人教A版高中数学必修四1.4.1《正弦、余弦函数图象》课件
合集下载
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
y 1
O
π
-1
2π x
知识探究(二):余弦函数的图象
思考1:观察函数y=x2与y=(x+1)2 的图 象,你能发现这两个函数的图象有什么 内在联系吗?
y
-1
o
x
思 考 2 : 一 般 地 , 函 数 y=f(x + a)(a>0) 的图象是由函数y=f(x)的图象经过怎样 的变换而得到的?
向左平移a个单位.
y
1
y sin x, x[0, 2
3
π
2
2π
O
x
2
-1
思考4:观察函数y=sinx在[0,2π]内的 图象,其形状、位置、凸向等有何变化 规律?
思考5:在函数y=sinx,x∈[0,2π]的 图象上,起关键作用的点有哪几个?
y 1
O
-1
2
3
π
2
2π x
思 考 6 : 当 x∈[2π , 4π], [-2π , 0],…时,y=sinx的图象如何?
(1)y=1+sinx,x∈[0,2π]; (2)y=-cosx,x∈[0,2π] .
x0 sinx 0 1+sinx 1
3
2
22
1 0 -1 0
21 0 1
y
2
y=1+sinx
1
3
π
2
2π
O
x
-1
2
x
02
3 22
cosx 1 0 -1 0 1
-cosx -1 0 1 0 -1
y
y=-cosx
1
►1Our destiny offers not the cup of despair, but the chalice of opportunity. ►So let us seize it, not in fear, but in gladness. · 命运给予我们的不是失望之酒,而是机会之杯。 因此,让我们毫无畏惧,满心愉悦地把握命运
思考3:设想由正弦函数的图象作出余 弦函数的图象,那么先要将余弦函数 y=cosx转化为正弦函数,你可以根据哪 个公式完成这个转化?
思考4:由诱导公式可知,y=cosx与
y
sin( 2
x) 是同一个函数,如何作函
数 y sin( 2 x)在[0,2π]内的图象?
y
1
y=sinx
2
O -1
2
π
2π x
4.一个函数总具有许多基本性质,要直 观、全面了解正、余弦函数的基本特性, 我们应从哪个方面人手?
知识探究(一):正弦函数的图象 思考1:作函数图象最原始的方法是什么?
思考2:用描点法作正弦函数y=sinx在[0, 2π]内的图象,可取哪些点?
思考3:如何在直角坐标系中比较精确地 描出这些点,并画出y=sinx在[0,2π] 内的图象?
1.4 三角函数的图象与性质 1.4.1正弦函数、余弦函数的图象
问题提出
t
p
1 2
5730
1.在单位圆中,角α的正弦线、余弦线
分别是什么?
y
sinα=MP
P(x,y)
cosα=OM
OM x
2.任意给定一个实数x,对应的正弦值 (sinx)、余弦值(cosx)是否存在?惟一?
3.设实数x对应的角的正弦值为y,则对 应关系y=sinx就是一个函数,称为正弦 函数;同样y= cosx也是一个函数,称为 余弦函数,这两个函数的定义域是什么?
-π
O
-1
π
3π 5π
2π 4π
6πx
思考7:函数y=sinx,x∈R的图象叫做正 弦曲线,正弦曲线的分布有什么特点?
-6π -4π -2π -5π -3π
y 1
-π
O
-1
π
3π 5π
2π 4π
6πx
思考8:你能画出函数y=|sinx|, x∈[0,2π]的图象吗?
3
2 2π
O
π
x
-1
2
例2 当x∈[0,2π]时,求不等式 cos x 1 的解集.
2y
1
y
1 2
O
π
2π x
-1
2
2
[0, ] [ 5 , 2 ]
3
3
小结作业
1.正、余弦函数的图象每相隔2π个单位 重复出现,因此,只要记住它们在[0, 2π]内的图象形态,就可以画出正弦曲 线和余弦曲线.
2.作与正、余弦函数有关的函数图象, 是解题的基本要求,用“五点法”作图 是常用的方法.
3.正、余弦函数的图象不仅是进一步研 究函数性质的基础,也是解决有关三角 函数问题的工具,这是一种数形结合的 数学思想.
作业:P34练习:2 P46习题1.4 A组: 1
►Suffering is the most powerful teacher of life. 苦难是人生最伟大的老师。 ►For man is man and master of his fate. 人就是人,是自己命运的主人。 ►A man can't ride your back unless it is bent. 你的腰不弯,别人就不能骑在你的背上。
思考5:函数y=cosx,x∈[0,2π]的图 象如何?其中起关键作用的点有哪几个?
y 1
O
π
2π x
-1
2
2
思考6:函数y=cosx,x∈R的图象叫做余 弦曲线,怎样画出余弦曲线,余弦曲线 的分布有什么特点?
y
2
2
1 22
2
2
x
2
O
2
2-1
2
2
2
理论迁移
例1 用“五点法”画出下列函数的 简图: