线l1,求出CM∥直线l1∥直线l2,根据平行线的性质得出∠1=∠MCB=25°,∠2=∠ACM,即可求出答案.
【详解】
过C作CM∥直线l1,
∵直线l1∥l2,
∴CM∥直线l1∥直线l2,
∵∠ACB=60°,∠1=25°,
∴∠1=∠MCB=25°,
∴∠2=∠ACM=∠ACB-∠MCB=60°-25°=35°,
故选:B.
【点睛】
本题考查了平行线的性质,能正确作出辅助线是解此题的关键.
4.A
解析:A
【分析】
据平行线的性质可判断①③错误;根据对顶角相等,可判断②错误;据线段的性质可判断④错误;即可得出结论.
【详解】
解:①在同一个平面内,垂直于同一条直线的两条直线互相平行,故①错误;
②对顶角相等,相等的角不一定是对顶角,故②错误;
③两条平行直线被第三条直线所截,同位角相等,故③错误;
④两点之间线段最短;故④错误;
故选:A.
【点睛】
本题考查了平行公理、平行线的性质、相等的性质、对顶角相等的性质;熟记有关性质是解决问题的关键.
5.C
解析:C
【分析】
已知∠CFN=110°,根据对顶角相等可得∠DFE=∠CFN=110°,因为FG平分∠EFD,由角
平分线的定义可得∠EFG=1
2
∠EFD=55°;再由EG⊥FG,可得∠G=90°,即可求得∠GEF
=35°;又因AB∥CD,∠EFD=110°,根据平行线的性质可得∠BEF=70°,即可得∠BEG=∠BEF﹣∠GEF=35°.
【详解】
∵∠CFN=110°,
∴∠DFE=∠CFN=110°,
∵FG平分∠EFD,
∴∠EFG=1
2
∠EFD=55°,
又EG⊥FG,即∠G=90°,
∴∠GEF=35°,
∵AB∥CD,∠EFD=110°,
∴∠BEF=70°,
∴∠BEG=∠BEF﹣∠GEF=35°.
故选C.
【点睛】
本题考查了平行线的性质,垂直的定义以及角平分线的性质.熟练运用相关知识是解决问题的关键.
6.B
解析:B
【解析】分析:根据直线公理对①进行判断;根据两点之间的距离的定义对②进行判断;根据线段公理对③进行判断;根据角的定义对④进行判断;根据线段的中点的定义对⑤进行判断.
详解:根据直线公理:两点确定一条直线,所以①正确;
连接两点的线段的长度叫做两点的距离,所以②错误;
两点之间,线段最短,所以③正确;
有一个公共端点的两条射线组成的图形叫做角,所以④错误;
若AB=BC,且B点在AB上,则点B是AC的中点,所以⑤错误.
故选B.
点睛:本题考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式.有些命题的正确性是用推理证实的,这样的真命题叫做定理.
7.C
解析:C
【分析】
先求出∠BOC ,再由邻补角关系求出∠COD 的度数.
【详解】
∵∠AOB=25°,∠AOC=90°,
∴∠BOC=90°-25°=65°,
∴∠COD=180°-65°=115°.
故选:C .
【点睛】
本题考查了余角、邻补角的定义和角的计算;弄清各个角之间的关系是解题的关键.
8.B
解析:B
【分析】
根据全等三角形的判定、平行四边形的判定、垂径定理、平行线的性质一一判断即可.
【详解】
①斜边中线和一个锐角分别对应相等的两个直角三角形全等,是真命题;
②一组对边平行,另一组对边相等的四边形是平行四边形,是假命题,比如等腰梯形; ③在圆中,平分弦的直径垂直于弦,是假命题(此弦非直径);
④平行于同一条直线的两直线互相平行,是真命题;
故选B .
【点睛】
本题考查命题与定理、全等三角形的判定、平行四边形的判定、垂径定理、平行线的性质等知识,解题的关键是熟练掌握基本概念.
9.B
解析:B
【分析】
根据同位角的概念对每个图形一一判断,选出正确答案即可.
【详解】
图1:1∠与2∠是同位角;
图2:1∠与2∠不是同位角;
图3:1∠与2∠不是同位角;
图4:1∠与2∠是同位角;
只有图1、图4中1∠与2∠是同位角.
