湖南省岳阳市(新版)2024高考数学统编版摸底(备考卷)完整试卷

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

湖南省岳阳市(新版)2024高考数学统编版摸底(备考卷)完整试卷
一、单选题:本题共8小题,每小题5分,共40分 (共8题)
第(1)题
设,则“或”是“”的()
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件
第(2)题
已知集合A={﹣3,﹣2,﹣1,0,1,2,3},B={x|x2≥4},则A∩B=()
A.{﹣3,﹣2,2,3}B.{﹣2,2,3}C.{﹣2,2}D.{﹣3,3}
第(3)题
已知,,,则()
A.B.
C.D.
第(4)题
已知数列满足,,恒成立,则的最小值为()
A.3B.2C.1D.
第(5)题
设复数,则的值是()
A
.B.
C
.D.
第(6)题
命题“所有偶数都是2的倍数”的否定是()
A.所有奇数都是2的倍数B.存在一个偶数是2的倍数
C.所有偶数都不是2的倍数D.存在一个偶数不是2的倍数
第(7)题
如图,在矩形中,,现将沿折至,使得二面角为锐角,设直线与直线所成角的大小为,直线与平面所成角的大小为,二面角的大小为,则,,的大小关系是()
A.B.C.D.不能确定
第(8)题
已知A,B,C为球O的球面上的三个点,为△ABC的外接圆,若的面积为12π,,则当△ABC的面积最大时,球O的表面积为()
A.84πB.96πC.180πD.192π
二、多选题:本题共3小题,每小题6分,共18分 (共3题)
第(1)题
已知,,则下列不等式一定成立的是()
A.B.
C.D.
第(2)题
已知正方体的棱长为1,O是底面的中心,则下列结论正确的是()
A.O到平面的距离为
B.直线OB与平面所成角的正切值为
C
.异面直线与BO所成角的大小为
D
.若点M是平面内的一点且,则的最小值为
第(3)题
下列说法正确的是()
A
.若,则B.若,,则
C.,则D.若,则
三、填空题:本题共3小题,每小题5分,共15分 (共3题)
第(1)题
对于数列,由作通项得到的数列,称为数列的差分数列,已知数列为数列的差分数
列,且是以1为首项以2为公差的等差数列,则______.
第(2)题
的展开式中的系数是______.(用数字填写答案)
第(3)题
的展开式中的系数是______.
四、解答题:本题共5小题,每小题15分,最后一题17分,共77分 (共5题)
第(1)题
已知点、分别为椭圆的左顶点和上顶点,且坐标原点到直线的距离为,椭圆的离心率为
.
(1)求椭圆的标准方程;
(2)已知点在椭圆上,过点作斜率存在的两条射线、,交椭圆于、两点,且,试判断直
线是否经过定点?若经过,求出定点的坐标;若不经过,请说明理由.
第(2)题
在平面四边形中,,,对角线与交于点,是的中点,
(1)若,求的长;
(2)若,求
第(3)题
已知数列各项均不为0,,且(为非零常数).
(1)
求证:为等差数列;
(2)
已知数列的前项和为.
①求证:;
②若数列的前10项和为550,求的值.
第(4)题
《九章算术》卷第五《商功》中有记载:“刍甍者,下有袤有广,而上有袤无广.刍,草也,甍,屋盖也.”翻译为“底面有长有宽为矩形,顶部只有长没有宽为一条棱.刍甍字面意思为茅草屋顶,”现有“刍甍”如图所示,四边形EBCF为矩形,
,且.
(1)若O是四边形EBCF对角线的交点,求证:平面GCF;
(2)若,且,求三棱锥的体积.
第(5)题
已知点是椭圆外一点,过点作椭圆的两条切线,切点分别为.
(1)求证:切线的方程是;
(2)设点为抛物线上的动点,求面积的最小值.。

相关文档
最新文档