2020-2021学年北师大版七年级数学上册第五章测试题及答案(2套)

合集下载

专题5.8一元一次方程的应用(4)追赶小明-2021年七年级数学上册尖子生同步培优题库(教师版含解析

专题5.8一元一次方程的应用(4)追赶小明-2021年七年级数学上册尖子生同步培优题库(教师版含解析

2020-2021学年七年级数学上册尖子生同步培优题典【北师大版】专题5.8一元一次方程的应用(4)追赶小明姓名:__________________ 班级:______________ 得分:_________________注意事项:本试卷满分100分,试题共24题.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级等信息填写在试卷规定的位置.一、选择题(本大题共10小题,每小题3分,共30分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.(2019秋•崂山区期末)已知某座桥长800米,现有一列火车从桥上通过,测得火车从开始上桥到完全通过共用了1分钟,这列火车完全在桥上的时间为40秒,则火车的速度和车长分别是()A.20米/秒,200米B.18米/秒,180米C.16米/秒,160米D.15米/秒,150米【分析】设火车的速度是x米/秒,根据“已知某座桥长800米,现有一列火车从桥上通过,测得火车从开始上桥到完全通过共用了1分钟,这列火车完全在桥上的时间为40秒”,列出关于x的一元一次方程,解之,即可得到火车的速度,根据车长=火车的速度×火车从开始上桥到完全通过所用的时间﹣桥长,即可得到火车的车长.【解析】设火车的速度是x米/秒,根据题意得:800﹣40x=60x﹣800,解得:x=16,即火车的速度是16米/秒,火车的车长是:60×16﹣800=160(米),故选:C.2.(2020春•九龙坡区期末)甲、乙两人分别从A、B两地同时骑自行车相向而行,2小时后在途中相遇,相遇后,甲、乙骑自行车的速度都提高了1千米/小时,当甲到达B地后立刻以原路和提高后的速度向A地返行,乙到达A地后也立刻以原路和提高后的速度向B地返行.甲、乙两人在开始出发后的5小时36分钟又再次相遇,则A、B两地的距离是()A.24千米B.30千米C.32千米D.36千米【分析】设第一次相遇时,甲、乙的速度和为xkm/h,由第一次到第二次相遇的过程中,甲,乙的路程和是第一次相遇时甲,乙路程和的两倍.可列方程,即可求解.【解析】设第一次相遇时,甲、乙的速度和为xkm /h ,5小时36分钟=535(小时) 由题意可得:2×2x =(535−2)(x +2), 解得:x =18,∴A 、B 两地的距离=2×18=36(km ),故选:D .3.(2020•海门市二模)《九章算术》中记载了这样一个数学问题:今有甲发长安,五日至齐,乙发齐,七日至长安,今乙发已先二日,甲仍发长安.同几何日相逢?译文:甲从长安出发,5日到齐国.乙从齐国出发,7日到长安,现乙先出发2日,甲才从长安出发.问甲经过多少日与乙相逢?设甲经过x 日与乙相逢,可列方程.( )A .7x+2+5x =1B .7x+2−5x =1C .x+27=x 5D .x+27+x 5=1【分析】设甲经过x 日与乙相逢,则乙已出发(x +2)日,根据甲行驶的路程+乙行驶的路程=齐国到长安的距离(单位1),即可得出关于x 的一元一次方程,此题得解.【解析】设甲经过x 日与乙相逢,则乙已出发(x +2)日,依题意,得:x+27+x 5=1.故选:D .4.(2020•娄星区一模)《九章算术》是中国传统数学的重要著作,其中有一道题,原文是:“今有善行者行一百步,不善行者行六十步,今不善行者先行一百步,善行者追之,问几何步及之?”意思是:走路快的人走100步时,走路慢的人只能走60步;若走路慢的人先走100步,则走路快的人要走多少步才能追上对方?运用所学的知识可求得走路快的人追上走路慢的人需要走的步数是( )A .250步B .200步C .150步D .100步 【分析】设走路快的人要走x 步才能追上对方,根据时间=路程÷速度结合时间相同,即可得出关于x 的一元一次方程,解之即可得出结论.【解析】设走路快的人要走x 步才能追上对方,依题意,得:x 100=x−10060,解得:x =250.故选:A .5.(2020•涡阳县模拟)小明和小亮两人在长为50m 的直道AB (A ,B 为直道两端点)上进行匀速往返跑训练,两人同时从A 点起跑,到达B 点后,立即转身跑向A 点,到达A 点后,又立即转身跑向B 点……若小明跑步的速度为5m /s ,小亮跑步的速度为4m /s ,则起跑后60s 内,两人相遇的次数为( )A .3B .4C .5D .6【分析】在60s 内,求两人相遇的次数,关键一是求出两人每一次相遇间隔时间,二是找出隐含等量关系:每一次相遇时间×次数=总时间构建一元一次方程.【解析】设两人起跑后60s 内,两人相遇的次数为x 次,依题意得;每次相遇间隔时间t ,A 、B 两地相距为S ,V 甲、V 乙分别表示小明和小亮两人的速度,则有:(V 甲+V 乙)t =2S ,则t =2×505+4=1009, 则1009x =60,解得:x =5.4,∵x 是正整数,且只能取整,∴x =5.故选:C .6.(2019秋•赣榆区期末)A 、B 两地相距550千米,甲、乙两车分别从A 、B 两地同时出发,相向而行,已知甲车的速度为110千米/小时,乙车的速度为90千米/小时,经过t 小时,两车相距50千米,则t 的值为( )A .2.5B .2或10C .2.5或3D .3【分析】分两者相遇前相距50千米和两者相遇后相距50千米两种情况,根据路程=速度×时间,即可得出关于t 的一元一次方程,解之即可得出结论.【解析】依题意,得:110t +90t =550﹣50或110t +90t =550+50,解得:t =2.5或t =3.故选:C .7.(2019春•浦东新区期中)甲、乙两人从同一地点出发,如果甲先出发3小时后,乙从后面追赶,那么当乙追上甲时,下面说法正确的是( )A .甲和乙所用的时间相等B .乙比甲多走3小时C .甲和乙所走的路程相等D .乙走的路程比甲多【分析】两人从同一地点出发,乙追上甲,那么甲走的路程=乙走的路程.【解析】∵甲、乙两人从同一地点出发,甲先出发3小时,乙追上甲,∴甲和乙所走的路程相等.故选:C.8.(2019秋•正定县期末)长为300米的春游队伍,以2米/秒的速度向东行进.在排尾处的甲有一物品要送到排头,送到后立即返回排尾,甲的往返速度均为4米/秒.则往返共用的时间为()A.200s B.205s C.210s D.215s【分析】设从排尾到排头需要t1秒,从排头到排尾需要t2秒.因为从排尾到排头是追击问题,根据速度差×时间=队伍长列出方程,求出t1,又从排头到排尾是相遇问题,根据速度和×时间=队伍长列出方程,求出t2,那么t1+t2的值即为所求.【解析】设从排尾到排头需要t1秒,从排头到排尾需要t2秒,根据题意,得(4﹣2)t1=300,(4+2)t2=300,解得t1=150,t2=50,t1+t2=150+50=200(秒).答:此人往返一趟共需200秒,故选:A.9.(2019秋•富锦市期末)某人驾驶一小船航行在甲,乙码头之间,顺水航行需6h,逆水航行比顺水航行多用2h,若水流的速度是每小时2km,那么船在静水中的平均速度为每小时多少千米()A.14B.15C.16D.17【分析】设船在静水中的速度为x千米每小时,表示出顺水与逆水速度,根据两码头的距离相等列出关于x的方程,求出方程的解即可得到结果.【解析】设船在静水中的速度为x千米每小时,根据题意得:6(x+2)=(6+2)(x﹣2),解得:x=14,故选:A.10.(2019秋•大兴区期末)已知下列四个应用题:①现有60个零件的加工任务,甲单独每小时可以加工4个零件,乙单独每小时可以加工6个零件.现甲乙两人合作,问两人开始工作几小时后还有20个零件没有加工?②甲乙两人从相距60km的两地同时出发,相向而行,甲的速度是4km/h,乙的速度是6km/h,问经过几小时后两人相遇后又相距20km?③甲乙两人从相距60km的两地相向而行,甲的速度是4km/h,乙的速度是6km/h,如果甲先走了20km后,乙再出发,问乙出发后几小时两人相遇?④甲乙两人从相距20km的两地同时出发,背向而行,甲的速度是4km/h,乙的速度是6km/h,问经过几小时后两人相距60km?其中可以用方程4x+6x+20=60表述题目中对应数量关系的应用题序号是()A.①②③④B.①③④C.②③④D.①②【分析】①设两人开始工作x小时后还有20个零件没有加工,根据甲生产的零件数+乙生产的零件数+未加工的零件数=计划加工零件的总数,即可得出关于x的一元一次方程;②设经过x小时后两人相遇后又相距20km,根据甲的路程+乙的路程+相遇后又间隔的距离=两地间的距离,即可得出关于x的一元一次方程;③设乙出发后x小时两人相遇,根据甲的路程+乙的路程=两地间的距离,即可得出关于x 的一元一次方程;④设经过x小时后两人相距60km,根据甲的路程+乙的路程+20=两人间的间距,即可得出关于x的一元一次方程.综上即可得出结论.【解析】①设两人开始工作x小时后还有20个零件没有加工,依题意,得:4x+6x+20=60,∴①可以用方程4x+6x+20=60来表述;②设经过x小时后两人相遇后又相距20km,依题意,得:4x+6x﹣20=60,∴②不可以用方程4x+6x+20=60来表述;③设乙出发后x小时两人相遇,依题意,得:4x+20+6x=80,∴③方程4x+6x+20=60来表述;④设经过x小时后两人相距60km,依题意,得:4x+6x+20=60,∴④可以用方程4x+6x+20=60来表述.故选:B.二、填空题(本大题共8小题,每小题3分,共24分)请把答案直接填写在横线上11.(2019秋•庐阳区期末)甲、乙两站相距80公里,一列慢车从甲站开出,每小时行90公里,一列快车从乙站开出,每小时行140公里.两车同时开出同向而行,快车在慢车后面追赶慢车,快车与慢车相距30公里时快车行驶的时间为 1或115小时 .【分析】需要分类讨论:慢车在前,快车在后;快车在前,慢车在后.根据它们相距30公里列方程解答.【解析】设快车与慢车相距30公里时快车行驶的时间为t 小时,①慢车在前,快车在后时,由题意得:90t +80﹣140t =30解得t =1;②快车在前,慢车在后时,由题意得:140t ﹣(90t +80)=30解得t =115.综上所述,快车与慢车相距30公里时快车行驶的时间为1或115小时. 故答案是:1或115小时.12.(2019秋•明光市期末)一组自行车运动员在一条笔直的道路上作赛前训练他们以每小时35千米的速度向前行驶,突然运动员甲离开小组以每小时45千米的速度向前行驶10千米然后以同样速度掉转头回来重新和小组汇合,则运动员甲从离开小组到重新和小组汇合所用时间为 0.25 小时.【分析】理解运动员甲从离开小组到和小组汇合所走的路程+小组走的路程=10×2,列出方程,即可解答.【解析】设运动员甲从离开小组到重新和小组汇合所用时间为x 小时.则有:35x +45x =20解得:x =0.25答:运动员甲从离开小组到重新和小组汇合所用时间为0.25小时.13.(2019秋•大足区期末)甲乙两车分别从A ,B 两地同时相向匀速行驶,甲车每小时比乙车快20千米,行驶3小时两车相遇,乙车到达A 地后未作停留,继续保持原速向远离B 地的方向行驶,而甲车在相遇后又行驶了2小时到达B 地后休整了半小时,然后调头并保持原速与乙车同向行驶,经过一段时间后两车同时到达C 地.则A ,C 两地相距 360 千米.【分析】设乙车每小时行驶x 千米,则甲车每小时行驶(x +20)千米,由题意得3x =2(x +20),解得x =40,则x +20=60,求出A ,B 两地的距离为300千米,设两车相遇后经过y 小时到达C 地,由题意得60(y ﹣2.5)=40(y +3),解得y =13.5,求出B ,C 两地的距离为660千米,即可得出答案.【解析】设乙车每小时行驶x 千米,则甲车每小时行驶(x +20)千米,由题意得:3x=2(x+20),解得:x=40,则x+20=60,即乙车每小时行驶40千米,则甲车每小时行驶60千米,∴A,B两地的距离为:3×60+3×40=300(千米),设两车相遇后经过y小时到达C地,由题意得:60(y﹣2.5)=40(y+3),解得:y=13.5,∴B,C两地的距离为:60(13.5﹣2.5)=660(千米),∴A,C两地的距离为:660﹣300=360(千米);故答案为:360.14.(2010•合肥校级自主招生)一辆客车、一辆货车、一辆小轿车在一条笔直的公路上朝同一方向匀速行驶,在某一时刻,客车在前,小轿车在后,货车在客车与小轿车的正中间,过了10分钟,小轿车追上了货车;又过了5分钟,小轿车追上客车;再过了15分钟货车追上客车.【分析】首先设出货车,客车,小轿车的速度为x、y、z,它们在某一时刻的间距,根据过了10分钟,小轿车追上了货车;又过了5分钟,小轿车追上客车,先表示出小轿车与货车、小轿车与客车的速度差,再求出货车与客车的速度差,从而求出答案.【解析】设货车,客车,小轿车速度为x、y,z,间距为s,则:10(z﹣x)=s,15(z﹣y)=2s,则z﹣x=s10,z﹣y=2s15所以,x﹣y=2s15−s10,得:sx−y=30,30﹣15=15.故答案为:15.15.(2020春•番禺区期末)一条船顺流航行,每小时行驶20千米;逆流航行,每小时行驶16千米.若水的流速与船在静水中的速度都是不变的,则轮船在静水中的速度为18千米/小时.【分析】设轮船在静水中的速度为x千米/小时,则水流速度为(20﹣x)千米/小时,由逆水速度=静水速度﹣水流速度,列出方程,可求解.【解析】设轮船在静水中的速度为x千米/小时,则水流速度为(20﹣x)千米/小时,由题意可得:x﹣(20﹣x)=16,解得:x =18,∴轮船在静水中的速度为18千米/小时,故答案为:18.16.(2019秋•海州区校级期末)甲、乙两人从长度为400m 的环形运动场同一起点同向出发,甲跑步速度为200m /min ,乙步行,当甲第三次超越乙时,乙正好走完第二圈,再过56或52 min ,甲、乙之间相距100m .(在甲第四次超越乙前)【分析】根据速度=路程÷时间,即可求出乙步行的速度,设再经过xmin ,甲、乙之间相距100m ,根据甲跑步的路程﹣乙步行的路程=100或甲跑步的路程﹣乙步行的路程=300,即可得出关于x 的一元一次方程,解之即可得出结论.【解析】乙步行的速度为400×2÷[400×(2+3)÷200]=80(m /min ).设再经过xmin ,甲、乙之间相距100m ,依题意,得:200x ﹣80x =100或200x ﹣80x =300,解得:x =56或x =52.故答案为:56或52. 17.(2019秋•沙坪坝区校级期末)A 、B 、C 三地依次在同一直线上,B ,C 两地相距560千米,甲、乙两车分别从B ,C 两地同时出发,相向匀速行驶.行驶4小时两车相遇,再经过3小时,甲车到达C 地,然后立即调头,并将速度提高10%后与乙车同向行驶,经过一段时间后两车同时到达A 地,则A ,B 两地相距 760 千米.【分析】设乙车的平均速度是x 千米/时,根据4(甲的平均速度+乙的平均速度)=560列出方程并求得乙车的行驶平均速度;设甲车从C 地到A 地需要t 小时,则乙车从C 地到A 地需要(t +7)小时,根据它们行驶路程相等列出方程并求得t 的值;然后由路程=时间×速度解答.【解析】设乙车的平均速度是x 千米/时,则4(5607+x )=560.解得x =60即乙车的平均速度是60千米/时.设甲车从C 地到A 地需要t 小时,则乙车从C 地到A 地需要(t +7)小时,则80(1+10%)t =60(7+t )解得t =15.所以60(7+t )﹣560=760(千米)故答案是:760.18.(2019秋•高邑县期末)轮船沿江从A 港顺流行驶到B 港,比从B 港返回A 港少用3小时,若船速为26千米/小时,水速为2千米/时,则A 港和B 港相距 504 千米.【分析】轮船航行问题中的基本关系为:(1)船的顺水速度=船的静水速度+水流速度;(2)船的逆水速度=船的静水速度一水流速度.若设A 港和B 港相距x 千米,则从A 港顺流行驶到B 港所用时间为x 26+2小时,从B 港返回A 港用x 26−2小时,根据题意列方程求解.【解析】设A 港和B 港相距x 千米.根据题意,得x 26+2+3=x 26−2,解之得x =504.故填504.三、解答题(本大题共6小题,共46分.解答时应写出文字说明、证明过程或演算步骤)19.(2019秋•崂山区期末)某人乘船由A 地顺流而下到达B 地,然后又逆流而上到C 地,共用了3小时.已知船在静水中速度为每小时8千米,水流速度是每小时2千米.已知A 、B 、C 三地在一条直线上,若AC 两地距离是2千米,则AB 两地距离多少千米?(C 在A 、B 之间)【分析】根据路程、速度、时间之间的关系列出方程即可解答.【解析】设AB 两地距离为x 千米,则CB 两地距离为(x ﹣2)千米.根据题意,得x 8+2+x−28−2=3解得 x =252. 答:AB 两地距离为252千米.20.(2020春•嘉定区期末)小明、小杰两人在400米的环形赛道上练习跑步,小明每分钟跑300米,小杰每分钟跑220米.(1)若小明、小杰两人同时同地反向出发,那么出发几分钟后,小明,小杰第一次相遇?(2)若小明、小杰两人同时同向出发,起跑时,小杰在小明前面100米处.①出发几分钟后,小明、小杰第一次相遇?②出发几分钟后,小明、小杰的路程第一次相距20米?【分析】(1)设出发x 分钟后,小明、小杰第一次相遇,根据环形跑道的长度=小明跑的路程+小杰跑的路程,即可得出关于x 的一元一次方程,解之即可得出结论;(2)①设出发y 分钟后,小明、小杰第一次相遇,根据两人之间的距离=小明跑的路程﹣小杰跑的路程,即可得出关于y 的一元一次方程,解之即可得出结论;②设出发z 分钟后,小明、小杰的路程第一次相距20米,根据两人之间的距离=小明跑的路程﹣小杰跑的路程+20,即可得出关于z 的一元一次方程,解之即可得出结论.【解析】(1)设出发x 分钟后,小明、小杰第一次相遇,依题意,得:300x +220x =400,解得:x =1013.答:出发1013分钟后,小明、小杰第一次相遇.(2)①设出发y 分钟后,小明、小杰第一次相遇,依题意,得:300y ﹣220y =100,解得:y =54.答:出发54分钟后,小明、小杰第一次相遇. ②设出发z 分钟后,小明、小杰的路程第一次相距20米,依题意,得:300z ﹣220z +20=100,解得:z =1.答:出发1分钟后,小明、小杰的路程第一次相距20米.21.(2019秋•新余期末)一辆客车和一辆卡车同时从A 地出发沿同一公路同方向行驶,客车的行驶速度是60千米/小时,卡车的行驶速度是40千米/小时,客车比卡车早2小时经过B 地,A 、B 两地间的路程是多少千米?【分析】设A 、B 两地间的路程为x 千米,根据题意分别求出客车所用时间和卡车所用时间,根据两车时间差为2小时即可列出方程,求出x 的值.【解析】设A 、B 两地间的路程为x 千米,根据题意得x 40−x 60=2解得x =240答:A 、B 两地间的路程是240千米.22.(2020春•宁阳县期末)已知高铁的速度比动车的速度快50km /h ,小路同学从苏州去北京游玩,本打算乘坐动车,需要6h 才能到达;由于得知开通了高铁,决定乘坐高铁,她发现乘坐高铁比乘坐动车节约72min .求高铁的速度和苏州与北京之间的距离.【分析】设高铁的速度为xkm /h ,则动车的速度为(x ﹣50)km /h ,根据时间、路程与速度关系,列出等式,求出x 的值,进一步求出路程即可.【解析】72min =65h ,设高铁的速度为xkm /h ,则动车的速度为(x ﹣50)km /h ,依题意有6(x ﹣50)=245x ,解得x =250,6(x ﹣50)=6×(250﹣50)=1200.答:高铁的速度为250km /h ,苏州与北京之间的距离为1200km .23.(2020春•万州区期末)5月的第二个周日是母亲节,小东准备精心设计一份手工礼物送给妈妈,为尽快完成手工礼物,小东骑自行车到位于家正西方向的商店购买材料.小东离家15分钟时自行车出现故障,小东立即打电话通知在家看报纸的父亲贺明带上工具箱来帮忙维修,同时小东以原来一半的速度推着自行车继续走向商店.父亲贺明接到电话后(接电话时间忽略不计),立即骑车出发追赶小东,15分钟时追上小东,并修好了自行车,父亲贺明以原速返家,小东以原骑行速度骑车前往商店,10分钟时到达商店,此时两人相距5000米.(1)求父亲贺明和小东骑车的速度;(2)求小东家到商店的路程.【分析】(1)设小东骑车速度为x 米/分钟,由“父亲贺明以原速返家,小东以原骑行速度骑车前往商店,10分钟时到达商店,此时两人相距5000米”,列出方程,即可求解;(2)利用路程=速度×时间可求解.【解析】设小东骑车速度为x 米/分钟,则父亲贺明骑车速度=15x+12x×1515=32x (米/分钟), 由题意可得:10x +10×32x =5000,∴x =200∴32x =300米/分钟,答:父亲贺明骑车的速度为300米/分钟,小东骑车的速度200米/分钟;(2)小东家到商店的路程=15×200+15×100+10×200=6500(米),答:小东家到商店的路程为6500米.24.(2019秋•慈利县期末)列方程解应用题:如图,现有两条乡村公路AB、BC,AB长为1200米,BC长为1600,一个人骑摩托车从A处以20m/s的速度匀速沿公路AB、BC向C处行驶;另一人骑自行车从B处以5m/s的速度从B向C行驶,并且两人同时出发.(1)求经过多少秒摩托车追上自行车?(2)求两人均在行驶途中时,经过多少秒两人在行进路线上相距150米?【分析】(1)设经过x秒摩托车追上自行车,根据“摩托行驶路程=1200+骑自行车行驶路程”列出方程并解答;(2)需要分两种情况解答:①摩托车还差150米追上自行车;②摩托车超过自行车150米,根据他们行驶路程间的数量关系列出方程并解答.【解析】(1)设经过x秒摩托车追上自行车,20x=5x+1200,解得x=80.答:经过80秒摩托车追上自行车.(2)设经过y秒两人相距150米,第一种情况:摩托车还差150米追上自行车时,20y﹣1200=5y﹣150解得y=70.第二种情况:摩托车超过自行车150米时,20y=150+5y+1200解得y=90.答:经过70秒或90秒两人在行进路线上相距150米.。

2020年秋北师大版数学七年级上册《有理数及其运算》单元测试卷(含答案)

2020年秋北师大版数学七年级上册《有理数及其运算》单元测试卷(含答案)

北师大版数学七年级上册《有理数及其运算》单元测试卷一、选择题1.若规定向东走为正,那么﹣8米表示( )A.向东走8米B.向南走8米C.向西走8米D.向北走8米2.2020年3月抗击“新冠肺炎”居家学习期间,小华计划每天背诵6个汉语成语.将超过的个数记为正数,不足的个数记为负数,某一周连续5天的背诵记录如下:+4,0,+5,-3,+2,则这5天他共背诵汉语成语( )A.38个B.36个C.34个D.30个3.某天三个城市的最高气温分别是-7℃,1℃,-6℃,则任意两城市中最大的温差是( )A.5B.6C.7D.84.2018年政府工作报告指出,过去五年来,我国经济实力跃上新台阶.国内生产总值从54万亿元增加到82.7万亿元,稳居世界第二,82.7万亿用科学记数法表示为( )A.0.827×1014B.82.7×1012C.8.27×1013D.8.27×10145.点O,A,B,C在数轴上的位置如图所示,O为原点,AC=1,OA=OB.若点C所表示的数为a,则点B所表示的数为( )A.-(a+1)B.-(a-1)C.a+1D.a-16.下列式子中,正确的是( )A.|﹣5|=﹣5B.﹣|﹣5|=5C.﹣(﹣5)=﹣5D.﹣(﹣5)=57.下列变形中,不正确的是( )A.a+(b﹣c+d)=a+b﹣c+dB.a﹣(b+c﹣d)=a﹣b﹣c+dC.a+b﹣(c﹣d)=a+b﹣c﹣dD.a+b﹣(﹣c+d)=a+b+c﹣d8.下列命题中,正确的是( )A.若a ·b >0,则a >0,b >0B.若a ·b >0,则a <0,b <0C.若a ·b=0,则a=0且b=0D.若a ·b=0,则a=0或b=09.在算式4-∣-3□5∣中的□所在位置,填入下列哪种运算符号,计算出来值最小( )A.+B.-C.×D.÷10.下列各组数中,互为相反数的有( )①﹣(﹣2)和﹣|﹣2|;②(﹣1)2和﹣12;③23和32;④(﹣2)3和﹣23.A.④B.①②C.①②③D.①②④11.已知实数x ,y 满足|x ﹣3|+(y+4)2=0,则代数式(x+y)2019的值为( ) A.﹣1 B.1 C.2012 D.﹣200812.在一列数:a 1,a 2,a 3,...,a n 中,a 1=7,a 2=1,从第三个数开始,每一个数都等于它前两个数之积的个位数字,则这一列数中的第2021个数是( )A. 1B. 3C. 7D. 9二 、填空题13.温度由-4℃上升7℃,达到的温度是______℃。

2020-2021学年北师大版七年级数学下册第五章 5.3.3简单的轴对称图形(三) 同步练习题

2020-2021学年北师大版七年级数学下册第五章 5.3.3简单的轴对称图形(三) 同步练习题

2020-2021学年北师大版七年级数学下册第五章 5.3.3简单的轴对称图形(三) 同步练习题A组(基础题)一、填空题1.(1)已知等腰△ABC中,AB=AC,∠B=60°,则∠A=______.(2)在△ABC中,∠A=∠B=60°,且AB=5 cm,则BC=______cm.2.(1)如图,在等边△ABC中,D,E分别是AB,AC上的点,且AD=CE,则∠BCD+∠CBE=______.(2)如图,在△ABC中,∠B=60°,AB=AC, BC=5,则△ABC的周长为______.3.(1)如图,将边长为6 cm的等边△ABC沿BC方向向右平移后得△DEF,DE,AC相交于点G.若线段CF=4.5 cm,则△GEC的周长是______cm.(2)如图,在△ABC中,BC=16,BO和CO分别是∠ABC和∠ACB的平分线,OD∥AB,OE∥AC,则△ODE的周长为______.4.如图,已知直线l∥l2,将等边三角形如图放置.若∠α=30°,则∠β=______.二、选择题5.如图,l1∥l2,等边△ABC的顶点A,B分别在直线l1,l2上,则∠1+∠2=( ) A.30° B.40°C.50° D.60°6.如图所示,在等边△ABC中,O是三个内角平分线的交点,OD∥AB,OE∥AC,则图中等腰三角形的个数是( )A.7 B.6 C.5 D.47.如图,AD是等边△ABC的中线,AE=AD,则∠EDC的度数为( )A.30° B.20° C.25° D.15°8.下列条件中,不能得到等边三角形的是( )A.有两个内角是60°的三角形B.三边都相等的三角形C.有一个角是60°的等腰三角形D.有两个外角相等的等腰三角形三、解答题9.如图,已知在△ABC中,AB=AC,D为AC的中点,DE⊥AB,DF⊥BC,垂足分别为E,F,且DE=DF.求证:△ABC是等边三角形.10.(1)如图,△ABC为等边三角形,AB=AC,P为BC上一点,△APQ为等边三角形.求证:AB∥CQ.(2)如图,△ABC为等边三角形,AE=CD,AD,BE相交于点P,BQ⊥AD于点Q,PQ=3,PE=1.①求证:AD=BE;②求AD的长.B组(中档题)一、填空题11.如图,在△ABC中,AB=AC,D,E是△ABC内两点,AD平分∠BAC,∠EBC=∠E=60°.若BE=6 cm, DE=2 cm,则BC的长为______.12.如图,点P是∠AOB内任意一点,OP=5 cm,点M和点N分别是射线OA和射线OB上的动点,∠AOB=30°,则△PMN周长的最小值为______.13.如图,已知△ABC和△BDE都是等边三角形,下列结论:①AE=CD;②BF=BG;③BH平分∠AHD;④∠AHC=60°;⑤△BFG是等边三角形;⑥FG∥AD. 其中正确的有______个.二、解答题14.如图,过边长为2的等边三角形的边上一点P作PE⊥AC于点E,Q是BC延长线上一点,当PA=CQ时,连接PQ交AC于点D,求DE的长.C组(综合题)15.如图,△ABC是等边三角形,E是BC边上任意一点,∠AEF=60°,EF交△ABC的外角∠ACD的平分线于点F.求证:AE=EF.参考答案2020-2021学年北师大版七年级数学下册第五章 5.3.3简单的轴对称图形(三) 同步练习题A组(基础题)一、填空题1.(1)已知等腰△ABC中,AB=AC,∠B=60°,则∠A=60°.(2)在△ABC中,∠A=∠B=60°,且AB=5 cm,则BC=5cm.2.(1)如图,在等边△ABC中,D,E分别是AB,AC上的点,且AD=CE,则∠BCD+∠CBE=60°.(2)如图,在△ABC中,∠B=60°,AB=AC, BC=5,则△ABC的周长为15.3.(1)如图,将边长为6 cm的等边△ABC沿BC方向向右平移后得△DEF,DE,AC相交于点G.若线段CF=4.5 cm,则△GEC的周长是4.5cm.(2)如图,在△ABC中,BC=16,BO和CO分别是∠ABC和∠ACB的平分线,OD∥AB,OE∥AC,则△ODE的周长为16.4.如图,已知直线l∥l2,将等边三角形如图放置.若∠α=30°,则∠β=30°.二、选择题5.如图,l1∥l2,等边△ABC的顶点A,B分别在直线l1,l2上,则∠1+∠2=(D) A.30° B.40°C.50° D.60°6.如图所示,在等边△ABC中,O是三个内角平分线的交点,OD∥AB,OE∥AC,则图中等腰三角形的个数是(A)A.7 B.6 C.5 D.47.如图,AD 是等边△ABC 的中线,AE =AD ,则∠EDC 的度数为(D) A .30° B .20° C .25° D .15°8.下列条件中,不能得到等边三角形的是(D) A .有两个内角是60°的三角形 B .三边都相等的三角形C .有一个角是60°的等腰三角形D .有两个外角相等的等腰三角形 三、解答题9.如图,已知在△ABC 中,AB =AC ,D 为AC 的中点,DE ⊥AB ,DF ⊥BC ,垂足分别为E ,F ,且DE =DF.求证:△ABC 是等边三角形.证明:∵DE ⊥AB ,DF ⊥BC , ∴∠AED =∠CFD =90°. ∵D 为AC 的中点,∴AD =DC. 在Rt △ADE 和Rt △CDF 中,⎩⎪⎨⎪⎧AD =DC ,DE =DF , ∴Rt △ADE ≌=Rt △CDF(HL). ∴∠A =∠C.∴BA =BC.∵AB =AC ,∴AB =BC =AC. ∴△ABC 是等边三角形.10.(1)如图,△ABC 为等边三角形,AB =AC ,P 为BC 上一点,△APQ 为等边三角形.求证:AB ∥CQ.证明:∵△ABC 和△APQ 都是等边三角形, ∴AB =AC ,AP =AQ ,∠BAC =∠PAQ =60°. ∴∠BAC -∠PAC =∠PAQ -∠PAC , 即∠BAP =∠CAQ.在△ABP 和△ACQ 中,⎩⎪⎨⎪⎧AB =AC ,∠BAP =∠CAC ,AP =AQ ,∴△ABP ≌△ACQ(SAS). ∴∠ACQ =∠B =∠BAC =60°. ∴AB ∥CQ.(2)如图,△ABC 为等边三角形,AE =CD ,AD ,BE 相交于点P ,BQ ⊥AD 于点Q ,PQ =3,PE =1.①求证:AD =BE ; ②求AD 的长.解:①证明:∵△ABC 为等边三角形, ∴AB =AC ,∠BAC =∠C =60°. 在△BAE 和△ACD 中,⎩⎪⎨⎪⎧BA =AC ,∠BAE =∠C ,AE =CD ,∴△BAE ≌△ACD(SAS). ∴AD =BE.②由ΔBAE ≌ACD ,可知∠ABE =∠PAE.∵∠BPQ =∠BAP +∠ABE =∠BAP +∠PAE =∠BAC =60°,BQ ⊥PQ , ∴∠PBQ =30°,∴PB =2PQ =6. ∴BE =PB +PE =7,∴AD =BE =7.B 组(中档题)一、填空题11.如图,在△ABC 中,AB =AC ,D ,E 是△ABC 内两点,AD 平分∠BAC ,∠EBC =∠E =60°.若BE =6 cm, DE =2 cm ,则BC 的长为8_cm .12.如图,点P 是∠AOB 内任意一点,OP =5 cm ,点M 和点N 分别是射线OA 和射线OB 上的动点,∠AOB =30°,则△PMN 周长的最小值为5_cm .13.如图,已知△ABC 和△BDE 都是等边三角形,下列结论:①AE =CD ;②BF =BG ;③BH 平分∠AHD ;④∠AHC =60°;⑤△BFG 是等边三角形;⑥FG ∥AD. 其中正确的有6个.二、解答题14.如图,过边长为2的等边三角形的边上一点P 作PE ⊥AC 于点E ,Q 是BC 延长线上一点,当PA =CQ 时,连接PQ 交AC 于点D ,求DE 的长.解:过点P 作PF ∥BC 交AC 于点F , ∵△ABC 为等边三角形, ∴△APF 为等边三角形. ∴PF =AP.又∵PE ⊥AF ,∴AE =EF. 又∵AP =CQ ,∴PF =CQ. ∵PF ∥BC ,∴∠FPD =∠CQD.在△PFD 和△QCD 中,⎩⎪⎨⎪⎧∠FPD =∠CQD ,∠PDF =∠QDC ,PF =QC ,∴△PFD ≌△QCD(AAS).∴FD =CD.∴DE =EF +FD =12AF +12CF =12AC.∵AC =2,∴DE =1.C 组(综合题)15.如图,△ABC 是等边三角形,E 是BC 边上任意一点,∠AEF =60°,EF 交△ABC 的外角∠ACD 的平分线于点F.求证:AE =EF.证明:在AB 上截取AG =CE ,连接EG. ∵△ABC 是等边三角形,∴AB =BC ,∠B =∠ACB =60° 又∵AG =CE ,∴BG =BE.∴△BEG 是等边三角形.∴∠BGE =60°.∴∠AGE =120°. ∵CF 平分∠ACD ,∴∠ACF =12(180°-∠ACB)=60°. ∴∠ECF =120°.∴∠AGE =∠ECF.∵∠AEC =∠B +∠GAE =∠AEF +∠CEF , 且∠AEF =∠B =60°,∴∠GAE =∠CEF.又∵AG =EC ,∴△AGE ≌△ECF(ASA). ∴AE =EF.。

北师大版2020-2021学年度第二学期第5周考试七年级数学试卷(含答案)(A)

北师大版2020-2021学年度第二学期第5周考试七年级数学试卷(含答案)(A)

2020-2021学年度第二学期第5周考试七年级数学试卷(A)(试卷满分120分,考试时间90分钟)说明:1.全卷共6页,满分为120分,考试用时为90分钟.2.答卷前,考生务必用黑色字迹的签字笔或钢笔在答题卡填写自己的准考证号、姓名、考场号、座位号.用2B铅笔把对应该号码的标号涂黑.3.选择题每小题选出答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑,如需改动,用像皮檫干净后,再选涂其他答案,答案不能答在试题上.4.非选择题必须用黑色字迹钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液.不按以上要求作答的答案无效.5.考生务必保持答题卡的整洁.考试结束时,将试卷和答题卡一并交回.一、选择题(本大题10小题,每小题3分,共30分)在每小题列出的四个选项中,只有一个是正确的,请把答题卡上对应题目所选的选项涂黑.1.下列用科学记数法表示正确的是()A.0.00027=27×10-5 B.0.00027=0.027×10-2C.0.00027=0.27×10-3 D.0.00027=2.7×10-42.下列算式:①0.001°=1 ②10-3=0.001 ③10-5=-0.00001 ④(6-3×2)°=1,其中正确的有()A.1个 B.2个 C.3个 D.4个3.如图所示,已知直线c与a,b分别交于点A、B且∠1=120°,当∠2=_____时,直线a∥b()A.60° B.120° C.30° D.150°4.若m·23=26,则m=( )A.2B.4C.6D.85.下列各式中,计算结果不可能为14a的是()A .77)(aB .832()a a ⋅C .72)(aD .27)(a6.下列运算错误的是 ( ) A .36328)2(b a b a -=- B .126342)(y x y x = C .28232)()(y x y x x =⋅- D .77)(ab ab -=-7.(2m+3)(-2m -3)的计算结果是 ( ) A .249m -B.249m --C.24129m m ---D.24129m m -+-8.7张如图1的长为a ,宽为b (a >b )的小长方形纸片,按图2的方式不重叠地放在矩形ABCD 内,未被覆盖的部分(两个矩形)用阴影表示.设左上角与右下角的阴影部分的面积的差为S ,当BC 的长度变化时,按照同样的放置方式,S 始终保持不变,则a ,b 满足( )A . a =2bB . a =3bC . a =bD . a =4b9.如图,从边长为(a+1)cm 的正方形纸片中剪去一个边长为(a ﹣1)cm 的正方形(a>1),剩余部分沿虚线又剪拼成一个矩形(不重叠无缝隙),则该矩形的面积是( )A. 2cm 2B. 2a cm 2C. 4a cm 2D. (a 2﹣1)cm 210.学习了平行线后,小红想出了过已知直线外一点画这条直线的平行线的新方法,她是通过折一张半透明的纸得到[ 如下图(1)至图(4)]: 从图中可知,小敏画平行线的依据有( )① 两直线平行,同位角相等;② 两直线平行,内错角相等; ③ 同位角相等,两直线平行;④ 内错角相等,两直线平行; A .①② B .②③ C .③④ D .①④(4)(3)(1)二、填空题(本大题7小题,每小题4分,共28分)请将下列各题的正确答案填写在答题卡相应的位置上.11.42010×0.252011=__________.12.23316)2(xy y x ÷⋅=__________. 13.已知51=+x x ,那么221xx +=_______. 14. 二次三项式29x kx -+是一个完全平方式,则k 的值是 .15. 若代数式x 2+3x+2可以表示为(x-1)2+a(x-1) +b 的形式,则a+b 的值是 .16.观察下列一组数:31,52,73,94,115……根据该组数的排列规律,可推出第10个数是 .17.对于任何实数,我们规定符号dc b a 的意义dc b a =ad-bc ,按照这个规定请你计算:当χ2-3χ+1=0时.1231--+x x xx 的值 .三、解答题(一)(本大题3小题,每小题6分,共18分)18.(1)⎪⎭⎫⎝⎛312012 ×⎪⎭⎫ ⎝⎛-312013 (2)120211()(2)5()42---+-⨯-19.先化简,再求值.)3)(3()2()1(2x x x x x +-+--+,其中12x =-.20.推理填空:如图,已知∠1=∠2,∠B=∠C,可推得AB∥CD.理由如下:∵∠1=∠2(已知),且∠1=∠4()∴∠2=∠4 (等量代换)∴CE∥BF ()∴∠C=∠3(两直线平行,同位角相等)又∵∠B=∠C(已知),∴∠3=∠B(等量代换)∴AB∥CD ()四、解答题(二)(本大题3小题,毎小题8分,共24分)21.如图1,从边长为a的正方形纸片中剪去一个边长为b的小正方形,再沿着线段AB 剪开,把剪成的两张纸片拼成如图2的等腰梯形.(1)设图1中阴影部分面积为S1,图2中阴影部分面积为S2,请直接用含a,b的代数式表示S1、S2;(2)请写出上述过程所揭示的乘法公式.图1 图222.如图,四边形ABCD 中,∠A =∠C =90°,BE ,DF 分别是∠ABC ,∠ADC 的平分线. (1)∠1与∠2有什么关系,为什么? (2)BE 与DF 有什么关系?请说明理由.23.利用我们学过的知识,可以导出下面这个形式优美的等式a 2+b 2+c 2-ab -bc -ca=21[(a -b)2+(b -c)2+(c -a)2] (1)你能导出这个等式吗?(2)当a=2013,b=2014,c=2015求a 2+b 2+c 2-ab -bc -ca 的值五、解答题(三)(本大题2小题,毎小题10分,共20分)24.如下数表是由从1 开始的连续自然数组成,观察规律并完成各题的解答.(1)表中第8行的最后一个数是 ,它是自然数 的平方,第8行共有 个数;(2)用含n 的代数式表示:第n 行的第一个数是 ,最后一个数是 ,第n 行共有 个数; (3)求第n 行各数之和.25.如果一个正整数能表示为两个连续偶数的平方差,那么称这个正整数为“神秘数”,如:4=22-02,12=42-22,20=62-42因此4,12,20都是“神秘数”(1)28和2012这两个数是“神秘数”吗?为什么?(2)设两个连偶数为2k+2和2k(其中k取非负整数),由这两个连续偶数构造的神秘数是4的倍数吗?为什么?(3)两个连续奇数的平方差(k取正数)是神秘数吗?为什么?2020-2021学年度第二学期第5周考试七年级数学试卷(A )答案题 号 1 2 3 4 5 6 7 8 9 10 答 案DBBDADCBCC11.;12.212x y ;13.23;14.6±;15.11;16. ;17. 118.(1)解:20122013402511=-331=-3⎛⎫⎛⎫⨯ ⎪⎪⎝⎭⎝⎭原式 (3分) (2)解:=-4+4-4=-4原式(6分)19.原式=2-410x x ++, (3分)当12x =-时,原式=314. (6分) 20.21.解:(1)S 1=a 2-b 2,S 2=12(2b +2a )(a -b )=(a +b )(a -b ). (4分)(2)(a +b )(a -b )= a 2—b 2 (8分) 22.解:(1)∠1+∠2=90°∵BE ,DF 分别是∠ABC ,∠ADC 的平分线 ∴∠1=∠ABE ,∠2=∠ADF ∵∠A=∠C=90°(2分) (4分)(6分)∴∠ABC+∠ADC=180° ∴2(∠1+∠2)=180°∴∠1+∠2=90° (4分) (2)BE ∥DF (5分) 在△FCD 中,∵∠C=90° ∴∠DFC+∠2=90° ∵∠1+∠2=90° ∴∠1=∠DFC∴BE ∥DF (8分)23.解:(1)因为(a -b)2+(b -c)2+(c -a)2=2a 2+2b 2+2c 2-2ab -2bc -2ca (2分) 所以a 2+b 2+c 2-ab -bc -ca=21[(a -b)2+ (b -c) 2+(c -a)2] (4分) (2)当a=2013 b=2014 c=2015时a 2+b 2+c 2-ab -bc -ca=21[(-1)2+ (-1) 2+(2) 2]=3 (8分)24.(1)64,8,15; (3分)(2)2(1)1n -+,2n ,21n -; (6分)(3)第2行各数之和等于()12+432⨯⨯=3×3=9;第3行各数之和等于()15+952⨯⨯=5×7=35;第4行各数之和等于7×13=91;类似的,第n 行各数之和等于()()22121121n n n ⎡⎤-++-⎣⎦=2(21)(1)n n n --+=322331n n n -+- (10分)25.解:(1)设28和2012都是“神秘数”设28是x 和x -2两数的平方差得到, 则x 2-(x -2)2=28解得:∵x=8,∴x-2=6即28=82-62 (2分)设2012是y和y-2两数的平方差得到,则y2-(y-2)2=2012解得:y=504,y-2=502即2012=5042-5022 (4分)所以28,2012都是神秘数。