故选:B .
【点睛】
本题主要考查同位角的概念,熟记同位角的概念是解题关键.
10.B
解析:B
【分析】
根据平行线的性质定理、平行公理、对顶角和邻补角的概念判断即可.
【详解】
解:对顶角相等,邻补角互补,故①是真命题;
两条平行线被第三条直线所截,同位角的平分线平行,故②是假命题;
在同一平面内,垂直于同一条直线的两条直线互相平行,故③是假命题;
过直线外一点有且只有一条直线与已知直线平行,故④是假命题;
故正确的个数只有1个,
故选:B.
【点睛】
本题考查的是平行的公理和应用,命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.
11.C
解析:C
【解析】
试题分析:根据平行线的性质可得∠1=70°,再根据三角形的一个外角等于和它不相邻的两个内角的和可得∠A=70°-31°=39°.故选C.
考点:平行线的性质
12.D
解析:D
【分析】
根据平移作图是一个基本图案按照一定的方向平移一定的距离,连续作图设计出的图案进行分析即可.
【详解】
解:A、不能用平移变换来分析其形成过程,故此选项错误;
B、不能用平移变换来分析其形成过程,故此选项错误;
C、不能用平移变换来分析其形成过程,故此选项正确;
D、能用平移变换来分析其形成过程,故此选项错误;
故选:D.
【点睛】
本题考查利用平移设计图案,解题关键是掌握图形的平移只改变图形的位置,而不改变图形的形状、大小和方向.
二、填空题
13.10或28
【解析】
【分析】
作出图形,分①两三角形在点O的同侧时,设CD与OB相交于点E,根据两直线平行,同位角相等可得∠CEO=∠B,根据三角形的一个外角等于与它不相邻的两个内角的和列式求出∠
解析:10或28
【解析】
【分析】
作出图形,分①两三角形在点O的同侧时,设CD与OB相交于点E,根据两直线平行,同位角相等可得∠CEO=∠B,根据三角形的一个外角等于与它不相邻的两个内角的和列式求出∠DOE,然后求出旋转角∠AOD,再根据每秒旋转10°列式计算即可得解;②两三角形在点O的异侧时,延长BO与CD相交于点E,根据两直线平行,内错角相等可得
∠CEO=∠B,再根据三角形的一个外角等于与它不相邻的两个内角的和列式求出∠DOE,然后求出旋转角度数,再根据每秒旋转10°列式计算即可得解.
【详解】
解:①两三角形在点O的同侧时,如图1,设CD与OB相交于点E,
∵AB∥CD,
∴∠CEO=∠B=40°,
∵∠C=60°,∠COD=90°,
∴∠D=90°-60°=30°,
∴∠DOE=∠CEO-∠D=40°-30°=10°,
∴旋转角∠AOD=∠AOB+∠DOE=90°+10°=100°,
∵每秒旋转10°,
∴时间为100°÷10°=10秒;
②两三角形在点O的异侧时,如图2,延长BO与CD相交于点E,
∵AB∥CD,
∴∠CEO=∠B=40°,
∵∠C=60°,∠COD=90°,
∴∠D=90°-60°=30°,
∴∠DOE=∠CEO-∠D=40°-30°=10°,
∴旋转角为270°+10°=280°,
∵每秒旋转10°,
∴时间为280°÷10°=28秒;
综上所述,在第10或28秒时,边CD恰好与边AB平行.
故答案为10或28.
【点睛】
本题考查了平行线的判定,平行线的性质,旋转变换的性质,难点在于分情况讨论,作出图形更形象直观.
14.520
【解析】
因为AD∥BC,所以∠CEF=∠AFE=64°,∠DFE=180°-∠CEF=180°-
64°=116°,由折叠得∠EFD=∠EFD′,所以∠EFD′=116°,所以∠GFD′=∠解析:520
【解析】
因为AD∥BC,所以∠CEF=∠AFE=64°,∠DFE=180°-∠CEF=180°-64°=116°,由折叠得∠EFD=∠EFD′,所以∠EFD′=116°,所以∠GFD′=∠EFD′-∠AFE=116°-64°=52°,故答案为52°.
