奉化区高中2018-2019学年高三上学期11月月考数学试卷含答案

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

奉化区高中2018-2019学年高三上学期11月月考数学试卷含答案
班级__________ 姓名__________ 分数__________
一、选择题
1. 已知函数211,[0,)22
()13,[,1]2
x x f x x x ⎧+∈⎪⎪=⎨⎪∈⎪⎩,若存在常数使得方程()f x t =有两个不等的实根12,x x
(12x x <),那么12()x f x ∙的取值范围为( )
A .3[,1)4 B
.1[8 C .31[,)162 D .3
[,3)8
2. 在“唱响内江”选拔赛中,甲、乙两位歌手的5次得分情况如茎叶图所示,记甲、
乙两人的平均得分分别

,则下列判断正确的是( )
A

<,乙比甲成绩稳定 B

<,甲比乙成绩稳定 C


,甲比乙成绩稳定
D


,乙比甲成绩稳定
3. 已知双曲线和离心率为4
sin
π
的椭圆有相同的焦点21F F 、,P 是两曲线的一个公共点,若
2
1
cos 21=
∠PF F ,则双曲线的离心率等于( ) A . B .25 C .26 D .27
4. 已知直线l ⊥平面α,直线m ⊂平面β,有下面四个命题: (1)α∥β⇒l ⊥m ,(2)α⊥β⇒l ∥m , (3)l ∥m ⇒α⊥β,(4)l ⊥m ⇒α∥β, 其中正确命题是( )
A .(1)与(2)
B .(1)与(3)
C .(2)与(4)
D .(3)与(4)
5.
是z 的共轭复数,若
z+=2,(z
﹣)i=2(i 为虚数单位),则z=( ) A .1+i B .﹣1﹣i
C .﹣1+i
D .1﹣i
6. 2016年3月“两会”期间,有代表提出适当下调“五险一金”的缴存比例,现拟从某工厂职工中抽取
20名代表调查对这一提案的态度,已知该厂青年,中年,老年职工人数分别为350,500,150,按分
层抽样的方法,应从青年职工中抽取的人数为( ) A. 5 B.6 C.7 D.10
【命题意图】本题主要考查分层抽样的方法的运用,属容易题.
7. 下列关系式中正确的是( )
A .sin11°<cos10°<sin168°
B .sin168°<sin11°<cos10°
C .sin11°<sin168°<cos10°
D .sin168°<cos10°<sin11°
8. △ABC 的内角A 、B 、C 的对边分别为a 、b 、c .已知a=,c=2,cosA=,则b=( )
A .
B .
C .2
D .3
9. 用反证法证明命题:“已知a 、b ∈N *,如果ab 可被5整除,那么a 、b 中至少有一个能被5整除”时,假设的内容应为( )
A .a 、b 都能被5整除
B .a 、b 都不能被5整除
C .a 、b 不都能被5整除
D .a 不能被5整除
10.已知实数x ,y 满足,则z=2x+y 的最大值为( )
A .﹣2
B .﹣1
C .0
D .4
11.集合{}5,4,3,2,1,0=S ,A 是S 的一个子集,当A x ∈时,若有A x A x ∉+∉-11且,则称x 为A 的一个“孤立元素”.集合B 是S 的一个子集, B 中含4个元素且B 中无“孤立元素”,这样的集合B 共有个
A.4
B. 5
C.6
D.7
12.已知函数f (x )=⎩⎪⎨⎪⎧log 2(a -x ),x <1
2x ,x ≥1若f (-6)+f (log 26)=9,则a 的值为( )
A .4
B .3
C .2
D .1
二、填空题
13.在半径为2的球面上有A 、B 、C 、D 四点,若AB=CD=2,则四面体ABCD 的体积的最大值为 .
14.已知||2=a ,||1=b ,2-a 与1
3b 的夹角为
3
π
