佳山乡初中2018-2019学年七年级下学期数学第一次月考试卷
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
佳山乡初中2018-2019学年七年级下学期数学第一次月考试卷
班级__________ 座号_____ 姓名__________ 分数__________
一、选择题
1.(2分)的值为()
A. 5
B.
C. 1
D.
【答案】C
【考点】实数的运算
【解析】【解答】原式= =1.故答案为:C.
【分析】先比较与3、与2的大小,再根据绝对值的意义化简,最后运用实数的性质即可求解。
2.(2分)下列说法:
①两个无理数的和一定是无理数;②两个无理数的积一定是无理数;③一个有理数与一个无理数的和一定是无理数;④一个有理数与一个无理数的积一定是无理数。
其中正确的个数是()
A. 0
B. 1
C. 2
D. 3
【答案】B
【考点】无理数的认识
【解析】【解答】解:①两个无理数的和不一定是无理数,如互为相反数的两个无理数的和为0;②两个无理数的积可能是无理数,也可能是有理数;③一个有理数与一个无理数的和一定是无理数;④一个有理数与一个无理数的积可能是无理数,也可能是有理数.
故正确的序号为:③,
故答案为:B.
【分析】无限不循环的小数就是无理数,根据无理数的定义,用举例子的方法即可一一判断。
3.(2分)代入法解方程组有以下步骤:(1)由①,得2y=7x-3③;(2)把③代入①,得7x-7x-3=3;(3)整理,得3=3;(4)∴x可取一切有理数,原方程组有无数组解.以上解法造成错误步骤是()
A.第(1)步
B.第(2)步
C.第(3)步
D.第(4)步
【答案】B
【考点】解二元一次方程组
【解析】【解答】解:错的是第步,应该将③代入②.
故答案为:B.
【分析】用代入法解二元一次方程组的时候,由原方程组中的①方程变形得出的③方程只能代入原方程组的②方程,由原方程组中的②方程变形得出的③方程只能代入原方程组的①方程,不然就会出现消去未知数得到恒等式。
4.(2分)下列各式中正确的是()
A. B. C. D.
【答案】A
【考点】平方根,算术平方根,立方根及开立方
【解析】【解答】解:A、,故A选项符合题意;
B、,故B选项不符合题意;
C、,故C选项不符合题意;
D、,故D选项不符合题意;
故答案为:A.
【分析】一个正数的算数平方根是一个正数,一个正数的平方根有两个,它们互为相反数;任何数都只有一个立方根,正数的立方根是一个正数,根据定义即可一一判断。
5.(2分)关于x、y的方程组的解x、y的和为12,则k的值为()
A.14
B.10
C.0
D.﹣14
【答案】A
【考点】二元一次方程组的解,解二元一次方程组
【解析】【解答】解:解方程得:
根据题意得:(2k﹣6)+(4﹣k)=12
解得:k=14.
故答案为:A
【分析】先将k看作已知数解这个方程组,可将x、y用含k的代数式表示出来,由题意再将x、y代入x+y=12可得关于k的一元一次方程,解这个方程即可求得k的值。
6.(2分)若方程mx+ny=6有两个解,则m,n的值为()
A. 4,2
B. 2,4
C. -4,-2
D. -2,-4
【答案】C
【考点】解二元一次方程组
【解析】【解答】解:把,代入mx+ny=6中,
得:,
解得:.
故答案为:C.
【分析】将x、y的两组值分别代入方程,建立关于m、n的方程组,再利用加减消元法求出m、n的值。
7.(2分)三元一次方程组消去一个未知数后,所得二元一次方程组是()
A. B. C. D.
【答案】D
【考点】三元一次方程组解法及应用
【解析】【解答】解:,
②−①,得3a+b=3④
①×3+③,得5a−2b=19⑤
由④⑤可知,选项D不符合题意,
故答案为:D.