15.42°
【解析】
先根据两直线平行,同位角相等求出∠A=∠ECD=48°,再根据直角三角形两锐角互余即可求出∠B=90°-∠A=42°.
故答案为:42°.
点睛:本题考查平行线的性质和直角三角形两
解析:42°
【解析】
先根据两直线平行,同位角相等求出∠A=∠ECD=48°,再根据直角三角形两锐角互余即可求出∠B=90°-∠A=42°.
故答案为:42°.
点睛:本题考查平行线的性质和直角三角形两锐角互余的性质,灵活确定试题中的角之间的关系是关键.
16.40
【解析】
根据平行线的性质,先求出∠BEF和∠CEF的度数,再求出它们的差就可以了.解:∵AB∥EF,
∴∠BEF=∠ABE=70°;
又∵EF∥CD,
∴∠CEF=180°-∠ECD=18
解析:40
【解析】
根据平行线的性质,先求出∠BEF和∠CEF的度数,再求出它们的差就可以了.
解:∵AB∥EF,
∴∠BEF=∠ABE=70°;
又∵EF∥CD,
∴∠CEF=180°-∠ECD=180°-150°=30°,
∴∠BEC=∠BEF-∠CEF=40°;
故应填40.
“点睛”本题主要利用两直线平行,同旁内角互补以及两直线平行,内错角相等进行解题.
17.70°.
【分析】
依据平行线的性质,可得∠BAE=∠DCE=140°,依据折叠即可得到∠α=70°.【详解】
解:如图,
∵AB∥CD,
∴∠BAE=∠DCE=140°,
由折叠可得:,
∴∠
解析:70°.
【分析】
依据平行线的性质,可得∠BAE=∠DCE=140°,依据折叠即可得到∠α=70°.
【详解】
解:如图,
∵AB∥CD,
∴∠BAE=∠DCE=140°,
由折叠可得:
1
2
DCF DCE ∠=∠,
∴∠α=70°.
故答案为:70°.
【点睛】
本题主要考查了平行线的性质,解题时注意:两直线平行,同位角相等.
18.;(答案不唯一)
【分析】
画出图形,再由平行线的判定与性质求出旋转角度.
【详解】
图中,当时,DE//AC ;
图中,当 时,CE//AB ,
图中,当 时,DE//BC .
故答案为:;(答案
解析:45,//DE AC ︒;120,//;135,//CE AB DE BC ︒︒(答案不唯一)
【分析】
画出图形,再由平行线的判定与性质求出旋转角度.
【详解】
图③中,当45DCF D α=∠=∠=时,DE//AC ;
图④中,当9090120DCF DCB BCF B α=∠=∠+∠=︒-∠+︒=︒ 时,CE//AB ,
图⑤中,当90135a DCF DCB BCF D =∠=∠+∠=∠+=︒ 时,DE//BC .
故答案为:45,//DE AC ︒;120,//;135,//CE AB DE BC ︒︒(答案不唯一).
【点睛】
考查了平行线的判定和性质,解题关键是理解平行线的判定与性质,并且利用了数形结合.
19.【分析】
根据两直线平行,同位角相等求出∠EFD,再根据角平分线的定义求出∠GFD,然后根据两直线平行,内错角相等解答.
【详解】
解:∵AB∥CD,∠1=64°,
∴∠EFD=∠1=64°,

解析:【分析】
根据两直线平行,同位角相等求出∠EFD ,再根据角平分线的定义求出∠GFD ,然后根据两直线平行,内错角相等解答.
【详解】
解:∵AB ∥CD ,∠1=64°,
∴∠EFD=∠1=64°,
∵FG 平分∠EFD ,
∴∠GFD=12∠EFD=12
×64°=32°, ∵AB ∥CD ,
∴∠EGF=∠GFD=32°.
故答案为:32.
考点:平行线的性质.