2020-2021年北师大版七年级上册数学第5章《一元一次方程》测试卷 (含答案)

2020-2021年北师大版七年级上册数学第5章《一元一次方程》测试卷 (含答案)

2020-2021年北师大版七年级上册数学第5章一元一次方程单元测试题一.选择题(共10小题,满分30分,每小题3分)1.下列方程是一元一次方程的是()A.x﹣4y=0B.C.x2﹣3=x D.y=02.在方程:①y+1=1;②y=;③y﹣1=y﹣1;④5y=2﹣y中,解为y=的方程()A.1个B.2个C.3个D.4个3.根据等式的性质,下列选项中等式不一定成立的是()A.若a=b,则a+2=b+2B.若ax=bx,则a=bC.若=,则x=y D.若3a=3b,则a=b4.解一元一次方程(x﹣1)=2﹣x时,去分母正确的是()A.2(x﹣1)=2﹣5x B.2(x﹣1)=20﹣5xC.5(x﹣1)=2﹣2x D.5(x﹣1)=20﹣2x5.关于x的方程3﹣=0与方程2x﹣5=1的解相同,则常数a是()A.2B.﹣2C.3D.﹣36.下列方程变形中属于移项的是()A.由2x=﹣1得x=﹣B.由=2得x=4C.由5x+b=0得5x=﹣b D.由4﹣3x=0得﹣3x+4=07.解方程2(x+3)﹣5(1﹣x)=3(x﹣1),去括号正确的是()A.2x+6﹣5+5x=3x﹣3B.2x+3﹣5+x=3x﹣3C.2x+6﹣5﹣5x=3x﹣3D.2x+3﹣5+x=3x﹣18.我国古代问题:“以绳测井,若将绳三折测之,绳多四尺;若将绳四折测之,绳多一尺,问绳长井深各几何?”其题意是:用绳子测量水井深度,如果将绳子折成三等份,那么每等份绳长比水井深度多四尺;如果将绳子折成四等份,那么每等份绳长比水井深度多一尺.问绳长和井深各多少尺?若假设井深为x尺,则下列符合题意的方程是()A.B.3(x+4)=4(x+1)C.D.3x+4=4x+19.将连续的奇数1、3、5、7、9、,按一定规律排成如图:图中的T字框框住了四个数字,若将T字框上下左右移动,按同样的方式可框住另外的四个数.若将T字框上下左右移动,则框住的四个数的和不可能得到的数是()A.22B.70C.182D.20610.某超市在“元旦”活动期间,推出如下购物优惠方案:①一次性购物在100元(不含100元)以内,不享受优惠;②一次性购物在100元(含100元)以上,350元(不含350元)以内,一律享受九折优惠;③一次性购物在350元(含350元)以上,一律享受八折优惠;小敏在该超市两次购物分别付了90元和270元,如果小敏把这两次购物改为一次性购物,则小敏至少需付款()元A.288B.296C.312D.320二.填空题(共6小题,满分24分,每小题4分)11.若(m﹣1)x|m+2|+3=0是关于x的一元一次方程,则m=.12.若a=b,则a﹣c=.13.若关于x的方程3x+2b+1=x﹣(3b+2)的解是1,则b=.14.A、B两人分别从甲乙两地同时相向而行,甲的速度是每小时80千米,乙的速度是甲的,经过小时两人相距10千米,甲乙两地相距千米.15.小马虎在做作业时,不小心把方程的一常数污染了,看不清楚了,被污染的方程是:x+1=x+■,怎么办?小马虎想了想,便翻看了书后的答案,此方程的解是x=12,则这个常数=.16.规定运算:=ad﹣bc,例如=2×5﹣3×4=﹣2,若=6x﹣5,则x 的值是.三.解答题(共6小题,满分46分)17.(6分)解方程:3x+3=8﹣12x.18.(6分)解方程:﹣=119.(6分)列式计算.(1)一个数的25%是750的,这个数是多少?(2)甲、乙两数的和是35,其中甲数是乙数的,乙数是多少?20.(8分)我们定义一种新运算:a*b=2a+ab(等号右边为通常意义的运算):(1)若,求x的值;(2)若(﹣3)*(2*x)=x+24,求x的值.21.(9分)为庆祝元旦,甲、乙两校准备联合文艺汇演,甲、乙两校共92人(其中甲校人数多于乙校人数,且甲校人数不够90人)准备统一购买服装(一人买一套)参加演出,下面是服装厂给出的演出服装的价格表:购买服装的套数1套至45套46套至90套91套及以上每套服装的价格70元60元50元如果两所学校分别单独购买服装,一共应付5920元.(1)如果甲、乙两校联合起来购买服装,那么比各自购买服装共可以节省多少钱?(2)甲、乙两校各有多少学生准备参加演出?(3)如果甲校有8名同学抽调去参加迎元旦书法比赛不能参加演出,那么你有几种购买方案,通过比较,你该如何购买服装才能最省钱?22.(11分)如图,已知数轴上点A表示的数为6,点B是数轴上在A点左侧的一点,且A、B两点间的距离为10,动点P从点A出发,以每秒3个单位长度的速度沿数轴向左运动.(1)数轴上点B表示的数是;(2)运动1秒时,点P表示的数是;(3)动点Q从点B出发,以每秒2个单位长度的速度沿数轴向右运动,若点P、Q同时出发.求:①当点P运动多少秒时,点P与点Q相遇?相遇时对应的有理数是多少?②当点P运动多少秒时,点P与点Q的距离为8个单位长度.参考答案一.选择题(共10小题,满分30分,每小题3分)1.解:A、含有两个未知数,是二元一次方程,不合题意;B、不是整式方程,是分式方程,不合题意;C、是关于x的一元二次方程,不合题意;D、是关于y的一元一次方程,符合题意;故选:D.2.解:①将y=代入得:左边=y+1=,右边=1,左边≠右边,不合题意;②将y=代入方程得:左边≠右边,不合题意;③将y=代入方程得:左边=右边,符合题意;④将y=代入方程左边得:5×=,右边=2﹣=,左边=右边,符合题意,则解为y=的方程有2个.故选:B.3.解:∵若a=b,则a+2=b+2,∴选项A不符合题意;∵若ax=bx,则x=0时,a可以不等于b,∴选项B符合题意;∵若=,则x=y,∴选项C不符合题意;∵若3a=3b,则a=b,∴选项D不符合题意.故选:B.4.解:解一元一次方程(x﹣1)=2﹣x时,去分母正确的是5(x﹣1)=20﹣2x.故选:D.5.解:方程2x﹣5=1,移项得:2x=1+5,合并得:2x=6,解得:x=3,把x=3代入得:3﹣=0,去分母得:6﹣3a+3=0,解得:a=3.故选:C.6.解:A、由2x=﹣1得:x=﹣,不符合题意;B、由=2得:x=4,不符合题意;C、由5x+b=0得5x=﹣b,符合题意;D、由4﹣3x=0得﹣3x+4=0,不符合题意.故选:C.7.解:去括号得:2x+6﹣5+5x=3x﹣3,故选:A.8.解:设井深为x尺,依题意,得:3(x+4)=4(x+1).故选:B.9.解:由题意,设T字框内处于中间且靠上方的数为2n﹣1,则框内该数左边的数为2n﹣3,右边的为2n+1,下面的数为2n﹣1+10,∴T字框内四个数的和为:2n﹣3+2n﹣1+2n+1+2n﹣1+10=8n+6.故T字框内四个数的和为:8n+6.A、由题意,令框住的四个数的和为22,则有:8n+6=22,解得n=2.符合题意.故本选项不符合题意;B、由题意,令框住的四个数的和为70,则有:8n+6=70,解得n=8.符合题意.故本选项不符合题意;C、由题意,令框住的四个数的和为182,则有:8n+6=182,解得n=22.符合题意.故本选项不符合题意;D、由题意,令框住的四个数的和为206,则有:8n+6=206,解得n=25.由于数2n﹣1=49,排在数表的第5行的最右边,它不能处于T字框内中间且靠上方的数,所以不符合题意.故框住的四个数的和不能等于206.故本选项符合题意;故选:D.10.解:设第一次购物购买商品的价格为x元,第二次购物购买商品的价格为y元,当0<x<100时,x=90;当100≤x<350时,0.9x=90,解得:x=100;∵0.9y=270,∴y=300.∴0.8(x+y)=312或320.所以至少需要付312元.故选:C.二.填空题(共6小题,满分24分,每小题4分)11.解:∵(m﹣1)x|m+2|+3=0是关于x的一元一次方程,∴m﹣1≠0且|m+2|=1,解得:m=﹣1或﹣3,故答案为:﹣1或﹣3.12.解:若a=b,则a﹣c=b﹣c,故答案为:b﹣c.13.解:把x=1代入方程3x+2b+1=x﹣(3b+2)得:3+2b+1=1﹣(3b+2),解得:b=﹣1,故答案为:﹣1.14.解:设甲乙两地相距x千米,依题意得:x﹣80×﹣80××=10或80×+80××﹣x=10,解得:x=360或x=340.故答案为:360或340.15.解:设“■”表示的数为m,根据题意,将x=12代入方程可得:8+1=6+m,解得:m=3,故答案为:3.16.解:根据题中的新定义化简得:3x﹣3+2x=6x﹣5,移项合并得:﹣x=﹣2,解得:x=2,故答案为:2三.解答题(共6小题,满分46分)17.解:移项合并得:15x=5,解得:x=.18.解:去分母得:2x﹣3(x﹣1)=6,去括号得:2x﹣3x+3=6,移项合并得:﹣x=3,解得:x=﹣3.19.解:(1)首先假设这个数为x,根据题意,得25%x=750×.解得x=600答:这个是数是600;(2)设乙数是y.则甲数是(35﹣y),根据题意,得35﹣y=y解得y=.答:乙数是.20.解:(1)3*x=2×3+3x=6+3x*x=2×+x=1+x,∴6+3x=1+x,∴x=﹣2;(2)∵2*x=2×2+2x=4+2x,∴﹣3*(2*x)=2(﹣3)+(﹣3)(4+2x)=﹣6﹣12﹣6x=﹣18﹣6x,∴﹣18﹣6x=x+24,∴x=﹣621.解:(1)∵甲、乙两校共92人,∴甲、乙两校联合起来购买服装需50×92=4600(元),∴5920﹣4600=1320(元)答:甲、乙两校联合起来购买服装,那么比各自购买服装共可以节省1320元.(2)设甲校人数为x人(依题意46<x<90),则乙校人数为(92﹣x)人,依题可得:60x+70(92﹣x)=5920,解得:x=52,∴92﹣x=40.答:甲校有52人,乙校有40人.(3)依题可得:抽调后甲校人数为:52﹣8=44(人),∴方案一:各自购买服装需44×70+40×70=5880(元);方案二:联合购买服装需(44+40)×60=5040(元);方案三:联合购买91套服装需91×50=4550(元);综上所述:因为5880>5040>4550.∴应该甲,乙两校联合起来选择按50元一次购买91套服装最省钱.答:甲,乙两校联合起来选择按50元一次购买91套服装最省钱.22.解:(1)∵点A表示的数为6,AB=10,且点B在点A的左侧,∴点B表示的数为6﹣10=﹣4.故答案为:﹣4.(2)6﹣3×1=3.故答案为:3.(3)设运动的时间为t秒,则此时点P表示的数为6﹣3t,点Q表示的数为2t﹣4.①依题意,得:6﹣3t=2t﹣4,解得:t=2,∴2t﹣4=0.答:当点P运动2秒时,点P与点Q相遇,相遇时对应的有理数是0.②点P,Q相遇前,6﹣3t﹣(2t﹣4)=8,解得:t=;当P,Q相遇后,2t﹣4﹣(6﹣3t)=8,解得:t=.答:当点P运动秒或秒时,点P与点Q的距离为8个单位长度.。

北师大版2020-2021学年度七年级(上)期中数学试卷(附答案)

北师大版2020-2021学年度七年级(上)期中数学试卷(附答案)

2020-2021学年度七年级(上)期中数学试卷1.我国第一艘航母“辽宁舰”最大排水量为67500吨,用科学记数法表示这个数字是( )A. 6.75×103B. 67.5×103C. 6.75×104D. 6.75×1052.如图是每个面上都有一个汉字的正方体的一种展开图,那么在正方体的表面,与“神”相对的面上的汉字是( )A. 太B. 空C. 漫D. 步3.多项式52x2−2x+1的次数是( )A. 4B. 3C. 2D. 14.如果|a|=|b|,那么a与b的关系是( )A. 相等B. 互为相反数C. 都是零D. 相等或互为相反数5.下列各组中的两项属于同类项的是( )A. 52x2y与−32xy3 B. −8a2b与5a2cC. 14pq与−52qp D. 19abc与−28ab6.如图是从一个几何体的上面看到的图形,其中数字代表几何体的高度,那么从这个几何体左面看到的图形是( )A. B. C. D.7.下列结果运算为负值的是( )A. (−7)×(−67) B. (−213)+52C. 0×(−2)D. 6÷(−15)8.一个直角三角形的三条边分别为3、4、5,将这个三角形绕它的直角边所在直线旋转一周得到的几何体的体积是( )A. 12πB. 16πC. 12π或16πD. 36π或48π9.将半圆绕它的直径旋转一周形成的几何体是______ .10.若火箭发射点火前5秒记为−5秒,那么火箭发射点火后10秒应记为______ .11.在式子:−8、−6mn7、2a2+3a−1、3b2a、0中,单项式有______ 个.12.用一个平面去截下列几何体:①正方体;②圆柱;③长方体;④四棱柱.截面可能是三角形的有______.(填写序号)13.下面是一个简单的数值运算程序,当输入x的值为2时,输出的数值是______ .14.由一些大小相同的小正方体组成一个几何体,从正面看和从上面看的形状图如图所示,那么组成该几何体所需小正方体的个数最少为______ .15.化简−1−(2a−1)的结果是______ .16.在数轴上有示a、b、c三个实数的点的位置如图所示化简式子:|b−a|+|c−a|−|c−b|=______ .17.(1)32.54+(−5.4)+(−12.54)−(−5.4)(2)(−56+38)÷(−124)(3)18+6÷(−2)×(−1 3 )(4)−14−23÷(−4)3−(14−18)(5)化简:3a+2b−5a−b(6)化简:−(b−4)+4(−b−3)(7)化简,求值:2(a2b+ab2)−2(a2b−1)−3ab2+2,其中a=−2,b=2.18.从正面、左面、上面观察如图所示的几何体,分别画出你所看到的几何体的形状图.19.某品牌的太阳能热水器在夏季的一天中午12点时水的温度是53℃,下午每小时下降0.8℃,求18点时水的温度.(列式计算)20.今年“十一”黄金周期间,某风景区在7天假期中每天旅游的人数变化如下表(正数表示比前一天多的人数,负数表示比前一天少的人数,单位:万人):日期1日2日3日4日5日6日7日人数变化+1.8+0.8+0.2−0.4−0.8+0.2−1.0(1)若9月30日的游客人数为0.3万人,求10月5日的游客人数;(列式计算)(2)七天内游客人数最多的是______ 日,最少的是______ 日;(3)若以9月30日的游客人数为0点,用折线统计图表示这7天的游客人数变化情况.21.某公园的成人票价每张50元,儿童票价每张30元;甲旅游团有a名成人和b名儿童,乙旅游团的成。

2020-2021学年七年级数学北师大版第五章第六节《应用一元一次方程--追赶小明》同步练(有答案)

2020-2021学年七年级数学北师大版第五章第六节《应用一元一次方程--追赶小明》同步练(有答案)

第六节 应用一元一次方程——追赶小明一、选择题1. 运动场环形跑道的周长为 400 米,小林跑步的速度是爷爷的二倍,他们从同一起点沿跑道的同一方向同时出发,5 分钟后小林第一次与爷爷相遇,小林跑步的速度是( )A.120 米/分B.160 米/分C.180 米/分D.200 米/分2. 父子二人早上去公园晨练,父亲从家跑步到公园需 30 分钟,儿子只需 20 分钟,如果父亲比儿子早出发 5 分钟,儿子追上父亲需( )A.8 分钟B.9 分钟C.10 分钟D.11 分钟3. 一艘船在两个码头之间航行,水流的速度是3千米/时,顺水航行需要2小时,逆水航行需要3小时,则两码头之间的距离为( )A.40 千米B.36 千米C.45 千米D.46 千米4. 甲、乙两列火车从相距 480 km 的 A,B 两地同时出发,相向而行,甲车每小时行 80 km,乙车每小时行 70 km,当两车相距 30 km 时,所用的时间为( )A.3 小时B.517小时C.3.5 小时D.3小时或517小时 5. 一列火车正在匀速行驶,它先用 20 秒的时间通过了一条长为 160 米的隧道(即从车头进入入口到车尾离开出口),又用 15 秒的时间通过了一条长为 80 米的隧道,求这列火车的长度.设 这列火车的长度为 x 米,根据题意可列方程为( )A.202160x +=15280x + B.20160x +=1580x + C.202160x -=15280x - D.20160x -=1580x -6. A 、B 两地相距500 km,大客车以每小时60 km 的速度从A 地驶向B 地,2小时后,小汽车以每小时90 km 的速度沿着相同的道路行驶,设小汽车出发x 小时后追上大客车,根据题意可列方程为 ( )A.60(x+2)=90xB.60x=90(x -2)C.60(x+2)+90x=500D.6x+90(x -2)=5007. 小华从家里骑自行车到学校,每小时骑15 km,可早到10分钟,每小时骑12 km 就会迟到5分钟,则他家到学校的路程是 ( )A.35 kmB.20 kmC.18 kmD.15 km8. 如图,跑道由两个半圆部分AB,CD和两条直跑道AD,BC组成,两个半圆跑道的长都是115 m,两条直跑道的长都是85 m.小彬站在A处,小强站在B处,两人同时逆时针方向跑步,小彬每秒跑4 m,小强每秒跑6 m.当小强第一次追上小彬时,他们的位置在 ()A.半圆跑道AB上B.直跑道BC上C.半圆跑道CD上D.直跑道AD上9. 一对父子在同一个工厂工作,父亲从家走到工厂需用30分钟,儿子走这段路只需20分钟,父亲比儿子早5分钟动身,儿子追上父亲需要的时间为 ()A.5分钟B.10分钟C.15分钟D.20分钟10. 小华从家里骑自行车到学校,每小时骑15 km,可早到10分钟,每小时骑12 km就会迟到5分钟,则他家到学校的路程是()A.35 kmB.20 kmC.18 kmD.15 km二、填空题11. 某人计划开车用3 小时从甲地到乙地,实际每小时比原计划每小时多行驶16 千米,结果用了 2.5 小时就到达了乙地,甲、乙两地相距千米.12. 某轮船往返于A,B两港之间,逆水航行需3小时,顺水航行需2小时,水速是3千米/时,则轮船在静水中的速度是.13. 一列匀速前进的火车,从它进入320米长的隧道到完全通过隧道经历18秒钟,隧道顶部一盏固定的灯在火车上照了10秒钟,则这列火车的长为米.14. 轮船从A港顺流行驶到B港,比从B港返回A港少用3小时,若船速为26千米/时,水速为2千米/时,求A港和B港相距多少千米.设A港和B港相距x千米.根据题意,可列方程为.15. 已知A,B两地相距450千米,甲、乙两车分别从A,B两地同时出发,相向而行.已知甲车的速度为120千米/时,乙车的速度为80千米/时,经过t小时两车相距50千米,则t=.三、解答题16. 甲、乙两人同时从A 地前往相距25.5 千米的B 地,甲骑自行车,乙步行,甲的速度比乙的速度的 2 倍还快 2 千米/时,甲先到达 B 地后,立即由 B 地返回,在途中遇到乙,这时距他们出发时已过了 3 小时.求两人的速度.17. 如图,已知数轴上点A 表示的数为-7,点B 表示的数为5, 点C 到点A,点B 的距离相等,动点P 从点A 出发,以每秒 2 个单位长度的速度沿数轴向右匀速运动,设运动的时间为t(t>0)秒.(1)点C 表示的数是;(2)点P 表示的数是(用含有t 的代数式表示);(3)求当t等于多少时,点P与点C之间的距离为2个单位长度.18. 如图所示,O 为一个模拟钟面圆心,M、O、N 在一条直线上,指针OA、OB 分别从OM、ON 出发绕点O 转动,OA 的运动速度为每秒30°,OB 的运动速度为每秒10°,当一根指针与起始位置重合时,运动停止,设转动的时间为t 秒,试解决下列问题:(1)如图1,若OA 顺时针转动,OB 逆时针转动,t=时,OA 与OB 第一次重合;(2)如图2,若OA、OB 同时顺时针转动.①当 t=3 时,∠AOB= °;②当 t 为何值时,∠AOB=20°?答案1.B2.C3.B4.D5.B6.A7.D8.B9.B 10.D11. 24012. 15千米/时13. 40014. 226-x -226+x =3 15. 2或2.516. 设乙的速度是x 千米/时,则甲的速度是(2x+2)千米/时 ,根据题意得3x+3(2x+2)=25.5×2,解得 x=5,2x+2=12.答:甲、乙的速度分别是 12 千米/时、5 千米/时.17. (1)-1. (2)2t -7.(3)由题意得-7+2t=-1-2 或-7+2t=-1+2,∴t=2 或 t=4.18. (1)∵OA 顺时针转动,OB 逆时针转动,∴∠AOM+∠BON=180°,∴30t+10t=180,解得 t=4.5.∴t=4.5 时,OA 与 OB 第一次重合.(2)①由题意得∠AOM=30°×3=90°,∠BON=10°×3=30°, ∴∠AOB=180°-90°+30°=120°.②由题意得30t-10t=180°-20°或30t-10t=180°+20°,∴t=8 或t=10,即t 为8 或10 时,∠AOB=20°.。

