铁东区实验中学2018-2019学年高三上学期11月月考数学试卷含答案(1)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
铁东区实验中学2018-2019学年高三上学期11月月考数学试卷含答案
一、选择题
1. 已知函数
,,若,则( )
A1 B2
C3 D-1
2. 已知a >b >0,那么下列不等式成立的是( )
A .﹣a >﹣b
B .a+c <b+c
C .(﹣a )2>(﹣b )2
D
.
3. “p q ∨为真”是“p ⌝为假”的( )条件
A .充分不必要
B .必要不充分
C .充要
D .既不充分也不必要 4. 已知两点M (1
,),N (﹣4
,﹣),给出下列曲线方程: ①4x+2y ﹣1=0;
②x 2+y 2
=3;
③+y 2=1;
④
﹣y 2
=1.
在曲线上存在点P 满足|MP|=|NP|的所有曲线方程是( ) A .①③ B .②④ C .①②③ D .②③④
5. 设F 1,F 2
是双曲线的两个焦点,P 是双曲线上的一点,且3|PF 1|=4|PF 2|,则△PF 1F 2的面积等
于( ) A
.
B
.
C .24
D .48
6. 已知a ∈R ,复数z=(a ﹣2i )(1+i )(i 为虚数单位)在复平面内对应的点为M ,则“a=0”是“点M 在第四象限”的( )
A .充分而不必要条件
B .必要而不充分条件
C .充分必要条件
D .既不充分也不必要条件
7. 某几何体的三视图如图所示,则它的表面积为( )
班级_______________ 座号______ 姓名_______________ 分数_______________
___________________________________________________________________________________________________
A
. B
. C
. D
. 8. 已知直线l ∥平面α,P ∈α,那么过点P 且平行于l 的直线( )
A .只有一条,不在平面α内
B .只有一条,在平面α内
C .有两条,不一定都在平面α内
D .有无数条,不一定都在平面α内
9. 在ABC ∆中,若60A ∠=,45B ∠=
,BC =AC =( ) A
. B
.
C.
D
10.若y x ,满足约束条件⎪⎪⎩
⎪
⎪⎨⎧≥≤-+≥+-0
033033y y x y x ,则当31++x y 取最大值时,y x +的值为( )
A .1-
B .
C .3-
D .3
11.某几何体的三视图如图所示,其中正视图是腰长为2的等腰三角形,俯视图是半径为 1的半圆,则其侧视图的面积是( )
A
. B
. C .1 D
.
12
.双曲线=1(m ∈Z )的离心率为( )
A .
B .2
C .
D .3
二、填空题
13.命题“(0,)2
x π
∀∈,sin 1x <”的否定是 ▲ .
14.设曲线y=x n+1(n ∈N *)在点(1,1)处的切线与x 轴的交点的横坐标为x n ,令a n =lgx n ,则a 1+a 2+…+a 99的值为 .
15.曲线
在点(3,3)处的切线与轴x 的交点的坐标为 .
16.在△ABC 中,点D 在边AB 上,CD ⊥BC ,AC=5,CD=5,BD=2AD ,则AD 的长为 .
17.在复平面内,记复数+i 对应的向量为,若向量饶坐标原点逆时针旋转60°得到向量所对应的复数为 .
18.向量=(1,2,﹣2),=(﹣3,x ,y ),且∥,则x ﹣y= .
三、解答题
19.某市出租车的计价标准是4km 以内10元(含4km ),超过4km 且不超过18km 的部分1.5元/km ,超出18km 的部分2元/km .
(1)如果不计等待时间的费用,建立车费y 元与行车里程x km 的函数关系式; (2)如果某人乘车行驶了30km ,他要付多少车费?
20f x =sin x+002
(2)求函数g (x )=f (x )+
sin2x 的单调递增区间.
21.关于x 的不等式a 2x+b 2(1﹣x )≥[ax+b (1﹣x )]2
(1)当a=1,b=0时解不等式; (2)a ,b ∈R ,a ≠b 解不等式.
22.(本小题满分10分)选修4-1:几何证明选讲
如图,四边形ABCD 外接于圆,AC 是圆周角BAD ∠的角平分线,过点C 的切线与AD 延长线交于点E ,AC 交BD 于点F . (1)求证:BD
CE ;
(2)若AB 是圆的直径,4AB =,1DE =,求AD 长
23.已知函数f (x )=|x ﹣5|+|x ﹣3|. (Ⅰ)求函数f (x )的最小值m ;
(Ⅱ)若正实数a ,b 足+=,求证:
+
≥m .