20.(n ﹣1)×180
【分析】
分别过P1、P2、P3作直线AB 的平行线P1E ,P2F ,P3G ,由平行线的性质可得出:∠1+∠3=180°,∠5+∠6=180°,∠7+∠8=180°,∠4+∠2=18 解析:(n ﹣1)×180
【分析】
分别过P 1、P 2、P 3作直线AB 的平行线P 1E ,P 2F ,P 3G ,由平行线的性质可得出:
∠1+∠3=180°,∠5+∠6=180°,∠7+∠8=180°,∠4+∠2=180°于是得到∠1+∠2=10°,∠1+∠P 1+∠2=2×180,∠1+∠P 1+∠P 2+∠2=3×180°,∠1+∠P 1+∠P 2+∠P 3+∠2=4×180°,根据规律得到结果∠1+∠2+∠P 1+…+∠P n =(n+1)×180°.
【详解】
解:如图,分别过P 1、P 2、P 3作直线AB 的平行线P 1E ,P 2F ,P 3G ,
∵AB ∥CD ,
∴AB ∥P 1E ∥P 2F ∥P 3G .
由平行线的性质可得出:∠1+∠3=180°,∠5+∠6=180°,∠7+∠8=180°,∠4+∠2=180° ∴(1)∠1+∠2=180°,
(2)∠1+∠P 1+∠2=2×180,
(3)∠1+∠P 1+∠P 2+∠2=3×180°,
(4)∠1+∠P 1+∠P 2+∠P 3+∠2=4×180°,
∴∠1+∠2+∠P 1+…+∠P n =(n+1)×180°.
故答案为:(n+1)×180.
【点睛】
本题考查的是平行线的性质,根据题意作出辅助线,利用两直线平行,同旁内角互补是解答此题的关键.
三、解答题
21.(1)证明见解析;(2)∠F=55°;(3)∠MQN =
12∠ACB ;理由见解析. 【分析】
(1)首先根据平行线的性质得出∠ACE =∠A ,∠ECD =∠B ,然后通过等量代换即可得出答案;
(2)首先根据角平分线的定义得出∠FCD =12∠ECD ,∠HAF =12
∠HAD ,进而得出∠F =12
(∠HAD+∠ECD ),然后根据平行线的性质得出∠HAD+∠ECD 的度数,进而可得出答案;
(3)根据平行线的性质及角平分线的定义得出12
QGR QGD ∠=∠,12
NQG AQG ∠=∠,180MQG QGR ∠+∠=︒ ,再通过等量代换即可得出∠MQN =12
∠ACB .
【详解】
解:(1)∵CE //AB ,
∴∠ACE =∠A ,∠ECD =∠B ,
∵∠ACD =∠ACE+∠ECD ,
∴∠ACD =∠A+∠B ;
(2)∵CF 平分∠ECD ,FA 平分∠HAD ,
∴∠FCD =
12∠ECD ,∠HAF =12∠HAD , ∴∠F =12∠HAD+12∠ECD =12
(∠HAD+∠ECD ), ∵CH //AB ,
∴∠ECD =∠B ,
∵AH //BC ,
∴∠B+∠HAB =180°,
∵∠BAD =70°,
110B HAD ∴∠+∠=︒,
∴∠F =12
(∠B+∠HAD )=55°; (3)∠MQN =12
∠ACB ,理由如下: GR 平分QGD ∠,
12
QGR QGD ∴∠=∠. GN 平分AQG ∠,
12
NQG AQG ∴∠=∠. //QM GR ,
180MQG QGR ∴∠+∠=︒ .
∴∠MQN =∠MQG ﹣∠NQG
=180°﹣∠QGR ﹣∠NQG
=180°﹣
12(∠AQG+∠QGD ) =180°﹣
12(180°﹣∠CQG+180°﹣∠QGC ) =
12(∠CQG+∠QGC ) =12
∠ACB . 【点睛】
本题主要考查平行线的性质和角平分线的定义,掌握平行线的性质和角平分线的定义是解
题的关键.
22.(1)①90;②t 为3s 或6s 或9s 或18s 或21s 或24s 或27s ;(2)①正确,②错误,证明见解析.