专题5.3求解一元一次方程(1)-2021年七年级数学上册尖子生同步培优题库(教师版含解析)【北师大

专题5.3求解一元一次方程(1)-2021年七年级数学上册尖子生同步培优题库(教师版含解析)【北师大

2020-2021学年七年级数学上册尖子生同步培优题典【北师大版】专题5.3求解一元一次方程(1)姓名:__________________ 班级:______________ 得分:_________________注意事项:本试卷满分100分,试题共24题.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级等信息填写在试卷规定的位置.一、选择题(本大题共10小题,每小题3分,共30分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.(2019秋•慈利县期末)已知代数式2x﹣6与3+4x的值互为相反数,那么x的值等于()A.2B.−12C.﹣2D.12【分析】利用相反数的性质列出方程,求出方程的解即可得到x的值.【解析】根据题意得:2x﹣6+3+4x=0,移项合并得:6x=3,解得:x=1 2,故选:D.2.(2019秋•沭阳县期末)方程−12x−5=0的解为()A.﹣4B.﹣6C.﹣8D.﹣10【分析】方程移项后,把x系数化为1,即可求出解.【解析】方程移项得:−12x=5,解得:x=﹣10,故选:D.3.(2019秋•赣榆区期末)已知2a+3与5互为相反数,那么a的值是() A.1B.﹣3C.﹣4D.﹣1【分析】利用相反数性质列出方程,求出方程的解即可得到a的值.【解析】根据题意得:2a+3+5=0,移项合并得:2a=﹣8,解得:a=﹣4,故选:C.4.(2019秋•沈北新区期末)在解方程3x+5=﹣2x﹣1的过程中,移项正确的是()A.3x﹣2x=﹣1+5B.﹣3x﹣2x=5﹣1C.3x+2x=﹣1﹣5D.﹣3x﹣2x=﹣1﹣5【分析】移项是解方程的一个重要步骤,主要记住移项要变号.【解析】方程3x+5=﹣2x﹣1移项得:3x+2x=﹣1﹣5.故选:C.5.(2018秋•亭湖区校级期末)下列解方程的过程中,移项错误的是()A.方程2x+6=﹣3变形为2x=﹣3+6B.方程2x﹣6=﹣3变形为2x=﹣3+6C.方程3x=4﹣x变形为3x+x=4D.方程4﹣x=3x变形为x+3x=4【分析】利用等式的基本性质1求解可得.【解析】A.方程2x+6=﹣3变形为2x=﹣3﹣6,此选项错误;B.方程2x﹣6=﹣3变形为2x=﹣3+6,此选项正确;C.方程3x=4﹣x变形为3x+x=4,此选项正确;D.方程4﹣x=3x变形为x+3x=4,此选项正确;故选:A.6.(2019秋•辛集市期末)若代数式7﹣2x和5﹣x互为相反数,则x的值为()A.2B.﹣4C.4D.0【分析】首先根据:代数式7﹣2x和5﹣x互为相反数,可得:7﹣2x=﹣(5﹣x),然后根据解一元方程的方法,求出x的值为多少即可.【解析】根据题意,可得:7﹣2x=﹣(5﹣x),去括号,可得:7﹣2x=﹣5+x,移项,合并同类项,可得:﹣3x=﹣12,系数化为1,可得:x=4.故选:C.7.(2019秋•杭州期末)将连续的奇数1、3、5、7、9、,按一定规律排成如图:图中的T字框框住了四个数字,若将T字框上下左右移动,按同样的方式可框住另外的四个数.若将T字框上下左右移动,则框住的四个数的和不可能得到的数是()A.22B.70C.182D.206【分析】由题意,设T字框内处于中间且靠上方的数为2n﹣1,则框内该数左边的数为2n﹣3,右边的为2n+1,下面的数为2n﹣1+10,故T字框内四个数的和为:8n+6.【解析】由题意,设T字框内处于中间且靠上方的数为2n﹣1,则框内该数左边的数为2n﹣3,右边的为2n+1,下面的数为2n﹣1+10,∴T字框内四个数的和为:2n﹣3+2n﹣1+2n+1+2n﹣1+10=8n+6.故T字框内四个数的和为:8n+6.A、由题意,令框住的四个数的和为22,则有:8n+6=22,解得n=2.符合题意.故本选项不符合题意;B、由题意,令框住的四个数的和为70,则有:8n+6=70,解得n=8.符合题意.故本选项不符合题意;C、由题意,令框住的四个数的和为182,则有:8n+6=182,解得n=22.符合题意.故本选项不符合题意;D、由题意,令框住的四个数的和为206,则有:8n+6=206,解得n=25.由于数2n﹣1=49,排在数表的第5行的最右边,它不能处于T字框内中间且靠上方的数,所以不符合题意.故框住的四个数的和不能等于206.故本选项符合题意;故选:D.8.(2019秋•北仑区期末)右图是“大润发”超市中“飘柔”洗发水的价格标签,一服务员不小心将墨水滴在标签上,使得原价看不清楚,请你帮忙算一算,该洗发水的原价为()A.22元B.23元C.24元D.26元【分析】设出洗发水的原价是x元,直接得出有关原价的一元一次方程,再进行求解.【解析】设洗发水的原价为x元,由题意得:0.8x=19.2,解得:x=24.故选:C.9.(2012•山西模拟)服装店同时销售两种商品,销售价都是100元,结果一种赔了20%,另一种赚了20%,那么在这次销售中,该服装店()A.总体上是赚了B.总体上是赔了C.总体上不赔不赚D.没法判断是赚了还是赔了【分析】由已知可分别列一元一次方程求出盈利和亏本商品的成本价,然后计算出赚或亏多少.盈利20%就是相当于成本价的1+20%,亏本20%就是相当于成本价的1﹣20%,由此可列方程求解.【解析】设盈利商品的成本价为x元,亏本的成本价为y元,根据题意得:(1+20%)x=100,(1﹣20%)y=100,解得:x≈83,y=125,100﹣83+(100﹣125)=﹣8,所以赔8元.故选:B.二、填空题(本大题共9小题,每小题3分,共27分)请把答案直接填写在横线上10.(2020•铜仁市)方程2x+10=0的解是x=﹣5.【分析】方程移项,把x系数化为1,即可求出解.【解析】方程2x+10=0,移项得:2x=﹣10,解得:x=﹣5.故答案为:x=﹣5.11.(2020•成都模拟)若n﹣2与n+4互为相反数,则n的值为﹣1.【分析】利用相反数的性质列出方程,求出方程的解即可得到n的值.【解析】根据题意得:n﹣2+n+4=0,移项合并得:2n=﹣2,解得:n=﹣1,故答案为:﹣1.12.(2019秋•丰台区期末)下面的框图表示了琳琳同学解方程6+3x=2x﹣1的流程:你认为琳琳同学在解这个方程的过程中从第一步开始出现问题,正确完成这一步的依据是等式的基本性质1.【分析】观察琳琳同学的过程,找出出现问题的步骤即可.【解析】我认为琳琳同学在解这个方程的过程中从第一步开始出现问题,正确完成这一步的依据是等式的基本性质1.故答案为:一;等式的基本性质113.(2019秋•武侯区期末)若m+1与﹣3互为相反数,则m的值为2.【分析】利用相反数性质列出方程,求出方程的解即可得到m的值.【解析】根据题意得:m+1﹣3=0,解得:m=2,故答案为:214.(2019秋•甘井子区期末)某工厂的产值连续增长,去年是前年的3倍,今年是去年的2倍,这三年的总产值为600万元.若前年的产值为x万元,则可列方程为x+3x+6x=600.【分析】可设前年的产值是x万元,根据题意可得去年的产值是3x万元,今年的产值是6x万元,根据等量关系:这三年的总产值为600万元,列出方程求解即可.【解析】设前年的产值是x万元,则去年的产值是2x万元,今年的产值是5x万元,依题意有x+3x+6x=600.故答案为:x+3x+6x=600.15.(2017秋•襄城区期末)用一根长60m的绳子围出一个长方形,使它的长是宽的1.5倍,那么这个长方形的长是18m.【分析】设长方形的宽为x米,则长方形的长为1.5x米.利用长方形的周长公式进行解答即可.【解析】设长方形的宽为x米,则长方形的长为1.5x米.根据题意,得2(x+1.5x)=60,解得,x=12.所以长为12×1.5=18(米).即:长方形的长是18米.故答案是:18.16.(2019秋•大名县期末)李阿姨存入银行2000元,定期一年,到期后扣除20%的利息税后得到本利和为2048元,则该种储蓄的年利率为3%.【分析】由年利率为x和扣除20%的利息税,可写出李阿姨存款一年后的本息和表达式,又因为题中已知本息和为2048,所以可列出一元一次方程.【解析】∵这种储蓄的年利率为x,∴一年到期后李阿姨的存款本息和为:2000(1+x),∵要扣除20%的利息税,∴本息和为:2000+2000x(1﹣20%),由题意可列出方程:2000+2000x(1﹣20%)=2048,将上述方程整理可得:2000(1+80%•x)=2048,解得x=3%.故答案是:3%.17.(2020•顺德区校级模拟)某学校需要购买一批电脑,有两种方案如下:方案1:到商家直接购买,每台需要7000元;方案2:学校买零部件组装,每台需要6000元,另外需要支付安装费等其它费用合计3000元.学校添置 3 台电脑时,两种方案的费用相同.【分析】设学校添置x 台电脑,根据“两种方案的费用相同”列出方程并解答.【解析】设学校添置x 台电脑,由题意,得7000x =6000x +3000,解得x =3,答:当学校添置3台电脑时,两种方案的费用相同;故答案是:3.18.(2019秋•道里区期末)几个人共同种一批树苗,如果每人种15棵,则剩下4棵树苗未种;如果每人种16棵树苗,则缺4棵树苗,则这批树苗共有 124 棵.【分析】由参与种树的人数为x 人,分别用“每人种15棵,则剩下4棵树苗未种;如果每人种16棵树苗,则缺4棵树苗”表示出树苗总棵树列方程即可.【解析】设参与种树的人数为x 人.则15x +4=16x ﹣4,x =8,这批树苗共15x +4=124.故答案是:124.三、解答题(本大题共6小题,共46分.解答时应写出文字说明、证明过程或演算步骤)19.(2020春•新蔡县期中)解下列方程.(1)2y +3=11﹣6y(2)23x ﹣1=12x +3 【分析】(1)方程移项合并,把y 系数化为1,即可求出解;(2)方程去分母,去括号,移项合并,把x 系数化为1,即可求出解.【解析】(1)移项合并得:8x =8,解得:y =1;(2)去分母得:4x ﹣6=3x +18,移项合并得:x =24.20.(2018秋•思明区校级期中)某工厂的产值连续增长,去年是前年的1.5倍,今年是去年的2倍,这三年总产值为550万元.前年的产值是多少?【分析】设前年的产值是x 万元,根据题意可得去年的产值是1.5x 万元,今年的产值是1.5x ×2=3x 万元,根据这三年的总产值为550万元,列出方程求解即可.【解析】设前年的产值是x万元,由题意得x+1.5x+1.5x×2=550,解得:x=100.答:前年的产值是100万元.21.(2019秋•弥勒市期末)把一些图书分给某班学生阅读,如果每人分3本,则剩余20本;如果每人分4本,则还缺25本.(1)这个班有多少学生?(2)这批图书共有多少本?【分析】(1)设这个班有x名学生.根据这个班人数一定,可得:3x+20=4x﹣25,解方程即可;(2)代入方程的左边或右边的代数式即可.【解析】(1)设这个班有x名学生.依题意有:3x+20=4x﹣25解得:x=45(2)3x+20=3×45+20=155答:这个班有45名学生,这批图书共有155本.22.(2018秋•洪山区期末)王芳和李丽同时采摘樱桃,王芳平均每小时采摘8kg,李丽平均每小时采摘7kg,采摘结束后王芳从她采摘的樱桃中取出0.25kg给了李丽,这时两人樱桃一样多,她们采摘用了多少时间?【分析】利用采摘结束后王芳从她采摘的樱桃中取出0.25kg给了李丽,这时两人樱桃一样多得出等式求出答案.【解析】设她们采摘用了x小时,根据题意可得:8x﹣0.25=7x+0.25,解得:x=0.5.答:她们采摘用了0.5小时.23.(2019秋•金凤区校级期中)观察下面三行数:﹣3,9,﹣27,81…①1,﹣3,9,﹣27…②﹣2,10,﹣26,82…③(1)第①行数按什么规律排列?(2)第②③行数与第①行数分别有什么关系?(3)设x ,y ,z 分别为第①②③行的2012个数,求x +6y +z 的值.【分析】(1)观察可看出第一行的数分别是﹣3的1次方,二次方,三次方,四次方…且偶数项是正数,奇数项是负数,用式子表示规律为:(﹣3)n ;(2)观察②,③两行的数与第①行的联系,即可得出答案;(3)分别求得第①②③行的2012个数,得出x ,y ,z 代入求得答案即可.【解析】(1)∵﹣3,9,﹣27,81,﹣243,729…;∴第①行数是:(﹣3)1,(﹣3)2,(﹣3)3,(﹣3)4,…(﹣3)n ;(2)第②行数是第①行数相应的数乘−13即−13×(﹣3)n ,第③行数的比第①行的数大1即(﹣3)n +1.(3)∵x =32012,y =−13×32012×=﹣32011,z =32012+1,∴x +6y +z =32012+6×(﹣32011)+32012+1=1.24.(2019秋•麻城市期末)我们知道,有理数包括整数、有限小数和无限循环小数,事实上,所有的有理数都可以化为分数形式(整数可看作分母为1的分数),那么无限循环小数如何表示为分数形式呢?请看以下示例:例:将0.7化为分数形式.由于0.7⋅=0.777…,设x =0.777…,……①则10x =7.777…,……②②﹣①得9x =7,解得x =79,于是得0.7⋅=79. 同理可得,0.3⋅=39=13,1.4⋅=1+0.4⋅=1+49=139. 根据以上阅读,回答下列问题:(以下计算结果均用最简分数表示)(1)0.5= 59 ,5.8= 539 ;(2)将0.23化为分数形式,写出推导过程;(3)试比较0.9与1的大小:0.9 = 1(填“>”,“<”或“=”);【分析】(1)根据阅读材料的解答过程,类比可得;(2)根据阅读材料的解答过程,类比可得;(3)根据阅读材料的解答过程,类比可得0.9⋅=1,即可求解.【解析】(1)设x =0.5⋅=0.555…,①则10x =5.55555…,②②﹣①得9x =5,解得:x =59,设y =5.8⋅=5.88888…,①则10y =58.8888…,②∴9y =53,解得:y =539,故答案为:59,539, (2)设 x =0.2⋅3⋅=0.232323…①,则 100x =23.2323…②,②﹣①得 99x =23,解得 x =2399, ∴0.23=2399. (3)设a =0.9⋅=0.999…,则10a =9.999…,∴9a =9,∴a =1,∴0.9⋅=1,故答案为:=.。

最新北师大版数学七年级上册《期中检测试题》(含答案)

最新北师大版数学七年级上册《期中检测试题》(含答案)

2020-2021学年度第一学期期中测试北师大版七年级数学试题一、选择题(本题满分24分,共有8道小题,每小题3分)1.-14的相反数是()A. - 4B. 14C. 4D. -142.下列几何体中,从正面、左面、上面观察的几何体的形状相同的有()个A. 1B. 2C. 3D. 43.唐家山堰塞湖是汶川大地震形成的最大、最险的堰塞湖,垮塌山体约达2037万立方米,把2037万立方米这个数用科学记数法表示为()立方米A. 2037B. 2.037×103C. 2037×104D. 2.037×1074.在数轴上,点,A B表示的数分别是 1.2和5.2,点C到,A B两点的距离相等,则点C表示的数是()A. 1B. 2C. 3D. 45.在一张日历上,任意圈出竖列上的三个数的和可能是()A. 78B. 40C. 39D. 286.下列四个图形折叠后与所得的正方体的各个面上所标数字一致的是()A B.C. D.7.有理数()22312,2,2,2----按从小到大的顺序排列是( ) A. ()23212222-<-<-<- B. ()22312222-<-<-<- C. ()22312222-<-<-<- D. ()22312222-<-<-<- 8.观察下列数据的排列规律:1, 2, 3, 4, 5, 6, 7,14,13,12,11,10,9, 8,15,16,17,18,19,20,21,28,27,26,25,24,23,22,……用(a ,b )可以表示任意一个数的位置,如5的位置可以用(1,5)表示,26的位置可以用(4,3)来表示,则2012这个数的位置可以表示为( )A. (288,3)B. (288,5)C. (287,3)D. (287,5)二、填空题(每题3分,满分24分,将答案填在答题纸上) 9.213-的倒数是___________,|2|-的相反数是____________. 10.2325x y π-的系数是____________,次数是___________. 11.若()2320m n -++=,则m+2n 的值是______. 12.某日傍晚,崂山的气温由上午的零上2C 下降了7C ,这天傍晚崂山的气温是______________C . 13.将一张0.1毫米厚的白纸对折30次后,其厚度为____________毫米(只要求列算式).14.若m ,n 互相反数(m ,n 均不为0),且x ,y 互为倒数,则()5m xy m n xy n+-+=___________. 15.已知312+n a b 与223--m a b 是同类项,则这两个同类项和为___________.16.在抗震救灾中,搭建如图①所示的单顶帐篷需要17根钢管,若这样的帐篷按图②、③的方式串起来,则n 顶这样的帐篷串起来共需____________根钢管.三、解答题(本题满分72分,共有8道小题)17.请分别画出图中几何体从左面、上面看到的形状图.18.计算下列各题(1)2318(8)(16)---+-(2)31544263⎛⎫⎛⎫-+-++- ⎪ ⎪⎝⎭⎝⎭(3)1111364912⎛⎫-+⨯-+ ⎪⎝⎭(4)235(4)0.25(5)(4)8⎛⎫-⨯--⨯-⨯- ⎪⎝⎭19.化简下列各题(1)3(24)2()x x y y x --+-(2)()221282a ab a ab -+- 20.先化简,再求值(1)已知236A m mn =-,22B m mn n =--,求123A B -的值,其中1m =-,3n =. (2)若6a b -=,1ab =,求(223)(322)(4)ab a b ab b a a b ab -++-+--++的值.21.某市设计的长方形休闲广场如图所示,两端是两个半圆形的花坛,中间是一个直径为长方形宽度一半的圆形喷水池.(1)用图中所标字母表示广场空地(图中阴影部分)的面积.(2)若休闲广场的长为90米,宽为40米,求广场空地的面积(计算结果保留π).22.建设银行的某储蓄员小张在办理业务时,约定存入为正,取出为负. 2019年10月29日,他先后办理了七笔业务: +2000元、-800元、+400元、-800元、+1400元、-1700元、-200元.(1)若他早上领取备用金4000元,那么下班时应交回银行_________元钱.(2)请判断在这七次办理业务中,小张在第_______次业务办理后手中现金最多,第_________次业务办理后手中现金最少.(3)若每办一件业务,银行发给业务量的0.2%作为奖励,小张这天应得奖金多少元?(4)若记小张第一次办理业务前的现金为0点,用折线统计图表示这7次业务办理中小张手中现金的变化情况.23.某班将买一些羽毛球和羽毛球拍,现了解情况如下:甲、乙两家商店出售两种同样品牌的羽毛球和羽毛球拍,羽毛球拍每副定价48元,羽毛球每盒定价12元,经洽谈后,甲店每买一副球拍赠一盒羽毛球,乙店全部按定价的9折优惠. 该班要买球拍5副,羽毛球x 盒(x 不小于5盒).(1)用代数式表示去甲、乙两店购买所需的费用.(2)当购买30盒羽毛球时,若让你选择一家商店去买,你打算去哪家商店购买?为什么?(2)当购买50盒羽毛球时,若让你选择一家商店去买,你打算去哪家商店购买?为什么?24.填空并解答相关问题:(1)观察下列数1,3,9,27,81…,发现从第二项开始,每一项除以前一项的结果是一个常数,这个常数是________;根据此规律,如果a n (n 为正整数)表示这列数的第n 项,那么a n =__________; 你能求出它们的和吗?计算方法:如果要求1+3+32+33+…+320的值,可令S=1+3+32+33+ (320)将①式两边同乘以3,得3S=3+32+33+…+320+321②由②式左右两边分别减去①式左右两边,得3S-S=(3+32+33+…+320+321)-(1+3+32+33+…+320),即2S=321-1,两边同时除以2得()211312S =-. (2)你能用类比的思想求1+6+62+63+…+6100的值吗?写出求解过程.(3)你能用类比的思想求1+m+m 2+m 3+…+m n (其中mn≠0,m≠1)的值吗?写出求解过程.答案与解析一、选择题(本题满分24分,共有8道小题,每小题3分)1.-14的相反数是()A. - 4B. 14C. 4D. -14【答案】B【解析】【分析】根据相反数的定义求解即可.【详解】解:-14的相反数是14,故选B.【点睛】本题考查相反数的定义:只有符号不同的两个数互为相反数.2.下列几何体中,从正面、左面、上面观察的几何体的形状相同的有()个A. 1B. 2C. 3D. 4【答案】C【解析】【分析】根据主视图,左视图,俯视图的定义找出从正面,左面,上面看到的几何体的形状图都一样的几何体即可.【详解】解:第一个正方体的三视图都是正方形,符合题意;第二个球的三视图都是圆,符合题意;第三个圆锥的主视图和左视图都是矩形,但俯视图是圆,不符合题意;第四个的三视图都是都是,符合题意;故选:C.【点睛】本题考查了简单几何体的三视图,熟记常见几何体的三视图是解题的关键.3.唐家山堰塞湖是汶川大地震形成的最大、最险的堰塞湖,垮塌山体约达2037万立方米,把2037万立方米这个数用科学记数法表示为()立方米A. 2037B. 2.037×103C. 2037×104D. 2.037×107【答案】D【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【详解】解:2 037万=2 037×104=2.037×107=2.037×107.故选:D.【点睛】把一个数M记成a×10n(1≤|a|<10,n为整数)的形式,这种记数的方法叫做科学记数法.规律:(1)当|a|≥1时,n的值为a的整数位数减1;(2)当|a|<1时,n的值是第一个不是0的数字前0的个数,包括整数位上的0.4.在数轴上,点,A B表示的数分别是 1.2-和5.2,点C到,A B两点的距离相等,则点C表示的数是()A. 1 B. 2 C. 3 D. 4【答案】B【解析】【分析】根据线段中点公式即可求出点C表示的数.【详解】1.2 5.24222C-+===故答案为:B.【点睛】本题考查了数轴上的中点问题,掌握中点公式是解题的关键.5.在一张日历上,任意圈出竖列上的三个数的和可能是()A. 78B. 40C. 39D. 28 【答案】C【解析】可以设中间一个数是x,其它两个分别是x+7和x-7,求出它们三数的和,恰好是3的倍数,以此来判断.【详解】解:设圈出的第二个数为x,则第一数为x-7,第三个数为x+7,三个数的和为:x+(x-7)+(x+7)=3x,三个数的和为3的倍数,由四个选项可知只有78和39是3的倍数,但78÷3=26,26不可能是中间数,故选:C.【点睛】本题考查了一元一次方程的应用,解题的关键是找出三数的关系,然后根据三数之和与选项对照求解.6.下列四个图形折叠后与所得的正方体的各个面上所标数字一致的是()A. B.C. D.【答案】B【解析】【分析】根据图中三个数字所处的位置关系作答.【详解】A.由展开图知,1与2是相对的面,不相邻,不符合题意.B.由展开图知,1与2相邻,1与3相邻,3与2相邻,B选项中的展开图折叠后与所得正方体的各个面上所标数字一致,符合题意.C.由展开图知,1与3是相对的面,不相邻,不符合题意.D.由展开图知,2与3是相对的面,不相邻,不符合题意.【点睛】考查正方体的表面张开图,掌握相对不相邻是解题的关键.考查学生的空间想象能力.7.有理数()22312,2,2,2----按从小到大的顺序排列是( ) A. ()23212222-<-<-<- B. ()22312222-<-<-<- C. ()22312222-<-<-<- D. ()22312222-<-<-<- 【答案】B【解析】【分析】计算各有理数的值,再比较大小即可得出答案.【详解】224-=-,()224-=,328-=,1122-=- ∵14482-<-<< ∴()22312222-<-<-<- 故答案为:B .【点睛】本题考查了有理数大小的比较问题,掌握乘方的运算法则和绝对值的性质是解题的关键. 8.观察下列数据的排列规律:1, 2, 3, 4, 5, 6, 7,14,13,12,11,10,9, 8,15,16,17,18,19,20,21,28,27,26,25,24,23,22,……用(a ,b )可以表示任意一个数的位置,如5的位置可以用(1,5)表示,26的位置可以用(4,3)来表示,则2012这个数的位置可以表示为( )A. (288,3)B. (288,5)C. (287,3)D. (287,5)【答案】B【解析】【分析】观察所给数据可知,第一行最后一个数是7,第二行第一个数为14,第三行最后一个数为21,第四行第一个数是28…找到7的奇数倍的数在奇数行最后一个,7的偶数倍的数在偶数行第一个的规律即可求解;【详解】解:观察所给数据可知,7的奇数倍的数在奇数行最后一个,7的偶数倍的数在偶数行第一个,∵7×288=2016,∴2016在第288行第一个,∴2012在第288行第五个, ∴2012这个数的位置可以表示为(288,5).故选:B.【点睛】本题考查了规律型问题中的数字变化问题,规律就在数据中,所以学生平时要锻炼自己的总结能力及逻辑能力.二、填空题(每题3分,满分24分,将答案填在答题纸上)9.213-的倒数是___________,|2|-的相反数是____________.【答案】(1). -35,(2). -2【解析】【分析】直接利用倒数的定义以及相反数的定义分析得出答案.【详解】解:213-的倒数为:-35,|2|-=2的相反数为:-2.故答案为:-35,-2.【点睛】本题考查了倒数、相反数的定义,正确把握相关定义是解题的关键.10.2325x yπ-的系数是____________,次数是___________.【答案】(1). -225π,(2). 4【解析】分析】根据单项式系数和次数的概念求解.【详解】解:单项式2325x yπ-的系数为-225π,次数为4.故答案为:-225π,4.【点睛】本题考查了单项式的概念:单项式中的数字因数叫做单项式的系数,一个单项式中所有字母的指数的和叫做单项式的次数.11.若()2320m n-++=,则m+2n的值是______.【答案】-1【解析】【分析】根据绝对值的非负性质以及偶次方的非负性可得关于m 、n 的方程,求得m 、n 的值即可求得答案.【详解】由题意得:m-3=0,n+2=0,解得:m=3,n=-2,所以m+2n=3-4=-1,故答案为-1.【点睛】本题考查了非负数的性质,代数式求值,熟知“几个非负数的和为0,那么和每个非负数都为0”是解题的关键.12.某日傍晚,崂山的气温由上午的零上2C 下降了7C ,这天傍晚崂山的气温是______________C .【答案】5-【解析】【分析】 根据有理数的减法法则计算即可.【详解】275C -=-故答案为:5-.【点睛】本题考查了有理数的加减运算,掌握有理数的加减运算法则是解题的关键.13.将一张0.1毫米厚的白纸对折30次后,其厚度为____________毫米(只要求列算式).【答案】0.1×230【解析】【分析】 根据对折一次的厚度是0.1×21毫米,对折两次的厚度是0.1×22毫米,对折三次的厚度是0.1×23毫米…,根据此规律可知对折30次的厚度为0.1×230毫米. 【详解】解:∵一张纸的厚度是0.1毫米, ∴对折一次的厚度是0.1×21毫米,对折两次的厚度是0.1×22毫米…, ∴对折11次的厚度为0.1×211毫米. 故答案为:0.1×230. 【点睛】本题考查了有理数乘方的运算法则,本题属规律性题目,根据题意找出每次对折后纸片厚度的规律是解题的关键.14.若m ,n 互为相反数(m ,n 均不为0),且x ,y 互为倒数,则()5m xy m n xy n +-+=___________. 【答案】6【解析】【分析】由m=-n ,xy=1,即可推出m+n=0,m n=-1,即可推出原式=1×0-(-1)+5×1=0+1+5=6. 【详解】解:∵m 、n 互为相反数,x 、y 互为倒数,∴m=-n ,xy=1,∴m+n=0,m n=-1, ∴原式=1×0-(-1)+5×1=0+1+5=6. 故答案为6.【点睛】本题主要考查相反数、倒数的定义和性质,关键在于根据相关的性质推出xy=1,m+n=0,m n =−1. 15.已知312+n a b 与223--m a b 是同类项,则这两个同类项的和为___________.【答案】32a b -【解析】【分析】根据同类项的定义即可确定x ,y 的次数,然后根据合并同类项的法则即可求解.【详解】解:因为单项式312+n a b 与223--m a b 是同类项,所以3221m n =-⎧⎨=+⎩, 解得:m=5,n=1.∴312+n a b +(223--m a b )=323223a b a b - =32a b -.故答案为:32a b -.【点睛】本题考查了同类项的定义,同类项定义中的两个“相同”:相同字母的指数相同,是易混点,因此成了中考的常考点.16.在抗震救灾中,搭建如图①所示的单顶帐篷需要17根钢管,若这样的帐篷按图②、③的方式串起来,则n 顶这样的帐篷串起来共需____________根钢管.【答案】11n+6【解析】【分析】图①中,需要17根;图②中,需要17+11(根),即后边多1顶帐篷,多11根钢管,根据规律计算即可. 【详解】解:结合图形,发现:图①中,需要17根;图②中,需要17+11(根),即后边多1顶帐篷,多11根钢管.则n顶这样的帐篷串起来共需17+11(n−1)=11n+6(根).故答案为11n+6.【点睛】本题考查图形类规律探索,此题要能够结合图形,发现钢管数量之间的关系:在17的基础上,多1顶帐篷,多11根钢管.三、解答题(本题满分72分,共有8道小题)17.请分别画出图中几何体从左面、上面看到的形状图.【答案】见解析【解析】【分析】根据三视图的定义画出图形即可.【详解】如图所示:【点睛】本题考查了三视图的定义,解题的关键是熟练掌握基本知识,属于中考常考题型.18.计算下列各题(1)2318(8)(16)---+-(2)31544263⎛⎫⎛⎫-+-++- ⎪ ⎪⎝⎭⎝⎭(3)1111364912⎛⎫-+⨯-+⎪⎝⎭ (4)235(4)0.25(5)(4)8⎛⎫-⨯--⨯-⨯- ⎪⎝⎭【答案】(1)-3;(2)74-;(3)7;(4)-90. 【解析】【分析】(1) 根据有理数的加减法法则解答即可;(2)先通分,再利用有理数的加法法则计算即可;(3) 原式利用乘法分配律计算即可得到结果;(4) 原式先计算乘方运算,再计算乘除运算,最后算加减即可得到结果;【详解】(1)2318(8)(16)---+-=23-18+8-16=-3;(2)31544263⎛⎫⎛⎫-+-++- ⎪ ⎪⎝⎭⎝⎭=9610167121212124--+-=- ;(3)1111364912⎛⎫-+⨯-+ ⎪⎝⎭=-1+1113636364912⨯-⨯+⨯=-1+9-4+3=7; (4)235(4)0.25(5)(4)8⎛⎫-⨯--⨯-⨯- ⎪⎝⎭=5116(5)(64)84-⨯-⨯-⨯-=-10-80=-90. 【点睛】本题考查了有理数的混合运算,解题的关键是掌握先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.19.化简下列各题(1)3(24)2()x x y y x --+-(2)()221282a ab a ab -+- 【答案】(1)-7x+14y;(2)231722a ab -. 【解析】【分析】(1)先去括号,然后合并同类项,继而可得出答案;(2)先去括号,再合并同类项.注意去括号时,如果括号前是负号,那么括号中的每一项都要变号;合并同类项时,只把系数相加减,字母与字母的指数不变.【详解】(1)3(24)2()x x y y x --+-=x-6x+12y+2y-2x=-7x+14y;(2)()221282a ab a ab -+-=2a²-12ab-12a²-8ab=231722a ab -. 【点睛】本题考查了整式的加减,解题的关键是熟记去括号法则,熟练运用合并同类项的法则. 20.先化简,再求值(1)已知236A m mn =-,22B m mn n =--,求123A B -的值,其中1m =-,3n =. (2)若6a b -=,1ab =,求(223)(322)(4)ab a b ab b a a b ab -++-+--++值. 【答案】(1)-m²+2n²,17;(2)-6ab+3a-3b ,12. 【解析】【分析】(1)把A 与B 代入123A B -中,去括号合并得到最简结果,将m 与n 的值代入计算即可求出值; (2)先将(223)(322)(4)ab a b ab b a a b ab -++-+--++变形得出-6ab+3(a-b),再将6a b -=,1ab =代入,即可求出答案.【详解】解:(1)∵236A m mn =-,22B m mn n =--, ∴123A B -=2221(36)2()3m mn m mn n ----=m²-2mn-2m²+2mn+2n²=-m²+2n², 当m=-1,n=3时,原式=-1+18=17;(2)∵6a b -=,1ab =,∴(-2ab+2a+3b)-(3ab+2b-2a)-(a+4b+ab)=-2ab+2a+3b-3ab-2b+2a-a-4b-ab =-6ab+3a-3b=-6ab+3(a-b)=-6×1+3×6=12.【点睛】本题考查了整式的化简求值,解题的关键是在进行整式的化简求值时,先化简再求值,以简化计算.21.某市设计的长方形休闲广场如图所示,两端是两个半圆形的花坛,中间是一个直径为长方形宽度一半的圆形喷水池.(1)用图中所标字母表示广场空地(图中阴影部分)的面积.(2)若休闲广场的长为90米,宽为40米,求广场空地的面积(计算结果保留π).【答案】(1)xy-516π x 2;(2)3600-101254π. 【解析】【分析】 (1)根据中广场空地面积=长方形广场的面积-两个半圆形花坛的面积-圆形喷水池的面积求解即可; (2)将数值x 和y 代入(1)中的面积公式可得广场空地的面积.【详解】解:(1)广场空地的面积为:xy−π(2x )2−π(4x )2=xy−516πx 2; (2)当x=90,y=40时,广场空地的面积为:90×40−516π×902=3600−101254π,因此,广场空地的面积为(3600-101254π)米2.【点睛】本题考查了列代数式及代数式求值,关键是熟练掌握有关圆形面积和长方形面积的相关计算.22.建设银行的某储蓄员小张在办理业务时,约定存入为正,取出为负. 2019年10月29日,他先后办理了七笔业务:+2000元、-800元、+400元、-800元、+1400元、-1700元、-200元.(1)若他早上领取备用金4000元,那么下班时应交回银行_________元钱.(2)请判断在这七次办理业务中,小张在第_______次业务办理后手中现金最多,第_________次业务办理后手中现金最少.(3)若每办一件业务,银行发给业务量的0.2%作为奖励,小张这天应得奖金多少元?(4)若记小张第一次办理业务前的现金为0点,用折线统计图表示这7次业务办理中小张手中现金的变化情况.【答案】(1)4300元;(2)五,七;(3)7.3元.(4)见解析.【解析】【分析】(1)他办理的七笔业务的数据相加,在加上4000元既得下班时应交回银行的钱数.(2)根据所给的数据直接计算比较可得在第五次业务办理后手中现金最多,第七次业务办理后手中现金最少.(3)求出七笔业务给出的数据的绝对值的和,在乘以0.1%即可.(4)根据他办理的七笔业务的数据,先描点,在用线段连接即可得折线图.【详解】解:(1)下班时应交回银行:4000+2000-800+400-800+1400-1700-200=4300(元).(2)+2000元、-800元、+400元、-800元、+1400元、-1700元、-200元.第一次:2000元;第二次:2000-800=1200元;第三次:1200+400=1600元;第四次:1600-800=800元;第五次:800+1400=2200元;第六次:2200-1700=500元;第七次:500-300=200元;∴小张在第五次办理业务后,手中的现金最多;第七次办理业务后,手中的现金最少.故答案为:五,七.(3)|+2000|+|-800|+|+400|+|-800|+|+1400|+|-1700|+|-200|=7300,这天小张应得奖金为7300×0.1%=7.3元.(4)画出折线统计图如下:【点睛】本题考查了正负数的运用和折线统计图的画法,注意先描点再用线段连接是画折线统计图的基本步骤.23.某班将买一些羽毛球和羽毛球拍,现了解情况如下:甲、乙两家商店出售两种同样品牌的羽毛球和羽毛球拍,羽毛球拍每副定价48元,羽毛球每盒定价12元,经洽谈后,甲店每买一副球拍赠一盒羽毛球,乙店全部按定价的9折优惠. 该班要买球拍5副,羽毛球x盒(x不小于5盒).(1)用代数式表示去甲、乙两店购买所需的费用.(2)当购买30盒羽毛球时,若让你选择一家商店去买,你打算去哪家商店购买?为什么?(2)当购买50盒羽毛球时,若让你选择一家商店去买,你打算去哪家商店购买?为什么?【答案】(1)甲(12x+180)元;乙(10.8x+216)元;(2)见解析;(3)见解析.【解析】【分析】(1)按照对应的方案的计算方法分别列出代数式即可;(2)把x=40代入求得的代数式求得数值,进一步比较得出答案即可;(3)根据两种方案的优惠方式,可得出先甲店购买5副球拍,送5盒乒乓球,另外45盒乒乓球再乙店购买即可.【详解】解:(1)甲店购买需付款48×5+(x-5)×12=(12x+180)元;乙店购买需付款48×90%×5+12×90%×x=(10.8x+216)元;(2)当x=30时,甲店需12×30+180=540元; 乙店需10.8×30+216=540元; 所以甲乙店购买一样;(3)当x=50时,甲店需12×50+180=780元; 乙店需10.8×50+216=756元; 所以乙店购买合算;先甲店购买5副球拍,送5盒乒乓球,另外35盒乒乓球再乙店购买,则共需:5×48+(50-5) ×12×0.9=726元,∵726<756<780, ∴先甲店购买5副球拍,送5盒乒乓球240元,另外45盒乒乓球再乙店购买需486元,共需726元.【点睛】本题考查了一元一次方程的应用,理解两种方案的优惠方案,得出运算的方法是解题的关键. 24.填空并解答相关问题:(1)观察下列数1,3,9,27,81…,发现从第二项开始,每一项除以前一项的结果是一个常数,这个常数是________;根据此规律,如果a n (n 为正整数)表示这列数的第n 项,那么a n =__________; 你能求出它们的和吗?计算方法:如果要求1+3+32+33+…+320的值,可令S=1+3+32+33+ (320)将①式两边同乘以3,得3S=3+32+33+…+320+321②由②式左右两边分别减去①式左右两边,得3S-S=(3+32+33+…+320+321)-(1+3+32+33+…+320),即2S=321-1,两边同时除以2得()211312S =-. (2)你能用类比的思想求1+6+62+63+…+6100的值吗?写出求解过程.(3)你能用类比的思想求1+m+m 2+m 3+…+m n (其中mn≠0,m≠1)的值吗?写出求解过程.【答案】(1) 3, a n =13n -;(2) ()1011651S =-;(3) ()1111-n m S m +=-. 【解析】【分析】(1) 从第二项开始,每一项除以前一项的结果是一个常数3,据此解答即可;(2) 设可令S=1+6+62+63+…+6100,根据等式性质,此等式的两边同时乘以6,得6S=6+62+63+…+6100+6101,两等式相减得6S-S=6101-1,解关于S 的方程可求解;(3) 设可令S=1+m+m 2+m 3+…+m n ,根据等式的性质,此等式的两边同时乘以m ,得mS=m+m 2+m 3+…+m n +m n+1,两等式相减得(m-1)S=m n+1-1,解关于S 的方程可求解..【详解】(1)从第二项开始,每一项除以前一项的结果是一个常数,这个常数是3, a n =13n -;(2) 可令S=1+6+62+63+ (6100)将①式两边同乘以6,得6S=6+62+63+…+6100+6101②由②式左右两边分别减去①式左右两边,得6S-S=(6+62+63+…+6100+3101)-(1+6+62+63+…+6100),即5S=6101-1,两边同时除以6得()1011651S =-. (3) 可令S=1+m+m 2+m 3+…+m n ①将①式两边同乘以m ,得mS=m+m 2+m 3+…+m n +m n+1②由②式左右两边分别减去①式左右两边,得mS-S=(m+m 2+m 3+…+m n +m n+1)-(1+m+m 2+m 3+…+m n ),即(m-1)S=m n+1-1,两边同时除以m 得()1111-n m S m +=-. 【点睛】本题考查了规律型中的数字的变化类,解题的关键是仿照例子计算1+3+32+33+…+320,本题其实是等比数列的求和公式,但初中未接触过该方面的知识,需要借助于错位相减法来求出结论.。

新版北师大版数学七年级下册第五章达标测试卷及参考答案(2套)

新版北师大版数学七年级下册第五章达标测试卷及参考答案(2套)