24.武汉市为增强市民交通安全意识,面向全市征召义务宣传志愿者.现从符合条件的志愿者中随机抽取100名按年龄分组:第1组[20,25),第2组[25,30),第3组[30,35),第4组[35,40),第5组[40,45],得到的频率分布直方图如图所示.
(1)分别求第3,4,5组的频率;
(2)若从第3,4,5组中用分层抽样的方法抽取6名志愿者参加广场的宣传活动,应从第3,4,5组各抽取多少名志愿者?
(3)在(2)的条件下,该市决定在这6名志愿者中随机抽取2名志愿者介绍宣传经验,求第4组至少有一名志愿者被抽中的概率.
铁东区实验中学2018-2019学年高三上学期11月月考数学试卷含答案(参考答案) 一、选择题
1. 【答案】A
【解析】g (1)=a ﹣1, 若f[g (1)]=1, 则f (a ﹣1)=1, 即5|a ﹣1|=1,则|a ﹣1|=0, 解得a=1 2. 【答案】C 【解析】解:∵a >b >0,∴﹣a <﹣b <0,∴(﹣a )2>(﹣b )2
,
故选C .
【点评】本题主要考查不等式的基本性质的应用,属于基础题.
3. 【答案】B 【解析】
试题分析:因为p 假真时,p q ∨真,此时p ⌝为真,所以,“p q ∨ 真”不能得“p ⌝为假”,而“p ⌝为假”时p 为真,必有“p q ∨ 真”,故选B. 考点:1、充分条件与必要条件;2、真值表的应用.
4. 【答案】 D
【解析】解:要使这些曲线上存在点P 满足|MP|=|NP|,需曲线与MN 的垂直平分线相交.
MN 的中点坐标为(﹣,0),MN 斜率为=
∴MN 的垂直平分线为y=﹣2(x+),
∵①4x+2y ﹣1=0与y=﹣2(x+),斜率相同,两直线平行,可知两直线无交点,进而可知①不符合题意.
②x 2+y 2=3与y=﹣2(x+),联立,消去y 得5x 2
﹣12x+6=0,△=144﹣4×5×6>0,可知②中的曲线与MN 的
垂直平分线有交点,
③中的方程与y=﹣2(x+),联立,消去y 得9x 2
﹣24x ﹣16=0,△>0可知③中的曲线与MN 的垂直平分线
有交点,
④中的方程与y=﹣2(x+),联立,消去y 得7x 2
﹣24x+20=0,△>0可知④中的曲线与MN 的垂直平分线有
交点, 故选D
5. 【答案】C
【解析】解:F 1(﹣5,0),F 2(5,0),|F 1F 2|=10,
∵3|PF1|=4|PF2|,∴设|PF2|=x,则,
由双曲线的性质知,解得x=6.
∴|PF1|=8,|PF2|=6,
∴∠F1PF2=90°,
∴△PF1F2的面积=.
故选C.
【点评】本题考查双曲线的性质和应用,解题时要认真审题,仔细解答,注意公式的合理运用.
6.【答案】A
【解析】解:若a=0,则z=﹣2i(1+i)=2﹣2i,点M在第四象限,是充分条件,
若点M在第四象限,则z=(a+2)+(a﹣2)i,推出﹣2<a<2,推不出a=0,不是必要条件;
故选:A.
【点评】本题考查了充分必要条件,考查了复数问题,是一道基础题.
7.【答案】A
【解析】解:由三视图知几何体为半个圆锥,且圆锥的底面圆半径为1,高为2,
∴母线长为,
圆锥的表面积S=S
底面+S侧面=×π×12+×2×2+×π×=2+.
故选A.
【点评】本题考查了由三视图求几何体的表面积,解题的关键是判断几何体的形状及三视图的数据所对应的几何量.
8.【答案】B
【解析】解:假设过点P且平行于l的直线有两条m与n
∴m∥l且n∥l
由平行公理4得m∥n
这与两条直线m与n相交与点P相矛盾
又因为点P在平面内
所以点P且平行于l的直线有一条且在平面内
所以假设错误.
故选B.