【分析】
(1)①由平角的定义,结合已知条件可得:180,DPC CPA DPB ∠=︒-∠-∠从而可得答案;②当//BD PC 时,有两种情况,画出符合题意的图形,利用平行线的性质与角的和差求解旋转角,可得旋转时间;当//PA BD 时,有两种情况,画出符合题意的图形,利用平行线的性质与角的和差关系求解旋转角,可得旋转时间;当//AC DP 时,有两种情况,画出符合题意的图形,利用平行线的性质与角的和差关系求解旋转角,可得旋转时间;当//AC BD 时,画出符合题意的图形,利用平行线的性质与角的和差关系求解旋转角,可得旋转时间;当//AC BP 时的旋转时间与//PA BD 相同;
(2)分两种情况讨论:当PD 在MN 上方时,当PD 在MN 下方时,①分别用含t 的代数式表示,CPD BPN ∠∠,从而可得CPD BPN
∠∠的值;②分别用含t 的代数式表示,CPD BPN ∠∠,得到BPN CPD ∠+∠是一个含t 的代数式,从而可得答案.
【详解】
解:(1)①∵∠DPC =180°﹣∠CPA ﹣∠DPB ,∠CPA =60°,∠DPB =30°,
∴∠DPC =180﹣30﹣60=90°,
故答案为90;
②如图1﹣1,当BD ∥PC 时,
∵PC ∥BD ,∠DBP =90°,
∴∠CPN =∠DBP =90°,
∵∠CPA =60°,
∴∠APN =30°,
∵转速为10°
/秒, ∴旋转时间为3秒;
如图1﹣2,当PC ∥BD 时,
PC BD∠PBD=90°,
∵//,
∴∠CPB=∠DBP=90°,
∵∠CPA=60°,
∴∠APM=30°,
∵三角板PAC绕点P逆时针旋转的角度为180°+30°=210°,
∵转速为10°/秒,
∴旋转时间为21秒,
如图1﹣3,当PA∥BD时,即点D与点C重合,此时∠ACP=∠BPD=30°,则AC∥BP,
∵PA∥BD,
∴∠DBP=∠APN=90°,
∴三角板PAC绕点P逆时针旋转的角度为90°,
∵转速为10°/秒,
∴旋转时间为9秒,
如图1﹣4,当PA∥BD时,
∵∠DPB=∠ACP=30°,
∴AC∥BP,
∵PA∥BD,
∴∠DBP=∠BPA=90°,
∴三角板PAC绕点P逆时针旋转的角度为90°+180°=270°,
∵转速为10°/秒,
如图1﹣5,当AC∥DP时,
∵AC∥DP,
∴∠C=∠DPC=30°,
∴∠APN=180°﹣30°﹣30°﹣60°=60°,
∴三角板PAC绕点P逆时针旋转的角度为60°,∵转速为10°/秒,
∴旋转时间为6秒,
AC DP时,
如图1﹣6,当//
//
AC DP,
∴∠=∠=︒,
DPA PAC
90
∠+∠=︒-︒+︒=︒,DPN DPA
1803090240
∴三角板PAC绕点P逆时针旋转的角度为240︒,∵转速为10°/秒,
∴旋转时间为24秒,
如图1﹣7,当AC∥BD时,
∵AC∥BD,
∴∠DBP=∠BAC=90°,
∴点A在MN上,
∴三角板PAC绕点P逆时针旋转的角度为180°,∵转速为10°/秒,
当//
AC BP时,如图1-3,1-4,旋转时间分别为:9s,27s.
综上所述:当t为3s或6s或9s或18s或21s或24s或27s时,这两个三角形是“孪生三角形”;
(2)如图,当PD在MN上方时,
①正确,
理由如下:设运动时间为t秒,则∠BPM=2t,
∴∠BPN=180°﹣2t,∠DPM=30°﹣2t,∠APN=3t.
∴∠CPD=180°﹣∠DPM﹣∠CPA﹣∠APN=90°﹣t,
21802,
BPN CPD t
∴∠=∠=︒-

1
.
2 CPD BPN

=∠
②∠BPN+∠CPD=180°﹣2t+90°﹣t=270°﹣3t,可以看出∠BPN+∠CPD随着时间在变化,不为定值,结论错误.
当PD在MN下方时,如图,
①正确,
理由如下:设运动时间为t秒,则∠BPM=2t,
∴∠BPN=180°﹣2t,∠DPM=230,
t-︒∠APN=3t.