新版北师大版数学七年级下册第五章达标测试卷(1)时间:120分钟满分:120分题号一二三四五六总分得分一、选择题(本大题共6小题,每小题3分,满分18分,每小题只有一个正确选项)1.瑞昌剪纸是一门古老的传统民间艺术,选材十分广泛,山川树木、花鸟虫鱼、劳动生活场景应有尽有.下列四副瑞昌剪纸中,是轴对称图形的是( )2.已知等腰三角形顶角的度数为120°,那么它的底角为( )A.120° B.30°C.60° D.90°3.如图,已知△ABC与△A′B′C′关于直线MN对称,BB′交MN于点O,则下列说法不一定正确的是( )A.AC=A′C′ B.BO=B′O C.AA′⊥MN D.AB∥B′C′第3题图第4题图4.在7×9的网格中,∠AOB的位置如图所示,则到∠AOB两边距离相等的点应是( ) A.M点 B.N点 C.P点 D.Q点5.如图,在△ABE中,∠BAE=105°,AE的垂直平分线MN交BE于点C,且AB=CE,则∠B的度数是( )A.45° B.60°C.50° D.55°第5题图第6题图6.如图,AD是△ABC的角平分线,AB=AC,DE⊥AC于点E,BF∥AC交ED的延长线于点F,AE=2EC,给出下列四个结论:①DE=DF;②DB=DC;③AD⊥BC;④AB=3BF.其中正确的结论为( )A.①②③B.①③④C.②③ D.①②③④二、填空题(本大题共6小题,每小题3分,满分18分)7.在“等腰三角形、正方形、圆”中,只有一条对称轴的图形是____________.8.如图①是一把园林剪刀,把它抽象为图②,其中OA=OB.若剪刀张开的角为30°,则∠A=________°.9.如图,在△ABC中,DE垂直平分AC,AE=6cm,△ABD的周长为26cm,则△ABC的周长为________cm.第9题图第10题图10.如图,在△ABC中,∠C=90°,O为△ABC的三条角平分线的交点,OD⊥BC,OE⊥AC,OF⊥AB,点D,E,F分别是垂足,且AB=10cm,BC=8cm,CA=6cm,则OD的长度为________cm.11.如图,△ABC的内部有一点P,且D,E,F是P分别以AB,BC,AC为对称轴的对称点.若△ABC的内角∠BAC=70°,∠ABC=60°,∠ACB=50°,则∠ADB+∠BEC+∠CFA=________°.12.有一张三角形纸片ABC,∠A=80°,点D是AC边上一点,沿BD方向剪开三角形纸片后,发现所得两张纸片均为等腰三角形,则∠C的度数可以是__________.三、解答题(本大题共5小题,每小题6分,满分30分)13.如图,以虚线为对称轴,画出图形的另一半,并说明图形是什么形状.14.如图,在△ABC中,∠BAC=108°,AB=AC,AD⊥BC,垂足为D,求∠BAD的度数.15.如图,在长方形ABCD中,将△ADE沿着AE折叠,使点D落在BC边上的点F处.如果∠BAF=60°,求∠DAE的度数.16.如图,在△ABC中,∠ACB=90°,BE平分∠ABC交AC于E,DE垂直平分AB交AB 于D.试说明:BE+DE=AC.17.如图,△ABC和△DCE都是等边三角形,且C是线段AD的中点,请仅用无刻度的直尺完成以下作图:(1)作BC的中点P;(2)过点C作AD的垂线.四、(本大题共3小题,每小题8分,共24分)18.如图,在△ABC中,AB=AC,∠BAC=120°,AD⊥BC于点D,且BD=BE,求∠ADE 的度数.19.解答下面2个小题:(1)已知等腰三角形的底角是顶角的2倍,求这个三角形各个内角的度数;(2)已知等腰三角形的周长是12,一边长为5,求它的另外两边长.20.如图,在△ABC中,AD为∠BAC的平分线,DE⊥AB于E,DF⊥AC于F,△ABC的面积是30cm2,AB=12cm,AC=8cm,求DE的长.五、(本大题共2小题,每小题9分,共18分)21.如图,在△ABC中,AB边的垂直平分线l1交BC于D,AC边的垂直平分线l2交BC于E,l与l2相交于点O.△ADE的周长为6cm.1(1)求BC的长;(2)分别连接OA,OB,OC,若△OBC的周长为16cm,求OA的长.22.如图①,定义:在四边形ABCD中,若AD=BC,且∠ADB+∠BCA=180°,则把四边形ABCD叫作互补等对边四边形.如图②,在等腰△ABE中,AE=BE,四边形ABCD是互补等对边四边形.试说明:∠ABD=∠BAC=12∠E.六、(本大题共12分)23.(1)如图,△ABC为等边三角形,M是BC上任意一点,N是CA上任意一点,且BM=CN,BN与AM交于点Q,猜测∠BQM的度数,并做出合理的解释;(2)若点M是BC延长线上任意一点,点N是CA延长线上任意一点,且BM=CN,BN与AM 的延长线交于点Q,(1)中结论还成立吗?画出相应图形,说明理由.新版北师大版数学七年级下册第五章达标测试卷(1)参考答案1.D 2.B 3.D 4.A 5.C6.D 解析:∵AB =AC ,AD 平分∠BAC ,∴BD =CD ,AD ⊥BC ,故②③正确.∵BF ∥AC ,∴∠C =∠CBF .在△CDE 与△BDF 中,⎩⎨⎧∠C =∠CBF ,CD =BD ,∠EDC =∠FDB ,∴△CDE ≌△BDF ,∴DE =DF ,CE =BF ,故①正确.∵AE =2EC ,∴AC =3EC =3BF .∵AB =AC ,∴AB =3BF ,故④正确.故选D.7.等腰三角形 8.75 9.38 10.211.360 解析:连接AP ,BP ,CP .∵D ,E ,F 是P 分别以AB ,BC ,AC 为对称轴的对称点,∴∠ADB =∠APB ,∠BEC =∠BPC ,∠CFA =∠APC ,∴∠ADB +∠BEC +∠CFA =∠APB +∠BPC +∠APC =360°.12.40°或25°或10° 解析:由题意知△ABD 与△DBC 均为等腰三角形,对于△ABD ,可以分以下3种情况进行分类讨论.(1)AB =BD ,此时∠ADB =∠A =80°,∴∠BDC =180°-∠ADB =180°-80°=100°,∠C =12(180°-100°)=40°;(2)AB =AD ,此时∠ADB =12(180°-∠A )=12(180°-80°)=50°,∴∠BDC =180°-∠ADB =180°-50°=130°,∠C=12(180°-130°)=25°;(3)AD =BD ,此时∠ADB =180°-2×80°=20°,∴∠BDC =180°-∠ADB =180°-20°=160°,∠C =12(180°-160°)=10°.综上所述,∠C 的度数可以为40°或25°或10°.13.解:图略.(4分)图①为五角星,图②为一棵树.(6分)14.解:∵AB =AC ,AD ⊥BC ,∴AD 平分∠BAC ,(4分)∴∠BAD =12∠BAC =54°.(6分)15.解:由折叠可知,△ADE 与△AFE 关于AE 成轴对称,则∠DAE =∠FAE .(3分)∵∠BAD =90°,∠BAF =60°,∴∠FAD =30°,∴∠DAE =12∠FAD =15°.(6分)16.解:∵∠ACB=90°,∴AC⊥BC.∵ED⊥AB,BE平分∠ABC,∴CE=DE.(3分)∵DE垂直平分AB,∴AE=BE.∵AE+CE=AC,∴BE+DE=AC.(6分)17解:(1)如图①所示,点P即为所求.(3分)(2)如图②所示,CQ即为所求.(6分)18.解:∵AB=AC,∠BAC=120°,∴∠B=∠C=12(180°-∠BAC)=12×(180°-120°)=30°.(3分)∵BD=BE,∴∠BED=∠BDE=12(180°-∠B)=12×(180°-30°)=75°.(5分)∵AD⊥BC,∴∠ADB=90°,∴∠ADE=∠ADB-∠BDE=90°-75°=15°.(8分) 19.解:(1)设等腰三角形的顶角为x°,则底角为2x°,由题意得x+2x+2x=180,解得x=36,∴2x=72,∴这个三角形三个内角的度数分别为36°,72°,72°.(4分)(2)∵等腰三角形的一边长为5,周长为12,∴当5为底边长时,其他两边长都为3.5,5,3.5,3.5可以构成三角形;(6分)当5为腰长时,其他两边长分别为5和2,5,5,2可以构成三角形.(7分)∴另外两边长分别是3.5,3.5或5,2.(8分)20.解:∵AD为∠BAC的平分线,DE⊥AB,DF⊥AC,∴DE=DF.(2分)∵△ABC的面积是30cm2,AB=12cm,AC=8cm,∴12AB·DE+12AC·DF=30cm2,∴12×12DE+12×8DF=30cm2,(6分)∴DE=3cm.(8分)21.解:(1)∵l1,l2分别是线段AB,AC的垂直平分线,∴AD=BD,AE=CE,∴AD+DE+AE =BD+DE+CE=BC.(3分)∵△ADE的周长为6cm,即AD+DE+AE=6cm,∴BC=6cm.(4分) (2)∵AB边的垂直平分线l1与AC边的垂直平分线l2交于点O,∴OA=OB=OC.(6分)∵△OBC 的周长为16cm,即OC+OB+BC=16cm,∴OC+OB=16-6=10(cm),∴OC=5cm,∴OA=5cm.(9分)22.解:∵AE=BE,∴∠EAB=∠EBA.∵四边形ABCD是互补等对边四边形,∴AD=BC.(2分)在△ABD 与△BAC中,⎩⎨⎧AD =BC ,∠DAB =∠CBA ,AB =BA ,∴△ABD ≌△BAC ,(4分)∴∠ABD =∠BAC ,∠ADB =∠BCA .∵∠ADB +∠BCA =180°,∴∠ADB =∠BCA =90°.(6分)在等腰△ABE 中,∵∠EAB =∠EBA =12(180°-∠E )=90°-12∠E ,∴∠ABD =90°-∠EAB =90°-⎝ ⎛⎭⎪⎫90°-12∠E =12∠E ,∴∠ABD =∠BAC =12∠E .(9分)23.解:(1)∠BQM =60°.(1分)理由如下:∵△ABC 为等边三角形,∴AB =BC ,∠ACB =∠ABC =60°.又∵BM =CN ,∴△ABM ≌△BCN (SAS),∴∠BAM =∠CBN .(3分)∵∠CBN +∠ABN =∠ABC =60°,∴∠BAM +∠ABN =60°,∴∠AQB =120°,∴∠BQM =60°.(5分)(2)成立,所画图形如图所示.(7分)理由如下:∵△ABC 为等边三角形,∴AB =BC ,∠ACB =∠ABC =60°.又∵BM =CN ,∴△ABM ≌△BCN (SAS),∴∠BAM =∠NBC .(9分)∵∠BAC =∠ABC =60°,∴∠NBA =∠CAM .而∠CAM +∠QAB =180°-∠BAC =120°,∴∠NBA +∠QAB =120°.∴∠BQM =180°-(∠NBA +∠QAB )=60°.(12分)新版北师大版数学七年级下册第五章达标测试卷(2)一、选择题(每小题3分,共24分)1.如图是小华的正方形风筝图案,他以图中的对角线AB为对称轴,在对角线的下方再画一个三角形,使得新的风筝图案成为轴对称图形,若下列有一图形为此对称图形,则此图为()2.下列图形中,△A 'B'C'与△ABC关于直线MN成轴对称的是()3.如果一个三角形的两边长为2和5,则第三边长可能是()A.2B.3 C.5 D.84.在△ABC中,∠A:∠B:∠C=3:4:5,则∠C等于()A.45°B.60° C.75° D.90°3.如图,OP是∠AOB的平分线,点C,D分别在角的两边OA,OB上,添加下列条件,不能判定△POC≌△POD的是 ( )A.PC⊥OA,PD⊥OBB.OC=ODC.∠OPC=∠OPDD.PC=PD4.下列轴对称图形中,对称轴最多的是()5.如图,在△ABC中,AB=AC,∠A=30°,AB的垂直平分线l交AC于点D,则∠CBD的度数为()A.30°B.45°C.50°D.75°6.如图,在△ABC中,∠ACB=90°,∠A=20°,若将△ABC沿CD折叠,使B点落在AC边上的E 点处,则∠ADE的度数是()A.30°B.40°C.50°D.55°7.如图,在△ABC中,AB=AC, BC=BD,AD=DE=EB,则∠A等于()A.30°B.36°C.45°D.54°8.如图,在3×3方格图中,将其中一个小方格的中心画上半径相等的圆,使三个圆为轴对称图形,方法有()A.2种B.3种C.4种D.5种二、填空题(每小题4分,共32分)9.现有以下四种说法:①关于某条直线对称的两个图形是全等形;②平面上两个全等的图形一定关于某条直线对称;③两个对称图形对称点连线的垂直平分线就是它们的对称轴;④线段和角都是轴对称图形.其中错误的是 .(填写序号即可)10.如图,△ABC是等边三角形,BD平分∠ABC,点E在BC的延长线上,且BD=DE,则∠BDE=11.如图,P是∠AOB内一点,P1,P2分别是点P关于OA,OB的对称点,P1P2交OA于点M,交OB于点N,若P 1P2=5cm,则△PMN的周长是 .第5题图第6题图第7题图第8题图12.将量角器按如图所示的方式放置在三角形纸片上,使点C 在半圆圆心上,点B 在半圆上,则∠A 的度数约为 .13.如图,在△ABC 中,AD 为角平分线,DE ⊥AB 于点E ,DF ⊥AC ⊥于点F ,AB=10cm,AC=8cm,△ABC 的面积为45cm 2,则DE 的长度为 cm.14. 如图,在梯形ABCD 中,AD ∥⊥BC,将梯形沿对角线BD 折叠,点A 恰好落在DC 边上的点A '处,若∠A 'BC=15°,则∠A 'BD 的度数为 .15. 如图,△ABC 的三边AB,BC,CA 的长分别为40,50,60,其三条角平分线交于点O ,则 S △ABO : S △BCO :S △CAO = .16. 将一个等腰三角形(底角大于60°) 沿对称轴对折后,剪掉一个60°的角,展开后得到如图所示的形状,若∠ABD=15°,则∠A= . 二、解答题(共64分)第16题图第15题图第12题图第10题图第11题图第14题图第13题图17.(10分)秋天红透的枫叶,总能勾起人们无尽的遐想,所以诗人杜牧说:“停车坐爱枫林晚,霜叶红于二月花.”下图中有半片枫叶,请以直线L为对称轴补画出枫叶的另一半.18.(10分)如图,∠ABC=60°,AD垂直平分BC于点D,∠ABC的平分线BE交AD于点E,连接EC,求∠AEC的度数.19.(10分)如图,点D为锐角∠ABC的平分线上一点,点M 在边BA上,点N在边BC上,∠BMD+∠BND=180°试说明:DM=DN20.(14分)如图,在等腰△ABC中,CH是底边上的高,点P是线段CH上不与端点重合的任意一点,连接AP并延长交BC于点E,连接BP并延长交AC于点F.试说明:(1)∠CAE=∠CBF(2)AE=BF21.(20分)如图1,在△ABC中,AB=AC,AB的垂直平分线交AB于点N,交BC的延长线于点M,∠A=40°.(1)求△NMB的大小.(2)如图2,如果将(1)中∠A的度数改为70°,其余条件不变,再求∠NMB的大小. (3)根据(1)、(2)的计算,你能发现其中蕴含的规律吗?请说明理由.(4)如图3,将(1)中∠A改为钝角,其余条件不变,对这个问题规律的认识是否需要修改?请你代入一个钝角度数验证你的结论.新版北师大版数学七年级下册第五章达标测试卷(2)参考答案。

