石鼓区实验中学2018-2019学年上学期高二数学12月月考试题含解析

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

石鼓区实验中学2018-2019学年上学期高二数学12月月考试题含解析
班级__________
姓名__________ 分数__________
一、选择题
1. 设k=1,2,3,4,5,则(x+2)5的展开式中x k 的系数不可能是( )
A .10
B .40
C .50
D .80
2. 若直线l 的方向向量为=(1,0,2),平面α的法向量为=(﹣2,0,﹣4),则(

A .l ∥α
B .l ⊥α
C .l ⊂α
D .l 与α相交但不垂直
3. 直径为6的球的表面积和体积分别是( )
A .
B .
C .
D .144,144ππ144,36ππ36,144ππ36,36ππ
4. 设直线x=t 与函数f (x )=x 2,g (x )=lnx 的图象分别交于点M ,N ,则当|MN|达到最小时t 的值为(
)A .1
B .
C .
D .
5. 冶炼某种金属可以用旧设备和改造后的新设备,为了检验用这两种设备生产的产品中所含杂质的关系,调查结果如下表所示.
杂质高
杂质低旧设备37121新设备
22
202
根据以上数据,则(

A .含杂质的高低与设备改造有关
B .含杂质的高低与设备改造无关
C .设备是否改造决定含杂质的高低
D .以上答案都不对
6. 若关于x 的方程x 3﹣x 2﹣x+a=0(a ∈R )有三个实根x 1,x 2,x 3,且满足x 1<x 2<x 3,则a 的取值范围为( )A .a >B .﹣
<a <1
C .a <﹣1
D .a >﹣1
7. 设a ,b ∈R 且a+b=3,b >0,则当+
取得最小值时,实数a 的值是(

A .
B .
C .

D .3
8. 已知函数,关于的方程()有3个相异的实数根,则的
()x e f x x
=x 2
()2()10f x af x a -+-=a R Îa 取值范围是(

A .
B .
C .
D .21(,)21e e -+¥-21(,21e e --¥-21(0,)21e e --2121e e ìü-ïï
íý
-ïïîþ
【命题意图】本题考查函数和方程、导数的应用等基础知识,意在考查数形结合思想、
综合分析问题解决问题的能力.
9. 如图,某几何体的正视图(主视图),侧视图(左视图)和俯视图分别是等边三角形,等腰三角形和菱形,则该几何体体积为(

A .
B .4
C .
D .2
10.已知直线l ∥平面α,P ∈α,那么过点P 且平行于l 的直线( )
A .只有一条,不在平面α内
B .只有一条,在平面α内
C .有两条,不一定都在平面α内
D .有无数条,不一定都在平面α内
11.一个多面体的直观图和三视图如图所示,点是边上的动点,记四面体的体M AB FMC E -积为,多面体的体积为,则( )1111]1V BCE ADF -2V =2
1
V V A .
B .
C . D
.不是定值,随点的变化而变化
4
1
3
1
2
1
M 12.设公差不为零的等差数列的前项和为,若,则
( ){}n a n n S 4232()a a a =+7
4
S a =
A .
B .
C .7
D .14
7
4
14
5
【命题意图】本题考查等差数列的通项公式及其前项和,意在考查运算求解能力.
n 二、填空题
13.若展开式中的系数为,则__________.
6
()mx y +3
3
x y 160-m =【命题意图】本题考查二项式定理的应用,意在考查逆向思维能力、方程思想.14.命题“对任意的x ∈R ,x 3﹣x 2+1≤0”的否定是 . 15.椭圆的两焦点为F 1,F 2,一直线过F 1交椭圆于P 、Q ,则△PQF 2的周长为 .
16.函数f (x )=
的定义域是 .
17.在极坐标系中,曲线C 1与C 2的方程分别为2ρcos 2θ=sin θ与ρcos θ=1,以极点为平面直角坐标系的原点,极轴为x 轴的正半轴,建立平面直角坐标系,则曲线C 1与C 2交点的直角坐标为 .
18.以抛物线y 2=20x 的焦点为圆心,且与双曲线:的两条渐近线都相切的圆的方程为
. 
三、解答题
19.已知斜率为1的直线l 经过抛物线y 2=2px (p >0)的焦点F ,且与抛物线相交于A ,B 两点,|AB|=4.(I )求p 的值;
(II )若经过点D (﹣2,﹣1),斜率为k 的直线m 与抛物线有两个不同的公共点,求k 的取值范围.
20.已知集合A={x|1<x <3},集合B={x|2m <x <1﹣m}.(1)若A ⊆B ,求实数m 的取值范围;(2)若A ∩B=∅,求实数m 的取值范围.
21.设函数.
(Ⅰ)求函数的最小正周期;
(Ⅱ)求函数

上的最大值与最小值.
22.(本小题满分12分)
已知数列{}的前n 项和为,且满足.n a n S *)(2N n a n S n n ∈=+(1)证明:数列为等比数列,并求数列{}的通项公式;
}1{+n a n a (2)数列{}满足,其前n 项和为,试求满足的n b *))(1(log 2N n a a b n n n ∈+⋅=n T 20152
2>++n
n T n 最小正整数n .
【命题意图】本题是综合考察等比数列及其前项和性质的问题,其中对逻辑推理的要求很高.
n 23.【镇江2018届高三10月月考文科】已知函数,其中实数为常数,为自然对数的底数.
(1)当
时,求函数
的单调区间;
(2)当时,解关于的不等式;
(3)当
时,如果函数
不存在极值点,求的取值范围.
24.已知、、是三个平面,且,,,且.求证:、αβc αβ= a βγ= b αγ= a b O = 、三线共点.
石鼓区实验中学2018-2019学年上学期高二数学12月月考试题含解析(参考答案)一、选择题
1.【答案】C
【解析】
二项式定理.
【专题】计算题.
【分析】利用二项展开式的通项公式求出展开式的x k的系数,将k的值代入求出各种情况的系数.【解答】解:(x+2)5的展开式中x k的系数为C5k25﹣k
当k﹣1时,C5k25﹣k=C5124=80,
当k=2时,C5k25﹣k=C5223=80,
当k=3时,C5k25﹣k=C5322=40,
当k=4时,C5k25﹣k=C54×2=10,
当k=5时,C5k25﹣k=C55=1,
故展开式中x k的系数不可能是50
故选项为C
【点评】本题考查利用二项展开式的通项公式求特定项的系数.
2.【答案】B
【解析】解:∵=(1,0,2),=(﹣2,0,4),
∴=﹣2,
∴∥,
因此l⊥α.
故选:B.
3.【答案】D
【解析】
考点:球的表面积和体积.
4.【答案】D
【解析】解:设函数y=f(x)﹣g(x)=x2﹣lnx,求导数得
=
当时,y′<0,函数在上为单调减函数,
当时,y′>0,函数在上为单调增函数
所以当时,所设函数的最小值为
所求t的值为
故选D
【点评】可以结合两个函数的草图,发现在(0,+∞)上x2>lnx恒成立,问题转化为求两个函数差的最小值对应的自变量x的值.
5.【答案】
A
【解析】
独立性检验的应用.
【专题】计算题;概率与统计.
【分析】根据所给的数据写出列联表,把列联表的数据代入观测值的公式,求出两个变量之间的观测值,把观测值同临界值表中的数据进行比较,得到有99%的把握认为含杂质的高低与设备是否改造是有关的.
【解答】解:由已知数据得到如下2×2列联表
杂质高杂质低合计
旧设备37121158
新设备22202224
合计59323382
由公式κ2=≈13.11,
由于13.11>6.635,故有99%的把握认为含杂质的高低与设备是否改造是有关的.
【点评】本题考查独立性检验,考查写出列联表,这是一个基础题.
6.【答案】B
【解析】解:由x3﹣x2﹣x+a=0得﹣a=x3﹣x2﹣x,
设f(x)=x3﹣x2﹣x,则函数的导数f′(x)=3x2﹣2x﹣1,
由f′(x)>0得x>1或x<﹣,此时函数单调递增,
由f′(x)<0得﹣<x<1,此时函数单调递减,
即函数在x=1时,取得极小值f(1)=1﹣1﹣1=﹣1,
在x=﹣时,函数取得极大值f(﹣)=(﹣)3﹣(﹣)2﹣(﹣)=,
要使方程x3﹣x2﹣x+a=0(a∈R)有三个实根x1,x2,x3,
则﹣1<﹣a<,
即﹣<a<1,
故选:B.
【点评】本题主要考查导数的应用,构造函数,求函数的导数,利用导数求出函数的极值是解决本题的关键. 
7.【答案】C
【解析】解:∵a+b=3,b>0,
∴b=3﹣a>0,∴a<3,且a≠0.
①当0<a<3时,+==+=f(a),
f′(a)=+=,
当时,f′(a)>0,此时函数f(a)单调递增;当时,f′(a)<0,此时函数f(a)单调递减.
∴当a=时,+取得最小值.
②当a<0时,+=﹣()=﹣(+)=f(a),
f′(a)=﹣=﹣,
当时,f′(a)>0,此时函数f(a
)单调递增;当时,f′(a)<0,此时函数f(a)单调递减.
∴当a=﹣时,+取得最小值.
综上可得:当a=或时,+取得最小值.
故选:C.
【点评】本题考查了导数研究函数的单调性极值与最值、分类讨论方法,考查了推理能力与计算能力,属于难题.