∴∠CPD=360CPA APN DPB BPN
︒-∠-∠-∠-∠
()
360603301802
t t
=︒-︒--︒-︒-
=90t
︒-
21802,
BPN CPD t
∴∠=∠=︒-

1
.
2 CPD BPN

=∠
②∠BPN+∠CPD=180°﹣2t+90°﹣t=270°﹣3t,可以看出∠BPN+∠CPD随着时间在变化,不为定值,结论错误.
综上:①正确,②错误.
【点睛】
本题考查的是角的和差倍分关系,平行线的性质与判定,角的动态定义(旋转角)的理解,掌握分类讨论的思想是解题的关键.
23.(1)∠APB=∠NAP+∠HBP;(2)见解析;(3)∠HBP=∠NAP+∠APB
【分析】
(1)过P点作PQ∥GH,根据平行线的性质即可求解;
(2)过P点作PQ∥GH,根据平行线的性质即可求解;
(3)根据平行线的性质和三角形外角的性质即可求解.
【详解】
解:(1)如图①,过P点作PQ∥GH,
∵MN∥GH,
∴MN∥PQ∥GH,
∴∠APQ=∠NAP,∠BPQ=∠HBP,
∵∠APB=∠APQ+∠BPQ,
∴∠APB=∠NAP+∠HBP,
故答案为:∠APB=∠NAP+∠HBP;
(2)如图②,过P点作PQ∥GH,
∵MN∥GH,
∴MN∥PQ∥GH,
∴∠APQ+∠NAP=180°,∠BPQ+∠HBP=180°,
∵∠APB=∠APQ+∠BPQ,
∴∠APB=(180°﹣∠NAP)+(180°﹣∠HBP)=360°﹣(∠NAP+∠HBP);
(3)如备用图,
∵MN∥GH,
∴∠PEN=∠HBP,
∵∠PEN=∠NAP+∠APB,
∴∠HBP=∠NAP+∠APB.
故答案为:∠HBP=∠NAP+∠APB.
【点睛】
此题考查了平行公理的推论:平行于同一条直线的两直线平行,以及平行线的性质:两直
线平行,同位角相等;两直线平行,内错角相等;两直线平行,同旁内角互补,熟记定理是解题的关键.
24.(1)见详解;(2)2180C AQB ∠+∠=︒;(3)1:2:2
【分析】
(1)过点C 作CF AD ,则//BE CF ,再利用平行线的性质求解即可; (2)过点Q 作QM AD ,则//BE QM ,再利用平行线的性质以及角平分线的性质得出1()2
AQE CBE CAD ∠=∠-∠,再结合(1)的结论即可得出答案; (3)由(2)的结论可得出12
CAD CBE ∠=∠,又因为QP PB ⊥,因此180CBE CAD ∠+∠=︒,联立即可求出两角的度数,再结合(1)的结论可得出ACB ∠的度数,再求答案即可.
【详解】
解:(1)过点C 作CF AD ,则//BE CF ,
∵//CF AD BE
∴,180,ACF A BCF B ACF BCF C ∠=∠∠=︒-∠∠+∠=∠
∴180180180B C A BCF C ACF C C ∠+∠-∠=︒-∠+∠-∠=-∠+∠=︒
(2)过点Q 作QM AD ,则//BE QM ,
∵QM AD ,//BE QM
∴,AQM NAD BQM EBQ ∠=∠∠=∠
∵AQ BQ 、分别为DAC EBC ∠∠、的平分线所在直线
∴11,22
NAD CAD EBQ CBE ∠=∠∠=∠ ∴1()2
ABQ BQM AQM CBE CAD ∠=∠-∠=
∠-∠ ∵180()1802C CBE AD AQB ∠=︒-∠-∠=︒-∠ ∴2180C AQB ∠+∠=︒
(3)∵//AC QB ∴11,22
AQB CAP CAD ACP PBQ CBE ∠=∠=∠∠=∠=∠ ∴11801802ACB ACP CBE ∠=︒-∠=︒-
∠ ∵2180C AQB ∠+∠=︒ ∴12
CAD CBE ∠=∠ ∵QP PB ⊥
∴180CBE CAD ∠+∠=︒
∴60,120CAD CBE ∠=︒∠=︒ ∴11801202
ACB CBE ∠=︒-∠=︒ ∴::60:120:1201:2:2DAC ACB CBE ∠∠∠=︒︒︒=.