,则|2|+=a b . 15.如图所示2×2方格,在每一个方格中填入一个数字,数字可以是1、2、3中的任何一个,允许重复.若填A B 方格的数字,则不同的填法共有 种(用数字作答).
16.在正方形ABCD 中,2==AD AB ,N M ,分别是边CD BC ,上的动点,当4AM AN ⋅=时,则MN 的取值范围为 .
【命题意图】本题考查平面向量数量积、点到直线距离公式等基础知识,意在考查坐标法思想、数形结合思想和基本运算能力.
17.设i 是虚数单位,是复数z 的共轭复数,若复数z=3﹣i ,则z •= .
18.设函数f (x )=则函数y=f (x )与y=的交点个数是 .
三、解答题
19.函数f (x )是R 上的奇函数,且当x >0时,函数的解析式为f (x )=﹣1. (1)用定义证明f (x )在(0,+∞)上是减函数; (2)求函数f (x )的解析式.
20.设函数f (x )=lg (a x ﹣b x ),且f (1)=lg2,f (2)=lg12
(1)求a ,b 的值.
(2)当x ∈[1,2]时,求f (x )的最大值.
(3)m 为何值时,函数g (x )=a x 的图象与h (x )=b x
﹣m 的图象恒有两个交点.
21.已知函数f (x )=|x ﹣1|+|x ﹣a|.
(I )若a=﹣1,解不等式f (x )≥3;
(II )如果∀x ∈R ,f (x )≥2,求a 的取值范围.
22.(本小题满分12分)
某单位共有10名员工,他们某年的收入如下表:
员工编号 1 2 3 4 5 6 7 8 9 10 年薪(万元)
3
3.5
4
5
5.5
6.5
7
7.5
8
50
(1)求该单位员工当年年薪的平均值和中位数;
(2)从该单位中任取2人,此2人中年薪收入高于5万的人数记为ξ,求ξ的分布列和期望;
(3)已知员工年薪收入与工作年限成正相关关系,某员工工作第一年至第四年的年薪分别为3万元、5.4万元、6.5万元、2.7万元,预测该员工第五年的年薪为多少?
附:线性回归方程a x b y
ˆˆˆ+=中系数计算公式分别为: 1
2
1
()()
()
n
i
i
i n
i
i x x y y b x x ==--=
-∑∑,x b y a
ˆˆ-=,其中x 、y 为样本均值.
23.一个圆柱形圆木的底面半径为1m ,长为10m ,将此圆木沿轴所在的平面剖成两个部分,现要把其中一个部分加工成直四棱柱木梁,长度保持不变,底面为等腰梯形ABCD (如图所示,其中O 为圆心,C ,D 在半圆
上),设∠BOC=θ,直四棱柱木梁的体积为V (单位:m 3),侧面积为S (单位:m 2
).
(Ⅰ)分别求V 与S 关于θ的函数表达式;
(Ⅱ)求侧面积S的最大值;
(Ⅲ)求θ的值,使体积V最大.
24.已知函数f(x)=|x﹣m|,关于x的不等式f(x)≤3的解集为[﹣1,5].(1)求实数m的值;
(2)已知a,b,c∈R,且a﹣2b+2c=m,求a2+b2+c2的最小值.
奉化区高中2018-2019学年高三上学期11月月考数学试卷含答案(参考答案)
一、选择题
1. 【答案】C 【解析】
试题分析:由图可知存在常数,使得方程()f x t =有两上不等的实根,则
314t <<,
由1324x +=,可得1
4
x =,
由213x =,可得x =(负舍),即有12111,422x x ≤<≤≤2
21143x ≤≤,则
()212123133,162x f x x x ⎡⎫
=⋅∈⎪⎢⎣⎭
.故本题答案选C.
考点:数形结合.
【规律点睛】本题主要考查函数的图象与性质,及数形结合的数学思想方法.方程解的个数问题一般转化为两个常见的函数图象的交点个数问题来解决.要能熟练掌握几种基本函数图象,如二次函数,反比例函数,指数函数,对数函数,幂函数等.掌握平移变换,伸缩变换,对称变换,翻折变换,周期变换等常用的方法技巧来快速处理图象.
2. 【答案】A
【解析】解:由茎叶图可知
=(77+76+88+90+94)=,
=(75+86+88+88+93)==86,则