8.【答案】
D
第Ⅱ卷(共90分)
9.【答案】C
【解析】解:由已知中该几何中的三视图中有两个三角形一个菱形可得
这个几何体是一个四棱锥
由图可知,底面两条对角线的长分别为2,2,底面边长为2
故底面棱形的面积为=2
侧棱为2,则棱锥的高h==3
故V==2
故选C
10.【答案】B
【解析】解:假设过点P且平行于l的直线有两条m与n
∴m∥l且n∥l
由平行公理4得m∥n
这与两条直线m与n相交与点P相矛盾
又因为点P在平面内
所以点P且平行于l的直线有一条且在平面内
所以假设错误.
故选B.
【点评】反证法一般用于问题的已知比较简单或命题不易证明的命题的证明,此类题目属于难度较高的题型. 
11.【答案】B
【解析】
考点:棱柱、棱锥、棱台的体积.
12.【答案】C.
【解析】根据等差数列的性质,,化简得,∴
4231112()32(2)a a a a d a d a d =+⇒+=+++1a d =-,故选C.
17
4
176
7142732a d
S d a a d d
⋅+
===+二、填空题
13.【答案】2
-【解析】由题意,得,即,所以.3
3
6160C m =-3
8m =-2m =-14.【答案】 存在x ∈R ,x 3﹣x 2+1>0 .
【解析】解:因为全称命题的否定是特称命题,
所以命题“对任意的x ∈R ,x 3﹣x 2+1≤0”的否定是:存在x ∈R ,x 3﹣x 2+1>0.故答案为:存在x ∈R ,x 3﹣x 2+1>0.
【点评】本题考查命题的否定,特称命题与全称命题的否定关系. 
15.【答案】 20 .
【解析】解:∵a=5,由椭圆第一定义可知△PQF 2的周长=4a .∴△PQF 2的周长=20.,故答案为20.
【点评】作出草图,结合图形求解事半功倍. 
16.【答案】 {x|x >2且x ≠3} .
【解析】解:根据对数函数及分式有意义的条件可得解可得,x >2且x ≠3故答案为:{x|x >2且x ≠3} 
17.【答案】 (1,2) .
【解析】解:由2ρcos 2θ=sin θ,得:2ρ2cos 2θ=ρsin θ,即y=2x 2.
由ρcosθ=1,得x=1.
联立,解得:.
∴曲线C1与C2交点的直角坐标为(1,2).
故答案为:(1,2).
【点评】本题考查极坐标与直角坐标的互化,考查了方程组的解法,是基础题.
18.【答案】 (x﹣5)2+y2=9 .
【解析】解:抛物线y2=20x的焦点坐标为(5,0),双曲线:的两条渐近线方程为3x±4y=0
由题意,r=3,则所求方程为(x﹣5)2+y2=9
故答案为:(x﹣5)2+y2=9.
【点评】本题考查圆的方程,考查直线与圆的位置关系,考查学生的计算能力,属于基础题.
三、解答题
19.【答案】
【解析】解:(I)由题意可知,抛物线y2=2px(p>0)的焦点坐标为,准线方程为.所以,直线l的方程为…
由消y并整理,得…
设A(x1,y1),B(x2,y2)
则x1+x2=3p,
又|AB|=|AF|+|BF|=x1+x2+p=4,
所以,3p+p=4,所以p=1…
(II)由(I)可知,抛物线的方程为y2=2x.
由题意,直线m的方程为y=kx+(2k﹣1).…
由方程组(1)
可得ky2﹣2y+4k﹣2=0(2)…
当k=0时,由方程(2),得y=﹣1.
把y=﹣1代入y2=2x,得.
这时.直线m与抛物线只有一个公共点.…
当k≠0时,方程(2)得判别式为△=4﹣4k(4k﹣2).
由△>0,即4﹣4k(4k﹣2)>0,亦即4k2﹣2k﹣1<0.
解得.
于是,当且k≠0时,方程(2)有两个不同的实根,从而方程组(1)有两组不同的解,这时,直线m与抛物线有两个不同的公共点,…
因此,所求m的取值范围是.…
【点评】本题考查抛物线的方程与性质,考查直线与抛物线的位置关系,考查学生分析解决问题的能力,属于中档题.
20.【答案】
【解析】解:(1)由A⊆B知:,
得m≤﹣2,即实数m的取值范围为(﹣∞,﹣2];
(2)由A∩B=∅,得:
①若2m≥1﹣m即m≥时,B=∅,符合题意;
②若2m<1﹣m即m<时,需或,
得0≤m<或∅,即0≤m<,
综上知m≥0.
即实数m的取值范围为[0,+∞).
【点评】本题主要考查集合的包含关系判断及应用,交集及其运算.解答(2)题时要分类讨论,以防错解或漏解.
21.【答案】
【解析】【知识点】三角函数的图像与性质恒等变换综合
【试题解析】(Ⅰ)因为