【分析】观察各选项,排除C,而A、B、D的方程组是关于a、b的二元一次方程组,因此将原方程组中的c
消去,观察各方程中c的系数特点,因此由②−①,①×3+③,就可得出正确的选项。
8.(2分)下列说法:
①实数和数轴上的点是一一对应的;②无理数是开方开不尽的数;③负数没有立方根;④16的平方根是±4,
用式子表示是 =±4;⑤某数的绝对值,相反数,算术平方根都是它本身,则这个数是0,其中错误的是()
A. 0个
B. 1个
C. 2个
D. 3个
【答案】D
【考点】实数的运算,实数的相反数,实数的绝对值
【解析】【解答】①实数和数轴上的点是一一对应的,正确;
②无理数不一定是开方开不尽的数,例如π,错误;
③负数有立方根,错误;
④16的平方根是±4,用式子表示是±=±4,错误;
⑤某数的绝对值,相反数,算术平方根都是它本身,则这个数是0,正确,
则其中错误的是3个,
故答案为:D
【分析】①数轴上的点一定有一个实数和它相对应,任何一个实数都可以用数轴上的点来表示,所以实数和数轴上的点是一一对应的;
②无理数是无限不循环小数;
③因为负数的平方是负数,所以负数有立方根;
④如果一个数的平方等于a,那么这个数是a的平方根。
根据定义可得16的平方根是±4,用式子表示是
=±4;
⑤因为只有0的相反数是0,所以绝对值,相反数,算术平方根都是它本身的数是0.
9.(2分)下列各式中是二元一次方程的是()
A.x+3y=5
B.﹣xy﹣y=1
C.2x﹣y+1
D.
【答案】A
【考点】二元一次方程的定义
【解析】【解答】解:A. x+3y=5,是二元一次方程,符合题意;
B.﹣xy﹣y=1,是二元二次方程,不是二元一次方程,不符合题意;
C. 2x﹣y+1,不是方程,不符合题意;
D. ,不是整式方程,不符合题意,
故答案为:A.
【分析】含有两个未知数,未知数项的最高次数是1的整式方程,就是二元一次方程,根据定义即可一一判断:A、是二元一次方程符合题意;B、是二元二次方程,不符合题意;C、不是方程,不符合题意;D、是分式方程,不是整式方程,不符合题意。
10.(2分)估计的值应在()
A. 1和2之间
B. 2和3之间
C. 3和4之间
D. 4和5之间
【答案】B
【考点】估算无理数的大小
【解析】【解答】解:∵
∴
∴在2和3之间。
故答案为:B
【分析】由,可求出的取值范围。
11.(2分)下列各数是无理数的为()
A. B. C. 4.121121112 D.
【答案】B
【考点】无理数的认识
【解析】【解答】根据无理数的定义可知,只有是无理数,﹣9、4.121121112、都是有理数,
故答案为:B.
【分析】利用无理数是无限不循环的小数,可解答。
12.(2分)下列说法中,不正确的是().
A. 3是(﹣3)2的算术平方根
B. ±3是(﹣3)2的平方根
C. ﹣3是(﹣3)2的算术平方根
D. ﹣3是(﹣3)3的立方根
【答案】C
【考点】平方根,算术平方根,立方根及开立方
【解析】【解答】解:A. (﹣3)2=9的算术平方根是3,故说法正确,故A不符合题意;
B. (﹣3)2=9的平方根是±3,故说法正确,故B不符合题意;
C. (﹣3)2=9的算术平方根是3,故说法错误,故C符合题意;
D. (﹣3)3的立方根是-3,故说法正确,故D不符合题意;
故答案为:C.
【分析】一个正数的平方根有两个,且这两个数互为相反数.先计算(﹣3)2的得数,再得出平方根,且算术平方根是正的那个数;一个数的立方根,即表示这个立方根的立方得原数.
二、填空题
13.(3分)已知a、b、c满足,则a=________,b=________,c=________.
【答案】2;2;-4
【考点】三元一次方程组解法及应用
【解析】【解答】解:①﹣②,得:3a﹣3b=0④
①﹣③,得:﹣4b=﹣8,解得:b=2,
把b=2代入④,得:3a﹣3×2=0,解得:a=2,
把a=2,b=2代入②,得2+2+c=0,解得:c=﹣4,
∴原方程组的解是.
故答案为:2,2,﹣4.
【分析】观察方程组中同一未知数的系数特点:三个方程中c的系数都是1,因此①﹣②和①﹣③,就可求出b的值,再代入计算求出a、c的值。
14.(1分)方程3x+2y=12的非负整数解有________个.
【答案】3
【考点】二元一次方程的解
【解析】【解答】解:由题意可知:
∴
解得:0≤x≤4,
∵x是非负整数,
∴x=0,1,2,3,4
此时y=6,,3,,0
∵y也是非负整数,
∴方程3x+2y=12的非负整数解有3个,
故答案为:3
【分析】将方程3x+2y=12 变形可得y=,再根据题意可得x0,,,解不等式组即可
求解。
15.(1分)判断是否是三元一次方程组的解:________(填:“是”或者“不是”).
【答案】是
【考点】三元一次方程组解法及应用
【解析】【解答】解:∵把代入:得:
方程①左边=5+10+(-15)=0=右边;
方程②左边=2×5-10+(-15)=-15=右边;
方程③左边=5+2×10-(-15)=40=右边;
∴是方程组:的解.
【分析】将已知x、y、z的值分别代入三个方程计算,就可判断;或求出方程组的解,也可作出判断。
16.(1分)我们知道的整数部分为1,小数部分为,则的小数部分是________.
【答案】
【考点】估算无理数的大小
【解析】【解答】解:∵,
∴的整数部分为2,
∴的小数部分为,
故答案为:.
【分析】由于的被开方数5介于两个相邻的完全平方数4与9之间,根据算数平方根的性质,被开方数越
大,其算数平方根就越大即可得出,从而得出的整数部分是2,用减去其整数部分即可得出其小数部分。
17.(1分)如果是关于的二元一次方程,那么=________
【答案】
【考点】二元一次方程的定义
【解析】【解答】解:∵是关于的二元一次方程
∴
解之:a=±2且a≠2
∴a=-2
∴原式=-(-2)2-=
故答案为:
【分析】根据二元一次方程的定义,可知x的系数≠0,且x的次数为1,建立关于a的方程和不等式求解即可。
18.(1分)已知,则x+y=________.
【答案】-2
【考点】解二元一次方程组,非负数之和为0
【解析】【解答】解:因为, ,
所以可得: ,解方程组可得: ,所以x+y=-2,故答案为: -2.
【分析】根据几个非负数之和为0,则每一个数都为0,就可建立关于x、y的方程组,利用加减消元法求出方程组的解,然后求出x与y的和。
三、解答题
19.(5分)试将100分成两个正整数之和,其中一个为11的倍数,另一个为17的倍数.
【答案】解:依题可设:
100=11x+17y,
原题转换成求这个方程的正整数解,
∴x==9-2y+,
∵x是整数,
∴11|1+5y,
∴y=2,x=6,
∴x=6,y=2是原方程的一组解,
∴原方程的整数解为:(k为任意整数),
又∵x>0,y>0,
∴,
解得:-<k<,
∴k=0,
∴原方程正整数解为:.
∴100=66+34.
【考点】二元一次方程的解
【解析】【分析】根据题意可得:100=11x+17y,从而将原题转换成求这个方程的正整数解;求二元一次不定方程的正整数解时,可先求出它的通解。
然后令x>0,y>0,得不等式组.由不等式组解得k的范围.在这范围内取k的整数值,代人通解,即得这个不定方程的所有正整数解.
20.(5分)如图,∠ABE+ ∠DEB=180°,∠1= ∠2.求证:∠F= ∠G.
【答案】证明:∵∠ABE+ ∠DEB=180°,
∴AC∥DE,
∴∠CBO=∠DEO,
又∵∠1= ∠2,
∴∠FBO=∠GEO,
在△BFO中,∠FBO+∠BOF+∠F=180°,
在△GEO中,∠GEO+∠GOE+∠G=180°,
∴∠F=∠G.
【考点】平行线的判定与性质
【解析】【分析】根据平行线的判定得AC∥DE,再由平行线的性质内错角∠CBO=∠DEO,结合已知条件得∠FBO=∠GEO,在△BFO和△GEO中,由三角形内角和定理即可得证.
21.(5分)在数轴上表示下列各数,并用“<”连接。
3, 0,,,.
【答案】解:数轴略,
【考点】实数在数轴上的表示,实数大小的比较
【解析】【解答】解:∵=-2,(-1)2=1,
数轴如下:
由数轴可知:<-<0<(-1)2<3.
【分析】先画出数轴,再在数轴上表示各数,根据数轴左边的数永远比右边小,用“<”连接各数即可.
22.(5分)阅读下面情境:甲、乙两人共同解方程组由于甲看错了方程①中的a,得
到方程组的解为乙看错了方程②中的b,得到方程组的解为试求出a、b的正确值,并计算
a2 017+(-b)2 018的值.
【答案】解:根据题意把代入4x﹣by=﹣2得:﹣12+b=﹣2,解得:b=10,把代入ax+5y=15
得:5a+20=15,解得:a=﹣1,所以a2017+(﹣b)2018=(﹣1)2017+(﹣×10)2018=0.