故答案为:1:2:2.
【点睛】
本题考查的知识点有平行线的性质、角平分线的性质.解此题的关键是作出合适的辅助线,找准角与角之间的关系.
25.(1)∠CPD=∠α+∠β,理由见解析;(2)①当点P 在A 、M 两点之间时,∠CPD=∠β−∠α;②当点P 在B 、O 两点之间时,∠CPD=∠α−∠β
【分析】
(1)过点P 作PE ∥AD 交CD 于点E ,根据题意得出AD ∥PE ∥BC ,从而利用平行线性质可知α∠=∠DPE ,β∠=∠CPE ,据此进一步证明即可;
(2)根据题意分当点P 在A 、M 两点之间时以及当点P 在B 、O 两点之间时两种情况逐一分析讨论即可.
【详解】
(1)∠CPD=αβ∠+∠,理由如下:
如图3,过点P 作PE ∥AD 交CD 于点E ,
∵AD ∥BC ,PE ∥AD ,
∴AD ∥PE ∥BC ,
∴α∠=∠DPE ,β∠=∠CPE ,
∴∠CPD=∠DPE +∠CPE=αβ∠+∠;
(2)①当点P 在A 、M 两点之间时,∠CPD=βα∠-∠,理由如下:
如图4,过点P 作PE ∥AD 交CD 于点E ,
∵AD ∥BC ,PE ∥AD ,
∴AD ∥PE ∥BC ,
∴α∠=∠EPD ,β∠=∠CPE ,
∴∠CPD=∠CPE −∠EPD=βα∠-∠;
②当点P 在B 、O 两点之间时,∠CPD=αβ∠-∠,理由如下:
如图5,过点P 作PE ∥AD 交CD 于点E ,
∵AD ∥BC ,PE ∥AD ,
∴AD ∥PE ∥BC ,
∴α∠=∠DPE ,β∠=∠CPE ,
∴∠CPD=∠DPE −∠CPE=αβ∠-∠,
综上所述,当点P 在A 、M 两点之间时,∠CPD=∠β−∠α;当点P 在B 、O 两点之间时,∠CPD=∠α−∠β.
【点睛】
本题主要考查了在平行线性质及判定的综合运用,熟练掌握相关概念是解题关键.
26.(1)证明见解析;(2)∠BCD =108°;(3)70°
【分析】
(1)根据两直线平行,内错角相等得出∠EDF =∠DAB ,由角平线的定义得出∠EDF =∠FDC ,最后根据同旁内角互补,两直线平行进行求证;
(2)设∠DCF =x ,则∠CFB =1.5x ,由两直线平行,内错角相等得出∠ABF =1.5x ,由角平分线的定义得出∠ABC =3x ,最后利用两直线平行,同旁内角互补得出关于x 的方程,求解即可;
(3)画出图形,根据两直线平行,同旁内角互补得出∠CDF =∠CBF ,由角平分线的定义与已知条件可求出∠ABC 与∠FDC ,由平移的性质与平行公理的推论得出AD ∥PQ ,最后根据两直线平行,同旁内角互补列式求解.
【详解】
解:(1)证明:∵AB ∥DE ,
∴∠EDF =∠DAB ,
∵DF 平分∠EDC ,
∴∠EDF =∠FDC ,
∴∠FDC =∠DAB ,
∵∠FDC +∠ABC =180°,
∴∠DAB +∠ABC =180°,
∴AD ∥BC ;
(2)∵32
CFB DCF ∠=
∠,设∠DCF =x ,则∠CFB =1.5x , ∵CF ∥AB ,
∴∠ABF =∠CFB =1.5x ,
∵BE 平分∠ABC ,
∴∠ABC =2∠ABF =3x ,
∵AD ∥BC ,
∴∠FDC +∠BCD =180°,
∵∠FDC +∠ABC =180°,
∴∠BCD =∠ABC =3x ,
∴∠BCF =2x ,
∵CF ∥AB ,
∴∠ABC +∠BCF =180°,
∴3x +2x =180°,。

相关文档
最新文档