所以函数
的最小正周期为.
(Ⅱ)由(Ⅰ),得.
因为,
所以,所以.
所以.
且当时,取到最大值;当
时,
取到最小值

22.【答案】
【解析】(1)当,解得.(1分)
111,12n a a =+=时11a =当时,,

2n ≥2n n S n a +=,

11(1)2n n S n a --+-=①-②得,即,(3分)1122n n n a a a -+=-121n n a a -=+即,又.112(1)(2)n n a a n -+=+≥112a +=所以是以2为首项,2为公比的等比数列.
{}1n a +即故().
(5分)
12n n a +=21n n a =-*n N ∈
23.【答案】(1)单调递增区间为;单调递减区间为.(2)(3)
【解析】试题分析:把代入由于对数的真数为正数,函数定义域为,所以函数化为,
求导后在定义域下研究函数的单调性给出单调区间;代入,,分和两种情
况解不等式;当时,,求导,函数不存在极值点,只需
恒成立,根据这个要求得出的范围.
试题解析:
(2)时,.
当时,原不等式可化为.
记,则,
当时,,
所以在单调递增,又,故不等式解为;当时,原不等式可化为,显然不成立,
综上,原不等式的解集为.
24.【答案】证明见解析.【解析】
考点:平面的基本性质与推论.。

相关文档
最新文档