【点评】反证法一般用于问题的已知比较简单或命题不易证明的命题的证明,此类题目属于难度较高的题型.9.【答案】B
【解析】
考点:正弦定理的应用.
10.【答案】D
【解析】
考点:简单线性规划.
11.【答案】B
【解析】解:由三视图知几何体的直观图是半个圆锥,
又∵正视图是腰长为2的等腰三角形,俯视图是半径为1的半圆,
∴半圆锥的底面半径为1,高为,
即半圆锥的侧视图是一个两直角边长分别为1和的直角三角形,
故侧视图的面积是,
故选:B.
【点评】本题考查的知识点是由三视图求体积和表面积,解决本题的关键是得到该几何体的形状.
12.【答案】B
【解析】解:由题意,m2﹣4<0且m≠0,∵m∈Z,∴m=1
∵双曲线的方程是y2﹣x2=1
∴a 2=1,b 2
=3, ∴c 2=a 2+b 2=4
∴a=1,c=2,
∴离心率为e==2. 故选:B .
【点评】本题的考点是双曲线的简单性质,考查由双曲线的方程求三参数,考查双曲线中三参数的关系:c 2=a 2+b 2.
二、填空题
13.【答案】()
0,2x π
∃∈,sin 1≥
【解析】
试题分析:“(0,)2x π
∀∈,sin 1x <”的否定是()
0,2
x π
∃∈,sin 1≥
考点:命题否定
【方法点睛】(1)对全称(存在性)命题进行否定的两步操作:①找到命题所含的量词,没有量词的要结合命题的含义加上量词,再进行否定;②对原命题的结论进行否定.(2)判定全称命题“∀x ∈M ,p (x )”是真命题,需要对集合M 中的每个元素x ,证明p (x )成立;要判定一个全称命题是假命题,只要举出集合M 中的一个特殊值x 0,使p (x 0)不成立即可.要判断存在性命题是真命题,只要在限定集合内至少能找到一个x =x 0,使p (x 0)成立即可,否则就是假命题. 14.【答案】 ﹣2 .
【解析】解:∵曲线y=x n+1(n ∈N *
),
∴y ′=(n+1)x n
,∴f ′(1)=n+1,
∴曲线y=x
n+1
(n ∈N *
)在(1,1)处的切线方程为y ﹣1=(n+1)(x ﹣1),
该切线与x 轴的交点的横坐标为x n =,
∵a n =lgx n ,
∴a n =lgn ﹣lg (n+1), ∴a 1+a 2+…+a 99
=(lg1﹣lg2)+(lg2﹣lg3)+(lg3﹣lg4)+(lg4﹣lg5)+(lg5﹣lg6)+…+(lg99﹣lg100) =lg1﹣lg100=﹣2. 故答案为:﹣2.
15.【答案】 (,0) .
【解析】解:y ′=﹣,
∴斜率k=y ′|x=3=﹣2,
∴切线方程是:y﹣3=﹣2(x﹣3),
整理得:y=﹣2x+9,
令y=0,解得:x=,
故答案为:.
【点评】本题考查了曲线的切线方程问题,考查导数的应用,是一道基础题.
16.【答案】5.
【解析】解:如图所示:延长BC,过A做AE⊥BC,垂足为E,
∵CD⊥BC,∴CD∥AE,
∵CD=5,BD=2AD,∴,解得AE=,
在RT△ACE,CE===,
由得BC=2CE=5,
在RT△BCD中,BD===10,
则AD=5,
故答案为:5.
【点评】本题考查平行线的性质,以及勾股定理,做出辅助线是解题的关键,属于中档题.
17.【答案】2i.
【解析】解:向量饶坐标原点逆时针旋转60°得到向量所对应的复数为
(+i)(cos60°+isin60°)=(+i)()=2i
,故答案为2i.
【点评】本题考查两个复数代数形式的乘法及其集合意义,判断旋转60°得到向量对应的复数为(+i)
(cos60°+isin60°),是解题的关键.
18.【答案】﹣12.
【解析】解:∵向量=(1,2,﹣2),=(﹣3,x,y),且∥,
∴==,
解得x=﹣6,y=6,
x﹣y=﹣6﹣6=﹣12.
故答案为:﹣12.
【点评】本题考查了空间向量的坐标表示与共线定理的应用问题,是基础题目.