2020-2021学年初中七年级上(初一)入学摸底数学考试测试卷及答案 共2套 人教版

2020-2021学年初中七年级上(初一)入学摸底数学考试测试卷及答案 共2套 人教版

2020-2021学年初中七年级(初一)入学摸底考试测试卷及答案(一)一、选择题(本大题共10小题,共30分)1、(3分)2019的相反数是()A.2019B.-2019C.12019D.-120192、(3分)石墨烯(Graphene)是从石墨材料中剥离出来、由碳原子组成的只有一层原子厚度的二维晶体.石墨烯一层层叠起来就是石墨,厚1毫米的石墨大约包含300万层石墨烯.300万用科学记数法表示为()A.300×104B.3×105C.3×106D.30000003、(3分)如图是一个正方体纸盒的外表面展开图,则这个正方体是()A. B. C. D.4、(3分)小华在小凡的南偏东30°方位,则小凡在小华的()方位.A.南偏东60°B.北偏西30°C.南偏东30°D.北偏西60°5、(3分)“在山区建设公路时,时常要打通一条隧道,就能缩短路程“,其中蕴含的数学道理是()A.两点确定一条直线B.直线比曲线短C.两点之间,线段最短D.垂线段最短6、(3分)下列各式的计算结果正确的是()A.2x+3y=5xyB.5x-3x=2x2C.7y2-5y2=2D.9a2b-4ba2=5a2b7、(3分)已知点C是线段AB上的一点,不能确定点C是AB中点的条件是()A.AC=CBB.AC=12ABC.AB=2BCD.AC+CB=AB8、(3分)如图,将三角板与直尺贴在一起,使三角板的直角顶点C(∠ACB=90°)在直尺的一边上,若∠2=56°,则∠1的度数等于()A.54°B.44°C.24°D.34°9、(3分)我国明代珠算家程大位的名著《直指算法统宗》里有一道著名算题:“一百馒头一百僧,大僧三个更无争,小僧三人分一个,大小和尚各几丁?”意思是:有100个和尚分100个馒头,如果大和尚1人分3个,小和尚3人分1个,正好分完,试问大、小和尚各多少人?设大和尚有x人,依题意列方程得()A. 3+3(100-x)=100B. 3-3(100-x)=100C.3x-100Ͳ 3=100D.3x+100Ͳ 3=10010、(3分)如图:AB∥DE,∠B=50°,∠D=110°,∠C的度数为()A.120°B.115°C.110°D.100°二、填空题(本大题共6小题,共18分)11、(3分)48°36′的余角是______,补角是______.12、(3分)如图,已知AB∥ED,∠ACB=90°,∠CBA=40°,则∠ACE是______度.13、(3分)已知方程x-2y+3=8,则整式14-x+2y的值为______.14、(3分)点A在数轴上表示的数是2,点B在数轴上,并且AB=6,C是AB的中点,则点C 表示的数是______.15、(3分)目前互联网“微商”经营已成为大众创业新途径,某微信平台上一件商品标价为200元,按标价的五折销售,仍可获利25%元,则这件商品的进价为______元.16、(3分)用火柴棒按如图的方式搭塔式三角形,第一个图用了3根火柴棒,第二个图用了9根火柴棒,第三个图用了18根火柴棒,…,照这样下去,第9个图用了______根火柴棒.三、计算题(本大题共2小题,共16分)17、(8分)计算:(1)47 (Ͳ225)Ͳ37×512Ͳ53 (Ͳ4);(2)-42-16 (-2)×12-(-1)2019.18、(8分)解方程:(1)3-2(x-3)=2-3(2x-1);(2)3ݕ+124=2Ͳ5ݕͲ33四、解答题(本大题共7小题,共56分)19、(7分)先化简,再求值:3x2y-[2x2y-3(2xy-x2y)-xy],其中x=-12,y=2.20、(7分)(1)平面上有四个点A,B,C,D,按照以下要求作图:①作直线AD;②作射线CB交直线AD于点E;③连接AC,BD交于点F;(2)图中共有______条线段;(3)若图中F是AC的一个三等分点,AF<FC,已知线段AC上所有线段之和为18,求AF长.21、(7分)已知:如图,DG⊥BC,AC⊥BC,EF⊥AB,∠1=∠2,求证:CD⊥AB.证明:∵DG⊥BC,AC⊥BC(已知)∴∠DGB=∠ACB=90°(垂直定义)∴DG∥AC(______)∴∠2=______(______)∵∠1=∠2(已知)∴∠1=∠______(等量代换)∴EF∥CD(______)∴∠AEF=∠______(______)∵EF⊥AB(已知)∴∠AEF=90°(______)∴∠ADC=90°(______)∴CD⊥AB(______)22、(7分)仔细阅读下列材料.“分数均可化为有限小数或无限循环小数”,反之,“有限小数或无限小数均可化为分数”.例如:14=1 4=0.25;135=85=8 5=1.613=1 3=0.,反之,0.25=25100=14;1.6=1610=85=135.那么0.,1.怎么化成分数呢?解:∵0.×10=3+0.,∴不妨设0.=x,则上式变为10x=3+x,解得x=13,即0.=13;∵1.=1+0.,设0.=x,则上式变为100x=2+x,解得x=299,∴1.=1+0.=1+x=1+299=10199(1)将分数化为小数:95=______,227=______;(2)将小数化为分数:0.=______,1.=______;(3)将小数0.化为分数,需要写出推理过程.23、(6分)如图,∠1=∠2,AD∥BE,求证:∠A=∠E.24、(10分)2019年元旦,某超市将甲种商品降价30%,乙种商品降价20%开展优惠促销活动.已知甲、乙两种商品的原销售单价之和为2400元,某顾客参加活动购买甲、乙各一件,共付1830元.(1)甲、乙两种商品原销售单价各是多少元?(2)若商场在这次促销活动中甲种商品亏损25%,乙种商品盈利25%,那么商场在这次促销活动中是盈利还是亏损了?如果是盈利,求商场销售甲、乙两种商品各一件盈利了多少元?如果是亏损,求销售甲、乙两种商品各一件亏损了多少元?25、(12分)如图,已知∠AOB=α°,∠COD在∠AOB内部且∠COD=β°.(1)若α,β满足|α-2β|+(β-60)2=0,则①α=______;②试通过计算说明∠AOD与∠COB有何特殊关系;(2)在(1)的条件下,如果作OE平分∠BOC,请求出∠AOC与∠DOE的数量关系;(3)若α°,β°互补,作∠AOC,∠DOB的平分线OM,ON,试判断OM与ON的位置关系,并说明理由.参考答案【第1题】【答案】B【解析】解:2019的相反数是-2019.故选:B.直接利用相反数的定义分析得出答案.此题主要考查了相反数,正确把握定义是解题关键.【第2题】【答案】C【解析】解:300万用科学记数法表示为3×106.故选:C.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a的值以及n的值.【第3题】【答案】C【解析】解:∵由图可知,实心圆点与空心圆点一定在紧相邻的三个侧面上,∴C符合题意.故选:C.根据几何体的展开图先判断出实心圆点与空心圆点的关系,进而可得出结论.本题考查的是几何体的展开图,此类问题从实物出发,结合具体的问题,辨析几何体的展开图,通过结合立体图形与平面图形的转化,建立空间观念,是解决此类问题的关键.【第4题】【答案】B【解析】解:小华在小凡的南偏东30°方位,那么小凡在小华的北偏西30°.故选:B.根据位置的相对性可知,小凡和小华的观测方向相反,角度相等,据此解答.本题主要考查了方向角的定义,在叙述方向角时一定要注意以某个图形为参照物是本题的关键.【第5题】【答案】C【解析】解:由线段的性质可知:两点的所有连线中,可以有无数种连法,如折线、曲线、线段等,这些所有的线中,线段最短.故选:C.根据线段的性质解答即可.本题考查的是线段的性质,即两点之间线段最短.【第6题】【答案】D【解析】解:A、2x和3y不是同类项,不能合并.故本选项错误;B、5x和3x是同类项,可以合并,但结果为2x,故本选项错误;C、7y2和5y2是同类项,可以合并,但结果为2y,故本选项错误;D、9a2b和4ba2是同类项,可以合并,结果为5a2b,故本选项正确.故选:D.合并同类项,首先要能识别哪些是同类项,两个项(单项式)是同类项,它们所含的字母必须相同,并且各个字母的指数也相同,其次是掌握同类项合并的法则:系数相加.字母和字母的指数不变.此题主要考查学生对合并同类项的理解和掌握,解答此类题目的关键是能识别哪些是同类项.【第7题】【答案】D【解析】解:A、若AC=CB,则C是线段AB中点;B、若AC=12AB,则C是线段AB中点;C、若AB=2BC,则C是线段AB中点;D、AC+BC=AB,C可是线段AB是任意一点,则不能确定C是AB中点的条件是D.故选:D.根据线段中点的定义对每一项分别进行分析,即可得出答案.此题考查了两点间的距离,理解线段中点的概念是本题的关键.【第8题】【答案】D【解析】解:如图,,∵两条平行线被第三条直线所截,同位角相等,∴∠3=∠2=56°,又∵∠1+∠3=∠ACB=90°,∴∠1=90°-56°=34°,即∠1的度数等于34°.故选:D.根据两条平行线被第三条直线所截,同位角相等,可得∠3=∠2=56°,然后用90°减去∠3的度数,求出∠1的度数等于多少即可.此题主要考查了平行线性质定理,要熟练掌握,解答此题的关键是要明确:(1)定理1:两条平行线被第三条直线所截,同位角相等.简单说成:两直线平行,同位角相等.(2)定理2:两条平行线被地三条直线所截,同旁内角互补.简单说成:两直线平行,同旁内角互补.(3)定理3:两条平行线被第三条直线所截,内错角相等.简单说成:两直线平行,内错角相等.【第9题】【答案】D【解析】解:设大和尚有x人,则小和尚有(100-x)人,根据题意得:3x+100Ͳ 3=100.故选:D.设大和尚有x人,则小和尚有(100-x)人,根据3×大和尚人数+小和尚人数 3=100,即可得出关于x的一元一次方程,此题得解.本题考查了由实际问题抽象出一元一次方程,找准等量关系,正确列出一元一次方程是解题的关键.【第10题】【答案】A【解析】解:过点C作CF∥AB,∵AB∥DE,∴AB∥DE∥CF,∵∠B=50°,∴∠1=50°,∵∠D=110°,∴∠2=70°,∴∠C=∠1+∠2=50°+70°=120°.故选:A.过点C作CF∥AB,再由平行线的性质即可得出结论.本题考查的是平行线的性质,用到的知识点为:两直线平行,内错角相等;两直线平行,同旁内角互补.【第11题】【答案】41.4°131.4°【解析】解:根据定义,48°36′的余角是90°-48°36'=89°60'-48°36'=41°24'=41.4°,补角的度数是180°-48°36'=179°60'-48°36'=131°24'=131.4°.故答案为:41.4°,131.4°.根据互余的两角之和为90°,互补的两角之和为180°,可得这个角的余角和补角;根据1°=60′,1′=60″,进行换算即可.本题考查了余角和补角的知识,度分秒之间的换算,属于基础题.【第12题】【答案】50【解析】解:∵∠ACB=90°,∴∠CAB+∠ABC=90°,∴∠CAB=90°-40°=50°.∵AB∥CD,∴∠CAB=∠ACE=50°.故答案为:50先根据直角三角形的性质,得出∠CAB+∠ABC=90°,再由AB∥CD得出∠CAB=∠ACE,进而可得出结论.本题考查的是平行线的性质,用到的知识点为:两直线平行,内错角相等.【第13题】【答案】9【解析】解:∵x-2y+3=8,∴x-2y=5,则原式=14-(x-2y)=14-5=9,故答案为:9.由已知等式得出x-2y=5,代入到原式=14-(x-2y)计算可得.本题主要考查代数式求值,解题的关键是掌握整体代入思想的运用.【第14题】【答案】5或-1【解析】解:∵点A在数轴上表示的数是2,且AB=6,∴B点表示的数为-4或8,如图而C是AB的中点,∴AC=12AB=3于是2+3=5或2-3=-1∴点C表示的数是5或-1故答案为5或-1.分两种情况考虑,B点可能在A点的左侧,也可能在A点的右侧,所以B点可能为-4或8,因此C点也有两种结果.本题考查的是数轴与绝对值的相关内容,利用数形结合的思想使问题更加清晰,是解决本题的关键所在.【第15题】【答案】80【解析】解:设该商品的进价为x元,根据题意得:200×0.5-x=25%x,解得:x=80.故答案为:80.设该商品的进价为x元,根据售价-进价=利润,即可得出关于x的一元一次方程,解之即可得出结论.本题考查了一元一次方程的应用,根据售价-进价=利润,列出关于x的一元一次方程是解题的关键.【第16题】【答案】135【解析】解:∵第一个图形有1个三角形,共有3×1根火柴;第二个图形有1+3个三角形,共有3×(1+2)根火柴;第三个图形有1+3+5个三角形,共有3×(1+2+3)根火柴;…∴第n个有1+3+5+…+2n-1= (2 Ͳ1+1)2=n2个三角形,共有3×(1+2+3+…+n)=32n(n+1)根火柴;∴第9个图形中,火柴棒根数及三角形个数分别32×9×10=135.故答案为:135.由图得出第n个有1+3+5+…+2n-1= (2 Ͳ1+1)2=n2个三角形,共有3×(1+2+3+…+n)=32n(n+1)根火柴,由此代入求得答案即可.此题考查了图形的变化规律,解题的关键是发现三角形个数的规律,从而得到火柴棒的根数.【第17题】【答案】解:(1)47 (Ͳ225)Ͳ37×512Ͳ53 (Ͳ4)=47 (Ͳ125)Ͳ37×512+53×14=47×(Ͳ512)Ͳ37×512+512=512×(Ͳ47Ͳ37+1)=512×0=0;(2)-42-16 (-2)×12-(-1)2019=-16-16×(-12)×12+1=-16+4+1=-11.【解析】(1)根据有理数的乘除法和减法可以解答本题;(2)根据有理数的乘除法和加减法可以解答本题.本题考查有理数的混合运算,解答本题的关键是明确有理数混合运算的计算方法.【第18题】【答案】解:(1)3-2x+6=2-6x+3,-2x+6x=2+3-3-6,4x=-4,x=-1;(2)3(3y+12)=24-4(5y-3),9y+36=24-20y+12,9y+20y=24+12-36,29y=0,y=0.【解析】(1)依次去括号、移项、合并同类项、系数化为1可得;(2)依次去分母、去括号、移项、合并同类项、系数化为1可得.本题主要考查解一元一次方程,解题的关键是掌握解一元一次方程的基本步骤:去分母、去括号、移项、合并同类项、系数化为1.【第19题】【答案】解:3x2y-[2x2y-3(2xy-x2y)-xy]=3x2y-[2x2y-6xy+3x2y-xy]=3x2y-2x2y+6xy-3x2y+xy=-2x2y+7xy当x=-12,y=2时,原式=-2×(-12)2×2+7×(-12)×2=-8.【解析】去小括号,去中括号,合并同类项,最后代入求出即可.本题考查了整式的化简求值和有理数的混合运算的应用,主要考查学生的化简能力和计算能力.【第20题】【答案】解:(1)如图所示:(2)DE上有3条线段,CE上有3条线段,AC上有3条线段,BD上有3条线段,故共有12条线段;故答案为:12;(3)设AF=x,则CF=2x,AC=3x,∴x+2x+3x=18,解得,x=3,∴AF=3.【解析】(1)依据要求进行作图即可;(2)根据DE上有3条线段,CE上有3条线段,AC上有3条线段,BD上有3条线段,可得结论;(3)设AF=x,则CF=2x,AC=3x,依据x+2x+3x=18,解方程即可得解.本题主要考查了复杂作图,解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.【第21题】【答案】同解:证明过程如下:证明:∵DG⊥BC,AC⊥BC(已知)∴∠DGB=∠ACB=90°(垂直定义)∴DG∥AC(同位角相等,两直线平行)∴∠2=∠ACD(两直线平行,内错角相等)∵∠1=∠2(已知)∴∠1=∠ACD(等量代换)∴EF∥CD(同位角相等,两直线平行)∴∠AEF=∠ADC(两直线平行,同位角相等)∵EF⊥AB(已知)∵∠AEF=90°(垂直定义)∴∠ADC=90°(等量代换)∴CD⊥AB(垂直定义).【解析】灵活运用垂直的定义,注意由垂直可得90°角,由90°角可得垂直,结合平行线的判定和性质,只要证得∠ADC=90°,即可得CD⊥AB.利用垂直的定义除了由垂直得直角外,还能由直角判定垂直,判断两直线的夹角是否为90°是判断两直线是否垂直的基本方法.【第22题】【答案】解:(1)95=9 5=1.8,227=22 7≈;故答案为:1.8,;(2)设=x,则10x=5+x,解得:x=59,设=x,则10x=6+x,解得:x=23,∴=53;故答案为:53;(3)设=x,则100x=95+x,解得x=9599.【解析】认真阅读资料,根据材料中的做法计算即可.本题主要考查解一元一次方程,解决此类阅读型题目的关键是认真阅读,理清题目中的解题思路是关键.【第23题】证明:∵AD∥BE,∴∠A=∠3,∵∠1=∠2,∴DE∥AC,∴∠E=∠3,∴∠A=∠E.【解析】由平行线的性质得出同位角相等∠A=∠3,由∠1=∠2,得出DE∥AC,得出内错角相等∠E=∠3,即可得出结论.本题考查了平行线的判定与性质;熟练掌握平行线的判定与性质,并能进行推理论证是解决问题的关键.【第24题】【答案】解:(1)设甲种商品原销售单价为x元/件,则乙种商品原销售单价为(2400-x)元/件,依题意,得:(1-30%)x+(1-20%)(2400-x)=1830,解得:x=900,∴2400-x=1500.答:甲种商品原销售单价为900元/件,乙种商品原销售单价为1500元/件.(2)设甲种商品进价为m元/件,乙中商品进价为n元/件,依题意,得:(1-30%)×900-m=-25%m,(1-20%)×1500-n=25%n,解得:m=840,n=960,∴1830-840-960=30(元).答:商场在这次促销活动中盈利了,且商场销售甲、乙两种商品各一件盈利了30元.【解析】(1)设甲种商品原销售单价为x元/件,则乙种商品原销售单价为(2400-x)元/件,根据超市的优惠方案,可得出关于x的一元一次方程,解之即可得出结论;(2)设甲种商品进价为m元/件,乙中商品进价为n元/件,根据利润=售价-进价,即可得出关于m(n)的一元一次方程,解之即可得出m(n)的值,再利用总利润=两件商品的售价-两件商品的进价,即可得出结论.本题考查了一元一次方程的应用,找准等量关系,正确列出一元一次方程是解题的关键.【第25题】解:(1)①∵|α-2β|+(β-60)2=0,∴α-2β=0,β-60=0,∴α=120;故答案为:120;②∵∠AOB=α°=120°,∠COD=β°=60°,∴∠AOD=∠AOB-∠DOB=120°-∠DOB,∠COB=∠COB+∠DOB=60°+∠DOB,∴∠AOD+∠COB=180°,即∠AOD与∠COB互补;(2)设∠AOC=θ°,则∠BOC=120°-θ°,∵OE平分∠BOC,∴∠COE=12∠BOC=12(120°-θ°)=60°-12θ°∴∠DOE=∠COD-∠COE=60°-60°+12θ°=12θ°=12∠AOC;(3)OM⊥ON.理由如下:∵OM,ON分别平分∠AOC,∠DOB,∴∠COM=12∠AOC,∴∠DON=12∠BOD,∴∠MON=∠COM+∠COD+∠DON=12∠AOC+12∠BOD+∠COD=12(∠AOC+∠BOD)+∠COD=12(∠AOB-∠COD)+∠COD=12(∠AOB+∠COD)=12(α°+β°)∵α°,β°互补,∴α°+β°=180°,∴∠MON=90°,∴OM⊥ON.【解析】(1)①根据非负数的性质列方程即可得到结论;②根据角的和差和平角的定义即可得到结论;(2)设∠AOC=θ°,则∠BOC=120°-θ°,根据角平分线的定义和角的和差即可得到结论;(3)根据角平分线的定义和补角的性质即可得到结论.本题主要考查了角的计算以及角平分线的定义的运用,解决问题的关键是运用角的和差关系进行计算.解题时注意:从一个角的顶点出发,把这个角分成相等的两个角的射线叫做这个角的平分线.2020-2021学年初中七年级(初一)入学摸底考试测试卷及答案(二)一、填空题:2.“趣味数学”表示四个不同的数字:则“趣味数学”为_______.正好是第二季度计划产量的75%,则第二季度计划产钢______吨.个数字的和是_______.积会减少______.6.两只同样大的量杯,甲杯装着半杯纯酒精,乙杯装半杯水.从甲杯倒出一些酒精到乙杯内.混合均匀后,再从乙杯倒同样的体积混合液到甲杯中,则这时甲杯中含水和乙杯中含酒精的体积,哪一个大?______7.加工一批零件,甲、乙二人合作需12天完成;现由甲先工作3天,则这批零件共有______个.8.一个酒精瓶,它的瓶身呈圆柱形(不包括瓶颈),如图所示.它的容积为26.4π立方厘米.当瓶子正放时,瓶内的酒精的液面高为6厘米,瓶子倒放时,空余部分的高为2厘米,则瓶内酒精体积是______立方厘米.9.有一个算式,上边方格里都是整数,右边答案只写出了四舍五入后四位数是______.二、解答题:1.如图,阴影部分是正方形,则最大长方形的周长是______厘米.2.如图为两互相咬合的齿轮.大的是主动轮,小的是从动轮.大轮半径为105,小轮半径为90,现两轮标志线在同一直线上,问大轮至少转了多少圈后,两条标志线又在同一直线上?3.请你用1,2,3,4,5,6,7,8,9这九个数字,每个只能用一次,拼凑出五个自然数.让第二个是第一个的2倍,第3个是第一个的3倍,第四个是第一个的4倍,第五个是第一个的5倍.4.有一列数2,9,8,2,6,…从第3个数起,每个数都是前面两个数乘积的个位数字.例如第四个数就是第二、第三两数乘积9×8=72的个位数字2.问这一列数第1997个数是几?答案:一、填空题:1.(81.4)2.(3201)乘积前两位数字是1和0.“趣味数学”ד趣”的千位数字是9,就有“趣”=3,显然,“数”=0.而味“味”ד趣”不能有进位,2ד味”ד趣”向百万位进1,所以“味”=2,同理,“学”=1.3.(24000)÷75%=24000(吨).4.(8,447)由周期性可得,(1)100=16×6+4,所以小数点后第100个数字与小数点后第4个数字一样即为8;(2)小数点后前100个数字的和是:16×(1+4+2+8+5+7)+1+4+2+8=447.6.(一样大)甲、乙两杯中液体的体积,最后与开始一样多,所以有多大体积纯酒精从甲杯转到乙杯,就有多大体积的水从乙杯转入了甲杯,即甲杯中含水和乙杯中含酒精体积相同.7.(240个)8.(62.172,取π=3.14)液体体积不变,瓶内空余部分的体积也是不变的,因此可知液体体积是9.(1,2,3)10.(7744)到9999中找出121的倍数,共73个,即121×10,121×11,121×12,…,积,只能取16,25,36,49,64,81经验算所求四位数为7744=121×64.二、解答题:1.(30)由图可知正方形的边长等于长方形的宽边,这样长方形的周长应等于长方形的长边与正方形的边长之和的两倍.(9+6)×2=30(cm).2.(3圈)3.(9,18,27,36,45)第一个数一定是一位数,其余为两位数,为使它的2倍是两位数,这个数必须大于4;由于给出九数中只有四个偶数,所以第一个数只能是奇数;由于没有0,所以这个数不是5,又7×2=14,7×3=21有重复数字1,所以不能是7,由此这个一位数是9.4.(6)这列数为2,9,8,2,6,2,2,4,8,2,6,2,2,4,8,2…除去前两个数2,9外,后面8,2,6,2,2,4六数一个循环.(1997-2)÷6=332余3.。

青岛版2020-2021七年级数学上册第5章代数式与函数的初步认识单元过关测试题2(附答案)

青岛版2020-2021七年级数学上册第5章代数式与函数的初步认识单元过关测试题2(附答案)

青岛版2020-2021七年级数学上册第5章代数式与函数的初步认识单元过关测试题2(附答案) 一、单选题 1.已知222226(2)x x x y -+-+=-,则1x y +=( ) A .32- B .23- C .32+D .-32- 2.,A B 两地相距20km ,甲乙两人沿同一条路线从A 地到B 地,如图的图象反映的是二人行进路程y (km )与行进时间t (h )之间的关系,有下列说法:①甲始终是匀速行进,乙的行进不是匀速的;②甲用了5个小时到达目的地;③乙比甲先出发1小时;④甲在出发4小时后被乙追上.在这些说法中,正确的有( )A .1个B .2个C .3个D .4个3.一块地有a 公顷,平均每公顷产粮食m 千克;另一块地有b 公顷,平均每公顷产粮食n 千克,则这两块地平均每公顷的粮食产量为( )A .2m n +B .2a b +C .++am bn a bD .am bn m n++ 4.随着x 的值增大,代数式350x -+的值()A .增大B .减小C .不变D .大于505.已知代数式m +2n +2的值是3,则代数式3m +6n +1的值是( )A .4B .5C .6D .76.按规律排列的一列数:1,-2,4,-8,16…中,第7与第8个数分别为( ). A .64,-128B .-64,128C .-128,256D .128,-256 7.函数y=5x x -中,自变量x 的取值范围为( ) A .x >5 B .x≠5 C .x≠0 D .x≠0或x≠5 8.如果|a+2|+(b -1)2=0,那么(a+b)2019的值等于( ).A .-1B .-2019C .1D .20199.如图所示,将形状、大小完全相同的“●”和线段按照一定规律摆成下列图形,第1幅图形中“●”的个数为1a,第2幅图形中“●”的个数为2a,第3幅图形中“●”的个数为3a,以此类推,则1211a a++31811a a+⋯的值为( )第1幅图第2幅图第3幅图第4幅图A.1920B.1940C.531760D.58984010.用代数式表示“m的两倍与n平方的差”,正确的是 ( )A.22()m n-B.2(2m-n)C.22m n-D.2(2)m n-二、填空题11.若x - 2 y = 3 ,则1 - 2 x + 4 y 的值为_____.12.“x与y平方的差”用代数式表示为________,“x与y差的平方”用代数式表示为________.13.长方形的周长为20cm,宽为xcm,那么面积为_________.14.单项式﹣27x y15π的系数是_____,次数是_____.15.如图,某专业合作社计划将长2x米,宽x米的长方形草莓种植大棚进行扩建,阴影部分表示扩建的区域,其余部分为原种植区域,则扩建后的大棚面积增加_____米2.16.观察下列图案,它们都是由边长为1cm的小正方形按一定规律拼接而成的,依此规律,则第9个图案中的小正方形有______个.17.已知代数式2x2+5x+3的值是8,则代数式6x2+15x﹣10的值是___________.18.如图,一串有黑有白,按一定规律排列的珠子,被盒子遮住了一部分,则这串珠子被盒子遮住的部分有________颗。

最新北师大版七年级数学下册第五章单元测试题及答案2套

最新北师大版七年级数学下册第五章单元测试题及答案2套

最新北师大版七年级数学下册第五章单元测试题及答案2套第五章生活中的轴对称单元检测A卷姓名:__________班级:__________考号:__________一.选择题(本大题共12小题,每小题4分,共48分。