乙的成绩主要集中在88附近,乙比甲成绩稳定,
故选:A
【点评】本题主要考查茎叶图的应用,根据平均数和数据的稳定性是解决本题的关键.
3. 【答案】C 【解析】
试题分析:设椭圆的长半轴长为1a ,双曲线的实半轴长为2a ,焦距为c 2,m PF =1,n PF =2,且不妨设
n m >,由12a n m =+,22a n m =-得21a a m +=,21a a n -=,又2
1
cos 21=
∠PF F ,∴由余弦定理可知:mn n m c -+=2
224,2221234a a c +=∴,432
221=+∴c a c a ,设双曲线的离心率为,则432
2122=+e
)(,解
得26
=e .故答案选C .
考点:椭圆的简单性质.
【思路点晴】本题主要考查圆锥曲线的定义和离心率.根据椭圆和双曲线的定义,由P 为公共点,可把焦半径1PF 、
2PF 的长度用椭圆的半长轴以及双曲线的半实轴21,a a 来表示,接着用余弦定理表示2
1
cos 21=∠PF F ,成为一个关于21,a a 以及的齐次式,等式两边同时除以2
c ,即可求得离心率.圆锥曲线问题在选择填空中以考查定义和几何性质为主. 4. 【答案】B
【解析】解:∵直线l ⊥平面α,α∥β,∴l ⊥平面β,又∵直线m ⊂平面β,∴l ⊥m ,故(1)正确; ∵直线l ⊥平面α,α⊥β,∴l ∥平面β,或l ⊂平面β,又∵直线m ⊂平面β,∴l 与m 可能平行也可能相交,还可以异面,故(2)错误;
∵直线l ⊥平面α,l ∥m ,∴m ⊥α,∵直线m ⊂平面β,∴α⊥β,故(3)正确;
∵直线l ⊥平面α,l ⊥m ,∴m ∥α或m ⊂α,又∵直线m ⊂平面β,则α与β可能平行也可能相交,故(4)错误; 故选B .
【点评】本题考查的知识点是空间中直线与平面之间的位置关系,其中熟练掌握空间中直线与平面位置关系的判定及性质定理,建立良好的空间想像能力是解答本题的关键.
5. 【答案】D
【解析】解:由于,(z ﹣)i=2,可得z ﹣
=﹣2i ①
又z+
=2 ②
由①②解得z=1﹣i 故选D .
6. 【答案】C
7. 【答案】C
【解析】解:∵sin168°=sin(180°﹣12°)=sin12°,
cos10°=sin(90°﹣10°)=sin80°.
又∵y=sinx在x∈[0,]上是增函数,
∴sin11°<sin12°<sin80°,即sin11°<sin168°<cos10°.
故选:C.
【点评】本题主要考查诱导公式和正弦函数的单调性的应用.关键在于转化,再利用单调性比较大小.8.【答案】D
【解析】解:∵a=,c=2,cosA=,
∴由余弦定理可得:cosA===,整理可得:3b2﹣8b﹣3=0,
∴解得:b=3或﹣(舍去).
故选:D.
9.【答案】B
【解析】解:由于反证法是命题的否定的一个运用,故用反证法证明命题时,可以设其否定成立进行推证.命题“a,b∈N,如果ab可被5整除,那么a,b至少有1个能被5整除”的否定是“a,b都不能被5整除”.故选:B.
10.【答案】D
【解析】解:画出满足条件的平面区域,
如图示:

将z=2x+y 转化为:y=﹣2x+z ,
由图象得:y=﹣2x+z 过(1,2)时,z 最大, Z 最大值=4, 故选:D .
【点评】本题考查了简单的线性规划问题,考查了数形结合思想,是一道基础题.
11.【答案】C 【解析】
试题分析:根据题中“孤立元素”定义可知,若集合B 中不含孤立元素,则必须没有三个连续的自然数存在,所有B 的可能情况为:{}0,1,3,4,{}0,1,3,5,{}0,1,4,5,{}0,2,3,5,{}0,2,4,5,{}1,2,4,5共6个。

故选C 。

考点:1.集合间关系;2.新定义问题。

12.【答案】
【解析】选C.由题意得log 2(a +6)+2log 26=9. 即log 2(a +6)=3,
∴a +6=23=8,∴a =2,故选C.
二、填空题
13.【答案】

【解析】解:过CD 作平面PCD ,使AB ⊥平面PCD ,交AB 与P ,
设点P 到CD 的距离为h ,
则有 V=×2×h ××2,
当球的直径通过AB 与CD 的中点时,h 最大为2,
则四面体ABCD 的体积的最大值为.
故答案为:

【点评】本小题主要考查棱柱、棱锥、棱台的体积、球内接多面体等基础知识,考查运算求解能力,考查空间想象力.属于基础题.
14.【答案】2
【解析】解析:本题考查向量夹角与向量数量积的应用.a 与b 的夹角为23
π
,1⋅=-a b ,
∴|2|+=
a b 2==.
15.【答案】 27
【解析】解:若A 方格填3,则排法有2×32
=18种,
若A 方格填2,则排法有1×32
=9种,
根据分类计数原理,所以不同的填法有18+9=27种. 故答案为:27.
【点评】本题考查了分类计数原理,如何分类是关键,属于基础题.
16.【答案】2]
(02x #,02y #)上的点(,)x y 到定点(2,2),最大值为2,故MN 的取值
范围为2].
2
2
y
x
B
17.【答案】 10 .
【解析】
解:由z=3
﹣i ,得 z •
=

故答案为:10. 【点评】本题考查公式,考查了复数模的求法,是基础题.
18.【答案】 4 .
【解析】解:在同一坐标系中作出函数
y=f (x )=的图象与函数y=的图象,如下图所
示,
由图知两函数y=f (x )与y=的交点个数是
4. 故答案为:4.
三、解答题
19.【答案】
【解析】(1)证明:设x2>x1>0,∵f(x1)﹣f(x2)=(﹣1)﹣(﹣1)=,
由题设可得x2﹣x1>0,且x2•x1>0,∴f(x1)﹣f(x2)>0,即f(x1)>f(x2),
故f(x)在(0,+∞)上是减函数.
(2)当x<0时,﹣x>0,f(﹣x)=﹣1=﹣f(x),∴f(x)=+1.
又f(0)=0,故函数f(x)的解析式为f(x)=.
20.【答案】
【解析】解:(1)∵f(x)=lg(a x﹣b x),且f(1)=lg2,f(2)=lg12,
∴a﹣b=2,a2﹣b2=12,
解得:a=4,b=2;
(2)由(1)得:函数f(x)=lg(4x﹣2x),
当x∈[1,2]时,4x﹣2x∈[2,12],
故当x=2时,函数f(x)取最大值lg12,
(3)若函数g(x)=a x的图象与h(x)=b x﹣m的图象恒有两个交点.
则4x﹣2x=m有两个解,令t=2x,则t>0,
则t2﹣t=m有两个正解;
则,
解得:m∈(﹣,0)
【点评】本题考查的知识点是对数函数的图象和性质,熟练掌握对数函数的图象和性质,是解答的关键.
21.【答案】
【解析】解:(Ⅰ)当a=﹣1时,f(x)=|x+1|+|x﹣1|,
由f(x)≥3即|x+1|+|x﹣1|≥3
当x≤﹣1时,不等式可化为﹣x﹣1+1﹣x≥3,解得x≤﹣;
当﹣1<x <1时,不等式化为x+1+1﹣x ≥3,不可能成立,即x ∈∅; 当x ≥1时,不等式化为x+1+x ﹣1≥3,解得x
≥.
综上所述,f (x )≥3的解集为(﹣∞
,﹣]∪
[,+∞); (Ⅱ)由于|x ﹣1|+|x ﹣a|≥|(x ﹣1)﹣(x ﹣a )|=|a ﹣1|, 则f (x )的最小值为|a ﹣1|. 要使∀x ∈R ,f (x )≥2成立, 则|a ﹣1|≥2,解得a ≥3或a ≤﹣1,
即a 的取值范围是(﹣∞,﹣1]∪[3,+∞).
【点评】本题考查绝对值不等式的解法,考查不等式恒成立问题转化为求函数的最值,运用分类讨论和绝对值不等式的性质,是解题的关键.
22.【答案】
【解析】(1)平均值为10万元,中位数为6万元. (2)年薪高于5万的有6人,低于或等于5万的有4人;
ξ取值为0,1,2.
152)0(2102
4===C C P ξ,158)1(2101614===C C C P ξ,31
)2(2
10
26===C C P ξ, ∴ξ的分布列为
∴()012151535
E ξ=⨯+⨯+⨯=.
(3)设)4,3,2,1(,=i y x i i 分别表示工作年限及相应年薪,则5,5.2==y x ,
2
1()
2.250.250.25 2.255n
i
i x x =-=+++=∑,
4
1
()() 1.5(2)(0.5)(0.8)0.50.6 1.5 2.27i
i
i x x y y =--=-⨯-+-⨯-+⨯+⨯=∑,
1
2
1
()()
7 1.45
()
n
i
i
i n
i
i x x y y b x x ==--=
=
=-∑∑,ˆˆ5 1.4 2.5 1.5a y b x =-=-⨯=, 由线性回归方程为 1.4 1.5y x =+.可预测该员工年后的年薪收入为8.5万元. 23.【答案】
【解析】解:(Ⅰ)木梁的侧面积S=10(AB+2BC+CD)
=10(2+4sin+2cosθ)=20(cosθ+2sin+1),θ∈(0,),
梯形ABCD的面积S ABCD=﹣sinθ=sinθcosθ+sinθ,θ∈(0,),
体积V(θ)=10(sinθcosθ+sinθ),θ∈(0,);
(Ⅱ)木梁的侧面积S=10(AB+2BC+CD)=10(2+4sin+2cosθ)
=20(cos+1),θ∈(0,),
设g(θ)=cos+1,g(θ)=﹣2sin2+2sin+2,
∴当sin=,θ∈(0,),
即θ=时,木梁的侧面积s最大.
所以θ=时,木梁的侧面积s最大为40m2.
(Ⅲ)V′(θ)=10(2cos2θ+cosθ﹣1)=10(2cosθ﹣1)(cosθ+1)
令V′(θ)=0,得cosθ=,或cosθ=﹣1(舍)∵θ∈(0,),∴θ=.
当θ∈(0,)时,<cosθ<1,V′(θ)>0,V(θ)为增函数;
当θ∈(,)时,0<cosθ<,V′(θ)>0,V(θ)为减函数.
∴当θ=时,体积V最大.
24.【答案】
【解析】解:(1)|x﹣m|≤3⇔﹣3≤x﹣m≤3⇔m﹣3≤x≤m+3,由题意得,解得m=2;
(2)由(1)可得a﹣2b+2c=2,
由柯西不等式可得(a2+b2+c2)[12+(﹣2)2+22]≥(a﹣2b+2c)2=4,
∴a2+b2+c2≥
当且仅当,即a=,b=﹣,c=时等号成立,
∴a2+b2+c2的最小值为.
【点评】本题主要考查绝对值三角不等式、柯西不等式的应用,属于基础题.。

相关文档
最新文档