三、解答题
19.【答案】
【解析】解:(1)依题意得:
当0<x≤4时,y=10;…(2分)
当4<x≤18时,y=10+1.5(x﹣4)=1.5x+4…
当x>18时,y=10+1.5×14+2(x﹣18)=2x﹣5…(8分)
∴…(9分)
(2)x=30,y=2×30﹣5=55…(12分)
【点评】本题考查函数模型的建立,考查利用数学知识解决实际问题,考查学生的计算能力,属于中档题.
20.【答案】
【解析】(本题满分12分)
解:(1)由表格给出的信息知,函数f(x)的周期为T=2(﹣0)=π.
所以ω==2,由sin(2×0+φ)=1,且0<φ<2π,所以φ=.
所以函数的解析式为f(x)=sin(2x+)=cos2x…6分
(2)g(x)=f(x)+sin2x=sin2x+cos2x=2sin(2x+),
令2k≤2x+≤2k,k∈Z则得kπ﹣≤x≤kπ+,k∈Z
故函数g(x)=f(x)+sin2x的单调递增区间是:,k∈Z…12分
【点评】本题主要考查了由y=Asin(ωx+φ)的部分图象确定其解析式,正弦函数的单调性,周期公式的应用,属于基本知识的考查.
21.【答案】
【解析】解:(1)当a=1、b=0时,原不等式化为x≥x2,(2分)
即x(x﹣1)≤0;…(4分)
解得0≤x≤1,
∴原不等式的解集为{x|0≤x≤1};…(6分)
(2)∵a2x+b2(1﹣x)≥[ax+b(1﹣x)]2,
∴(a ﹣b )2x ≥(a ﹣b )2x 2
,(10分)
又∵a ≠b ,
∴(a ﹣b )2
>0, ∴x ≥x 2
;
即x (x ﹣1)≤0,…(12分) 解得0≤x ≤1;
∴不等式的解集为{x|0≤x ≤1}.…(14分)
【点评】本题考查了不等式的解法与应用问题,解题时应对不等式进行化简,再解不等式,是基础题.
22.【答案】
【解析】【命题意图】本题主要考查圆周角定理、弦切角定理、三角形相似的判断与性质等基础知识,意在考查逻辑推证能力、转化能力、识图能力.
∴
DE DC BC BA =BC AB
=,则2
4BC AB DE =⋅=,∴2BC =. ∴在Rt ABC ∆中,1
2
BC AB =,∴30BAC ∠=︒,∴60BAD ∠=︒,
∴在Rt ABD ∆中,30ABD ∠=︒,所以1
22
AD AB ==.
23.【答案】
【解析】(Ⅰ)解:∵f (x )=|x ﹣5|+|x ﹣3|≥|x ﹣5+3﹣x|=2,…(2分) 当且仅当x ∈[3,5]时取最小值2,…(3分) ∴m=2.…(4分)
(Ⅱ)证明:∵( +
)[
]≥(
)2
=3,
∴(+
)×≥(
)2,
∴
+≥2.…(7分)
【点评】本题主要考查绝对值不等式和均值不等式等基础知识,考查运算求解能力,考查化归与转化思想.
24.【答案】
【解析】解:(1)由题意可知第3组的频率为0.06×5=0.3,
第4组的频率为0.04×5=0.2,
第5组的频率为0.02×5=0.1;
(2)第3组的人数为0.3×100=30,
第4组的人数为0.2×100=20,
第5组的人数为0.1×100=10;
因为第3,4,5组共有60名志愿者,
所以利用分层抽样的方法在60名志愿者中抽取6名志愿者,
每组抽取的人数分别为:第3组=3;第4组=2;第5组=1;
应从第3,4,5组各抽取3,2,1名志愿者.
(3)记第3组3名志愿者为1,2,3;第4组2名志愿者为4,5;第5组1名志愿者为6;
在这6名志愿者中随机抽取2名志愿者有:
(1,2),(1,3),(1,4),(1,5),(1,6),
(2,3),(2,4),(2,5),(2,6),
(3,4),(3,5),(3,6),
(4,5),(4,6),
(5,6);
共有15种,第4组2名志愿者为4,5;至少有一名志愿者被抽中共有9种,
所以第4组至少有一名志愿者被抽中的概率为.
【点评】本题考查列举法计算基本事件数及事件发生的概率,频率分布直方图,考查计算能力.。