【考点】代数式求值,二元一次方程组的解
【解析】【分析】根据甲看错了方程①中的a,因此将甲得到的方程组的记为代入方程②求出b的值,而乙看错了方程②中的b,因此将乙得到的方程组的解代入方程①求出a的值,然后将a、b的值代入代数式计算求值。
23.(5分)如图,AB∥CD.证明:∠B+∠F+∠D=∠E+∠G.
【答案】证明:作EM∥AB,FN∥AB,GK∥AB,
∵AB∥CD,
∴AB∥ME∥FN∥GK∥CD,
∴∠B=∠1,∠2=∠3,∠4=∠5,∠6=∠D,
∴∠B+∠3+∠4+∠D=∠1+∠2+∠5+∠6,
又∵∠E+ ∠G=∠1+∠2+∠5+∠6,
∠B+ ∠F+ ∠D=∠B+ ∠3+∠4+ ∠D,
∴∠B+ ∠F+ ∠D=∠E+ ∠G.
【考点】平行公理及推论,平行线的性质
【解析】【分析】作EM∥AB,FN∥AB,GK∥AB,根据平行公理及推论可得AB∥ME∥FN∥GK∥CD,再由平行线性质得∠B=∠1,∠2=∠3,∠4=∠5,∠6=∠D,相加即可得证.
24.(15分)南县农民一直保持着冬种油菜的习惯,利用农闲冬种一季油菜.南县农业部门对2014年的油菜籽生产成本、市场价格、种植面积和产量等进行了调查统计,并绘制了如下统计表与统计图:
请根据以上信息解答下列问题:
(1)种植油菜每亩的种子成本是多少元?
(2)农民冬种油菜每亩获利多少元?
(3)2014年南县全县农民冬种油菜的总获利为多少元?(结果用科学记数法表示)
【答案】(1)解:根据题意得:1﹣10%﹣35%﹣45%=10%,310×10%=31(元),
答:种植油菜每亩的种子成本是31元
(2)解:根据题意得:130×5﹣310=340(元),答:农民冬种油菜每亩获利340元
(3)解:根据题意得:340×500 000=170 000 000=1.7×108(元),
答:2014年南县全县农民冬种油菜的总获利为1.7×108元
【考点】统计表,扇形统计图,科学记数法—表示绝对值较大的数
【解析】【分析】(1)先根据扇形统计图计算种子的百分比,然后乘以每亩的成本可得结果;
(2)根据产量乘单价再减去生产成本可得获利;
(3)根据(2)中的利润乘以种植面积,最后用科学记数法表示即可.
25.(5分)小明在甲公司打工.几个月后同时又在乙公司打工.甲公司每月付给他薪金470元,乙公司每月付给他薪金350元.年终小明从这两家公司共获得薪金7620元.问他在甲、乙两公司分别打工几个月? 【答案】解:设他在甲公司打工x个月,在乙公司打工y个月,依题可得:
470x+350y=7620,
化简为:47x+35y=762,
∴x==16-y+,
∵x是整数,
∴47|10+12y,
∴y=7,x=11,
∴x=11,y=7是原方程的一组解,
∴原方程的整数解为:(k为任意整数),
又∵x>0,y>0,
∴,
解得:-<k<,
k=0,
∴原方程正整数解为:.
答:他在甲公司打工11个月,在乙公司打工7个月.
【考点】二元一次方程的解
【解析】【分析】设他在甲公司打工x个月,在乙公司打工y个月,根据等量关系式:甲公司乙公司+乙公司乙公司=总工资,列出方程,此题转换成求方程47x+35y=762的整数解,求二元一次不定方程的正整数解时,可先求出它的通解。
然后令x>0,y>0,得不等式组.由不等式组解得k的范围.在这范围内取k的整数值,代人通解,即得这个不定方程的所有正整数解.
26.(5分)如图所示,直线AB、CD相交于O,OE平分∠AOD,∠FOC=90°,∠1=40°,求∠2和∠3的度数.
【答案】解:∵∠FOC=90°,∠1=40°,
∴∠3=∠AOB-∠FOC-∠1=180°-90°-40°=50°,
∴∠DOB=∠3=50°
∴∠AOD=180°-∠BOD=130°
∵OE平分∠AOD
∴∠2=∠AOD=×130°=65°
【考点】角的平分线,对顶角、邻补角
【解析】【分析】根据平角的定义,由角的和差得出∠3的度数,根据对顶角相等得出∠DOB=∠3=50°,再根
据邻补角的定义得出∠AOD=180°-∠BOD=130°,再根据角平分线的定义即可得出答案。