在每小题给出的四个选项中,只有一个选项是符合题目要求的)1.在下列“禁毒”、“和平”、“志愿者”、“节水”这四个标志中,属于轴对称图形的是()2.如图所示,l是四边形ABCD的对称轴,AD∥BC,现给出下列结论:①AB∥CD;②AB=BC;③AB⊥BC;④AO=OC.其中正确的结论有()A.1个 B.2个 C.3个 D.4个3.如图,牧童在A处放牛,其家在B处,A、B到河岸的距离分别为AC和BD,且AC=BD,若点A到河岸CD的中点的距离为500米,则牧童从A处把牛牵到河边饮水再回家,最短距离是()A.750米 B.1000米 C.1500米 D.2000米4.如图,直角三角形纸片的两直角边长分别为6、8,按如图那样折叠,使点A与点B重合,折痕为DE,则S△BCE:S△BDE等于()A.2:5 B.14:25 C.16:25 D.4:215.如图,在CD上求一点P,使它到OA,OB的距离相等,则P点是()A.线段CD的中点 B.OA与OB的中垂线的交点C.OA与CD的中垂线的交点 D.CD与∠AOB的平分线的交点6.和三角形三个顶点的距离相等的点是()A.三条角平分线的交点 B.三边中线的交点C.三边上高所在直线的交点 D.三边的垂直平分线的交点7.如图,直线l1∥l2,以直线l1上的点A为圆心、适当长为半径画弧,分别交直线l1、l2于点B、C,连接AC、BC.若∠ABC=67°,则∠1=()A.23°B.46° C.67° D.78°8.在△ABC中,其两个内角如下,则能判定△ABC为等腰三角形的是()A.∠A=40°,∠B=50° B.∠A=40°,∠B=60°C.∠A=20°,∠B=80° D.∠A=40°,∠B=80°9.如图,AD⊥BC,D为BC的中点,以下结论正确的有几个?()①△ABD≌△ACD;②AB=AC;③∠B=∠C;④AD是△ABC的角平分线.A.1 B.2 C.3 D.410.等边三角形的边长为2,则该三角形的面积为()A.4 B. C.2 D.311.如图,E是等边△ABC中AC边上的点,∠1=∠2,BE=CD,则△ADE的形状是()A.等腰三角形 B.等边三角形C.不等边三角形 D.不能确定形状12.如图,△ABC中,∠B=60°,AB=AC,BC=3,则△ABC的周长为()A.9 B.8 C.6 D.12二.填空题(共6小题,共24分)13.如图,在正方形方格中,阴影部分是涂黑7个小正方形所形成的图案,再将方格内空白的一个小正方形涂黑,使得到的新图案成为一个轴对称图形的涂法有种.14.如图,OP平分∠MON,PA⊥ON于点A,点Q是射线OM上的一个动点,若PA=2,则PQ范围是.15.如图,△ABC的边BC的垂直平分线MN交AC于D,若△ADB的周长是10cm,AB=4cm,则AC= cm.16.等腰三角形的两边长分别是3和5,则这个等腰三角形的周长为.17.如图,在△ABC中,AB=20cm,AC=12cm,点P从点B出发以每秒3cm速度向点A运动,点Q从点A同时出发以每秒2cm速度向点C运动,其中一个动点到达端点,另一个动点也随之停止,当△APQ是以PQ为底的等腰三角形时,运动的时间是秒.18.已知射线OM.以O为圆心,任意长为半径画弧,与射线OM交于点A,再以点A为圆心,AO长为半径画弧,两弧交于点B,画射线OB,如图所示,则∠AOB= (度)三.解答题(共8小题)19.如图,在△ABC中,AD为∠BAC的平分线,DE⊥AB于E,DF⊥AC于F,△ABC的面积是28cm2,AB=16cm,AC=12cm,求DE的长.20.如图.AB=AC,MB=MC.求证:直线AM是线段BC的垂直平分线.21.如图,在△ABC中,AB=AC,点D是BC边上的中点,DE、DF分别垂直AB、AC于点E和F.求证:DE=DF.22.如图:△ABC的边AB的延长线上有一个点D,过点D作DF⊥AC于F,交BC于E,且BD=BE,求证:△ABC为等腰三角形.23.如图,BO平分∠CBA,CO平分∠ACB,且MN∥BC,若AB=12,△AMN的周长为29,求AC的长.24.如图,一个牧童在小河的南4km的A处牧马,而他正位于他的小屋B的西8km北7km处,他想把他的马牵到小河边去饮水,然后回家,他要完成这件事情所走的最短路程是多少?25.如图,把矩形纸片ABCD沿EF折叠后,使得点D与点B重合,点C落在点C′的位置上.(1)折叠后,DC的对应线段是,CF的对应线段是;(2)若∠1=50°,求∠2、∠3的度数;(3)若AB=8,DE=10,求CF的长度.26.如图1,点P、Q分别是等边△ABC边AB、BC上的动点(端点除外),点P从顶点A、点Q从顶点B同时出发,且它们的运动速度相同,连接AQ、CP交于点M.(1)求证:△ABQ≌△CAP;(2)当点P、Q分别在AB、BC边上运动时,∠QMC变化吗?若变化,请说明理由;若不变,求出它的度数.(3)如图2,若点P、Q在运动到终点后继续在射线AB、BC上运动,直线AQ、CP交点为M,则∠QMC变化吗?若变化,请说明理由;若不变,则求出它的度数.参考答案与试题解析一.选择题(共12小题)1.分析:根据轴对称图形的概念进行判断即可.解:A、不是轴对称图形,故选项错误;B、是轴对称图形,故选项正确;C、不是轴对称图形,故选项错误;D、不是轴对称图形,故选项错误.故选:B.2.分析:根据轴对称图形的性质,四边形ABCD沿直线l对折能够完全重合,再根据两直线平行,内错角相等可得∠CAD=∠ACB=∠BAC=∠ACD,然后根据内错角相等,两直线平行即可判定AB∥CD,根据等角对等边可得AB=BC,然后判定出四边形ABCD是菱形,根据菱形的对角线互相垂直平分即可判定AO=OC;只有四边形ABCD是正方形时,AB⊥BC才成立.解:∵l是四边形ABCD的对称轴,∴∠CAD=∠BAC,∠ACD=∠ACB,∵AD∥BC,∴∠CAD=∠ACB,∴∠CAD=∠ACB=∠BAC=∠ACD,∴AB∥CD,AB=BC,故①②正确;又∵l是四边形ABCD的对称轴,∴AB=AD,BC=CD,∴AB=BC=CD=AD,∴四边形ABCD是菱形,∴AO=OC,故④正确,∵菱形ABCD不一定是正方形,∴AB⊥BC不成立,故③错误,综上所述,正确的结论有①②④共3个.故选C.3.分析:如图,连接B和A关于CD对称的对称点,交CD于M,因此从A到M再到B点为最短距离.解:作A关于CD的对称点A′,连接A′B,交CD于M,∴CA′=AC,∵AC=DB,∴CA′=BD,由分析可知,点M为饮水处,∵AC⊥CD,BD⊥CD,∴∠ACD=∠A′CD=∠BDC=90°,又∵∠A′MC=∠BMD,在△CA′M和△DBM中,,∴△CA′M≌△DBM(AAS),∴A′M=BM,CM=DM,即M为CD中点,∴AM=BM=A′M=500,所以最短距离为2AM=2×500=1000米,故选B.4.分析:在Rt△BEC中利用勾股定理计算出AB=10,根据折叠的性质得到AD=BD=5,EA=EB,设AE=x,则BE=x,EC=8﹣x,在Rt△BEC中根据勾股定理计算出x=,则EC=8﹣=,利用三角形面积公式计算出S△BCE=BC•CE=×6×=,在Rt△BED中利用勾股定理计算出ED==,利用三角形面积公式计算出S△BDE=BD•DE=×5×=,然后求出两面积的比.解:在Rt△BAC中,BC=6,AC=8,∴AB==10,∵把△ABC沿DE使A与B重合,∴AD=BD,EA=EB,∴BD=AB=5,设AE=x,则BE=x,EC=8﹣x,在Rt△BEC中,∵BE2=EC2+BC2,即x2=(8﹣x)2+62,∴x=,∴EC=8﹣x=8﹣=,∴S△BCE=BC•CE=×6×=,在Rt△BED中,∵BE2=ED2+BD2,∴ED==,∴S△BDE=BD•DE=×5×=,∴S△BCE:S△BDE=: =14:25.故选B.5.分析:利用角的平分线上的点到角的两边的距离相等可知CD与∠AOB的平分线的交点.解:利用角的平分线上的点到角的两边的距离相等可知CD与∠AOB的平分线的交于点P.故选D.6.分析:三角形三条边的垂直平分线相交于一点,并且这一点到三个顶点的距离相等.解:根据线段垂直平分线的性质可得:三角形三个顶点的距离相等的点是三边的垂直平分线的交点.故选D.7.分析:首先由题意可得:AB=AC,根据等边对等角的性质,即可求得∠ACB的度数,又由直线l1∥l2,根据两直线平行,内错角相等,即可求得∠2的度数,然后根据平角的定义,即可求得∠1的度数.解:根据题意得:AB=AC,∴∠ACB=∠ABC=67°,∵直线l1∥l2,∴∠2=∠ABC=67°,∵∠1+∠ACB+∠2=180°,∴∠1=180°﹣∠2﹣∠ACB=180°﹣67°﹣67°=46°.故选B.8.分析:根据等腰三角形性质,利用三角形内角定理对4个选项逐一进行分析即可得到答案.解;当顶角为∠A=40°时,∠C=70°≠50°,当顶角为∠B=50°时,∠C=65°≠40°所以A选项错误.当顶角为∠B=60°时,∠A=60°≠40°,当∠A=40°时,∠B=70°≠60°,所以B选项错误.当顶角为∠A=40°时,∠C=70°=∠B,所以C选项正确.当顶角为∠A=40°时,∠B=70°≠80°,当顶角为∠B=80°时,∠A=50°≠40°所以D选项错误.故选C.9.分析:由AD⊥BC,D为BC的中点,利用SAS可证明△ABD≌△ACD,然后利用全等三角形的性质即可求证出②③④.解:∵AD⊥BC,D为BC的中点,∴∠ADB=∠ADC=90°,BD=BC,AD为公共边,∴△ABD≌△ACD,∴AB=AC,∠B=∠C,∠BAD=∠CAD,即AD是△ABC的角平分线.故选D.10.分析:根据等边三角形三线合一的性质可得D为BC的中点,即BD=CD,在直角三角形ABD中,已知AB、BD,根据勾股定理即可求得AD的长,即可求三角形ABC的面积,即可解题.解:∵等边三角形高线即中点,AB=2,∴BD=CD=1,在Rt△ABD中,AB=2,BD=1,∴AD=,∴S△ABC=BC•AD=×2×=,故选B.11.分析:先证得△ABE≌△ACD,可得AE=AD,∠BAE=∠CAD=60°,即可证明△ADE是等边三角形.解:∵△ABC为等边三角形∴AB=AC∵∠1=∠2,BE=CD∴△ABE≌△ACD∴AE=AD,∠BAE=∠CAD=60°∴△ADE是等边三角形.故选B.12.分析:根据∠B=60°,AB=AC,即可判定△ABC为等边三角形,由BC=3,即可求出△ABC的周长.解:在△ABC中,∵∠B=60°,AB=AC,∴∠B=∠C=60°,∴∠A=180°﹣60°﹣60°=60°,∴△ABC为等边三角形,∵BC=3,∴△ABC的周长为:3BC=9,故选A.二.填空题(共6小题)13.分析:根据轴对称图形的概念:把一个图形沿着某条直线折叠,直线两旁的部分能够完全重合及正方形的对称轴是两条对角线所在的直线和两组对边的垂直平分线,得出结果.解:在1,2,3处分别涂黑都可得一个轴对称图形,故涂法有3种,故答案为:3.14.分析:由OP平分∠MON,PA⊥ON于点A,PA=2,根据角平分线的性质得到点P到OM的距离等于2,再根据直线外一点与直线上所有点的连线段中垂线段最短即可得到PQ≥2.解:∵OP平分∠MON,PA⊥ON于点A,PA=2,∴点P到OM的距离等于2,而点Q是射线OM上的一个动点,∴PQ≥2.故答案为PQ≥2.15.分析:根据线段的垂直平分线性质得出CD=BD,求出△ADB的周长AD+DB+AB=AC+AB=10cm,求出即可.解:∵MN是线段BC的垂直平分线,∴CD=BD,∵△ADB的周长是10cm,∴AD+BD+AB=10cm,∴AD+CD+AB=10cm,∴AC+AB=10cm,∵AB=4cm,∴AC=6cm,故答案为:6.16.分析:分3是腰长与底边两种情况讨论求解.解:①3是腰长时,三角形的三边分别为3、3、5,能组成三角形,周长=3+3+5=11,②3是底边长时,三角形的三边分别为3、5、5,能组成三角形,周长=3+5+5=13,综上所述,这个等腰三角形的周长是11或13.故答案为:11或13.17.分析:设运动的时间为x,则AP=20﹣3x,当APQ是等腰三角形时,AP=AQ,则20﹣3x=2x,解得x即可.解:设运动的时间为x,在△ABC中,AB=20cm,AC=12cm,点P从点B出发以每秒3cm的速度向点A运动,点Q从点A同时出发以每秒2cm的速度向点C运动,当△APQ是等腰三角形时,AP=AQ,AP=20﹣3x,AQ=2x即20﹣3x=2x,解得x=4.故答案为:4.18.分析:首先连接AB,由题意易证得△AOB是等边三角形,根据等边三角形的性质,可求得∠AOB的度数.解:连接AB,根据题意得:OB=OA=AB,∴△AOB是等边三角形,∴∠AOB=60°.故答案为:60.三.解答题(共8小题)19.分析:利用角平分线的性质,得出DE=DF,再利用△ABC面积是28cm2可求DE.∵AD为∠BAC的平分线,DE⊥AB,DF⊥AC,∴DE=DF,∵S△ABC=S△ABD+S△ACD=AB×DE+AC×DF∴S△ABC=(AB+AC)×DE即×(16+12)×DE=28,故DE=2(cm).20.分析:由AB=AC,MB=MC,根据线段垂直平分线的判定定理,可得点A在BC的垂直平分线上,点M在BC的垂直平分线上,又由两点确定一条直线,可得直线AM是线段BC的垂直平分线.证明:∵AB=AC,∴点A在BC的垂直平分线上,∵BM=CM,∴点M在BC的垂直平分线上,∴直线AM是BC的垂直平分线.21.分析: D是BC的中点,那么AD就是等腰三角形ABC底边上的中线,根据等腰三角形三线合一的特性,可知道AD也是∠BAC的角平分线,根据角平分线的点到角两边的距离相等,那么DE=DF.证明:证法一:连接AD.∵AB=AC,点D是BC边上的中点∴AD平分∠BAC(三线合一性质),∵DE、DF分别垂直AB、AC于点E和F.∴DE=DF(角平分线上的点到角两边的距离相等).证法二:在△ABC中,∵AB=AC∴∠B=∠C(等边对等角)…∵点D是BC边上的中点∴BD=DC …∵DE、DF分别垂直AB、AC于点E和F∴∠BED=∠CFD=90°…在△BED和△CFD中∵,∴△BED≌△CFD(AAS),∴DE=DF(全等三角形的对应边相等).22.分析:要证△ABC为等腰三角形,须证∠A=∠C,而由题中已知条件,DF⊥AC,BD=BE,因此,可以通过角的加减求得∠A与∠C相等,从而判断△ABC为等腰三角形.证明:∵DF⊥AC,∴∠DFA=∠EFC=90°.∴∠A=∠DFA﹣∠D,∠C=∠EFC﹣∠CEF,∵BD=BE,∴∠BED=∠D.∵∠BED=∠CEF,∴∠D=∠CEF.∴∠A=∠C.∴△ABC为等腰三角形.23.分析:根据BO平分∠CBA,CO平分∠ACB,BM=MO,NC=NO,从而知道,△AMN的周长是AB+AC的长,从而得解.解:∵BO平分∠CBA,CO平分∠ACB,MN∥BC,∴BM=MO,CN=NO,∴AM+MB+AN+NC=AM+MO+AN+NO=29.∴AB+AC=29,∵AB=12,∴AC=17.24.分析:先作A关于MN的对称点,连接A′B,构建直角三角形,利用勾股定理即可得出答案.解:如图,作出A点关于MN的对称点A′,连接A′B交MN于点P,则A′B就是最短路线,在Rt△A′DB中,由勾股定理求得A′B=DA==17km,答:他要完成这件事情所走的最短路程是17km.25.分析:(1)根据折叠的性质即可得出;(2)∠2=∠BEF.由AD∥BC得∠1=∠2,所以∠2=∠BEF=50°,从而得∠3=80°;(3)根据勾股定理先求得AE的长度,也可求出AD,BC的长度,然后根据∠1=∠BEF=50°,可得BF=BE=10,继而可求得CF=BC﹣BF.解:(1)由折叠的性质可得:折叠后,DC的对应线段是BC′,CF的对应线段是C′F;(2)由折叠的性质可得:∠2=∠BEF,∵AD∥BC,∴∠1=∠2=50°.∴∠2=∠BEF=50°,∴∠3=180°﹣50°﹣50°=80°;(3)∵AB=8,DE=10,∴BE=10,∴AE==6,∴AD=BC=6+10=16,∵∠1=∠BEF=50°,∴BF=BE=10,∴CF=BC﹣BF=16﹣10=6.故答案为:BC′,C′F.26.分析:(1)根据等边三角形的性质,利用SAS证明△ABQ≌△CAP;(2)由△ABQ≌△CAP根据全等三角形的性质可得∠BAQ=∠ACP,从而得到∠QMC=60°;(3)由△ABQ≌△CAP根据全等三角形的性质可得∠BAQ=∠ACP,从而得到∠QMC=120°.(1)证明:∵△ABC是等边三角形∴∠ABQ=∠CAP,AB=CA,又∵点P、Q运动速度相同,∴AP=BQ,在△ABQ与△CAP中,∵,∴△ABQ≌△CAP(SAS);(2)解:点P、Q在运动的过程中,∠QMC不变.理由:∵△ABQ≌△CAP,∴∠BAQ=∠ACP,∵∠QMC=∠ACP+∠MAC,∴∠QMC=∠BAQ+∠MAC=∠BAC=60°…(3)解:点P、Q在运动到终点后继续在射线AB、BC上运动时,∠QMC不变.理由:∵△ABQ≌△CAP,∴∠BAQ=∠ACP,∵∠QMC=∠BAQ+∠APM,∴∠QMC=∠ACP+∠APM=180°﹣∠PAC=180°﹣60°=120°.第五章生活中的轴对称单元检测B卷姓名:__________班级:__________考号:__________一.选择题(本大题共12小题,每小题4分,共48分。

2020-2021学年北师大版七年级数学上册第五章达标检测卷

2020-2021学年北师大版七年级数学上册第五章达标检测卷

第五章达标检测卷一、选择题(共10小题;共40分)1. 在方程5x=1,1m−m=5,x2=3x,m=0,2a−7=5中,一元一次方程有( )A. 1个B. 2个C. 3个D. 4个2. 方程2x−1=3的解是( )A. −1B. 12C. 1D. 23. 解方程x−13−x+26=4−x2的步骤如下,开始错误的一步是( )A. 2(x−1)−(x+2)=3(4−x)B. 2x−2−x+2=12−3xC. 4x=12D. x=34. 已知等式a=b,c为任意有理数,则下列等式不一定成立的是( )A. a−c=b−cB. a+c=b+cC. ac =bcD. −ac=−bc5. 方程6−3(x+23)=−2的解是( )A. −229B. 109C. −29D. 26. 方程x0.6−0.1−1.2x0.2=1可变形为( )A. x6−1−12x2=1 B. 5x3−1−12x2=10C. 5x3−1−12x2=1 D. x−3(0.1−1.2x)=17. y=4是方程y4−m=3y−8的解,则m2−3m的值是( )A. 10B. 825C. 8D. 08. 某商品提价10%后,欲恢复原价,则应降价( )A. 10%B. 9%C. 10011% D. 1009%9. 桌面上有甲、乙、丙3个圆柱形的杯子,杯深均为15cm,各装有10cm高的水,下表记录了甲、乙、丙3个杯子的底面积.小明将甲、乙两杯内一些水倒入丙杯,过程中水没溢出,使得甲、乙、丙3个杯子内水的高度比变为3:4:5.若不计杯子厚度,则甲杯内水的高度变为( )底面积(cm2)甲杯60乙杯80丙杯100A. 5.4cmB. 5.7cmC. 7.2cmD. 7.5cm10. 几个小朋友分一堆糖,若每人k颗,还剩14颗;若每人(k+1)颗,最后一个人只分到6颗.计算小朋友的人数及k的值可能是( )A. 17人,k=8B. 17人,k=9C. 11人,k=10D. 11人,k=8二、填空题(共5小题;共25分)11. 一个数x的15与2的和等于−10的20%,可列方程为.12. 如果x−2与−3x+8互为相反数,则x=.13. 如果方程2x+1=3和2−a−x3=0的解相同,则a=.14. 要使3x2+2kxy−3y2+4xy−4x−7中不含xy项,k应取.15. 甲、乙两列火车相向而行,甲列车每小时行驶80千米,车身长150米,乙列车每小时行驶100千米,车身长120米,则两车头相遇到车尾离开所用时间为秒.三、解答题(共4小题;共56分)16. 解下列方程:(1)4(x−1)−3(20−x)=5(x−2);(2)15(x+1)=1+13(x−2).17. 解方程:(1)x+175−3x−72=−2;(2)y−y−12=2−y+26.18. 已知关于x的方程3[x−2(x−a3)]=4x和方程3x+a12−1−5x8=1有相同的解,求a的值及这个相同的解.19. 某企业向银行借了一笔款,商定归还期限为一年,年利率为6%.该企业立即用这笔款购买了一批货物,以高于买入价的35%出售,经一年售完,用所得收入还清贷款本利,还剩14.5万元.求这笔贷款的金额.答案第一部分1. C2. D3. B4. C5. D6. C7. A8. C9. C10. A第二部分11. 15x+2=−10×2010012. 313. 714. −215. 5.4第三部分16. (1)去括号,得4x−4−60+3x=5x−10.移项合并,得2x=54.解得x=27.(2)去分母,得3(x+1)=15+5(x−2).去括号,得3x+3=15+5x−10.移项合并,得−2x =2.解得x =−1.17. (1) 去分母,得2(x +17)−5(3x −7)=−20.去括号,得2x +34−15x +35=−20.移项合并,得−13x =−89.解得x =89.(2) 去分母,得12y −6(y −1)=24−2(y +2).去括号,得12y −6y +6=24−2y −4.移项合并,得8y =14.解得y =74.18. 整理 3[x −2(x −a3)]=4x 得 −7x +2a =0 ① 整理3x+a 12−1−5x 8=1 得 21x +2a =27.② − ①得 28x =27, 解得 x =2728,把 x =2728 代入①得 a =278.答:a =278,x =2728. 19. 设这笔贷款的金额为 x 万元. 据题意得x (1+35%)−x (1+6%)=14.5.解得x=50.答:这笔贷款的金额为50万元.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

北师大版七年级数学上册第五章测试题(一)
(时间:90分钟分值:120分)
一、单项选择题:(本大题共10个小题,每小题3分,共30分,每小题给出的四个选项中,只有一项是符合题目要求的,将此选项的字母填在答题卡上)1.(3分)下列方程中,是一元一次方程的是()
A.x2﹣4x=3 B.C.x+2y=1 D.xy﹣3=5
2.(3分)下列方程中,以x=﹣1为解的方程是()
A.B.7(x﹣1)=0 C.4x﹣7=5x+7 D.x=﹣3 3.(3分)若关于x的一元一次方程的解是x=﹣1,则k的值是()
A.B.1 C.D.0
4.(3分)一个长方形的周长为26cm,这个长方形的长减少1cm,宽增加2cm,就可成为一个正方形,设长方形的长为xcm,则可列方程()
A.x﹣1=(26﹣x)+2 B.x﹣1=(13﹣x)+2 C.x+1=(26﹣x)﹣2 D.x+1=(13﹣x)﹣2
5.(3分)(2018•恩施州)一商店在某一时间以每件120元的价格卖出两件衣服,其中一件盈利20%,另一件亏损20%,在这次买卖中,这家商店()
A.不盈不亏B.盈利20元C.亏损10元D.亏损30元6.(3分)若2x+1=4,则4x+1等于()
A.6 B.7 C.8 D.9
7.(3分)一件商品按成本价提高30%后标价,再打8折(标价的80%)销售,售价为312元,设这件商品的成本价为x元,根据题意,下面所列的方程正确的是()
A.x•30%×80%=312 B.x•30%=312×80%
C.312×30%×80%=x D.x(1+30%)×80%=312
8.(3分)一张试卷上有25道选择题:对一道题得4分,错一道得﹣1分,不做得﹣1分,某同学做完全部25题得70分,那么它做对题数为()
A.17 B.18 C.19 D.20
9.(3分)(2018•邵阳)程大位是我国明朝商人,珠算发明家.他60岁时完成的《直指算法统宗》是东方古代数学名著,详述了传统的珠算规则,确立了算盘用法.书中有如下问题:
一百馒头一百僧,大僧三个更无争,
小僧三人分一个,大小和尚得几丁.
意思是:有100个和尚分100个馒头,如果大和尚1人分3个,小和尚3人分1个,正好分完,大、小和尚各有多少人,下列求解结果正确的是()
A.大和尚25人,小和尚75人
B.大和尚75人,小和尚25人
C.大和尚50人,小和尚50人
D.大、小和尚各100人
10.(3分)(2018•武汉)将正整数1至2018按一定规律排列如下表:
平移表中带阴影的方框,方框中三个数的和可能是()
A.2019B.2018C.2016D.2013
二、填空题:(本大题共10小题,每小题3分,共30分.把答案写在答题卡中的横线上
11.(3分)方程x﹣2=4的解是x=9.
12.(3分)如果关x的方程与的解相同,那么m 的值是±2.。

相关文档
最新文档