人教版七年级上册数学各单元测试题(含答案)

合集下载

人教版七年级数学上册第三章《一元一次方程》单元测试(含答案)

人教版七年级数学上册第三章《一元一次方程》单元测试(含答案)

人教版七年级数学上册第三章《一元一次方程》单元测试一、选择题(本题共计 10 小题,每题 3 分,共计30分,)1. 已知x=1是方程x−2k3=12−32x的解,则k的值是()A.−2B.2C.0D.−12. 某商品打七折后价格为a元,则原价为( )A.a元B.107a元 C.30%a元 D.710a元3. 在①2x+1;②1+7=15−8+1;③1−12x=x−1;④x+2y=3中,方程共有()A.1个B.2个C.3个D.4个4. 若关于x的方程3x+(2a+1)=x−(3a+2)的解为x=0,则a的值等于( )A.15B.35C.−15D.−355. 将一根长为acm的铁丝首尾相接围成一个正方形,若要将它按如图所示的方式向外等距扩大1cm得到新的正方形,则这根铁丝需增加()A.4cmB.8cmC.(a+4)cmD.(a+8)cm6. 七年级(1)班有30人会下象棋或围棋,已知会下象棋的人数比会下围棋的人数多5人,两种棋都会下的有17人,问只会下围棋的有多少人?设只会下围棋的有x人,可得方程()A.x+(x−5)+17=30B.x+(x+5)+17=30C.x+(x−5)−17=30D.x+(x+5)−17=307. 如图是某月份的日历表,任意框出同一列上的三个数,则这三个数的和不可能是()A.39B.43C.57D.668. 解方程x3−x−12=1时,去分母后,正确的是( )A.3x−2(x−1)=1B.2x−3(x−1)=1C.3x−2(x−1)=6D.2x−3(x−1)=69. 运用等式性质进行的变形,正确的是()A.如果a=b,那么a+c=b−cB.如果ac =bc,那么a=bC.如果a=b,那么ac =bcD.如果a2=3a,那么a=310. 已知x=2是方程5Xm+10=30的解,则m的值为( )A.2B.4C.6D.10二、填空题(本题共计 4 小题,每题 4 分,共计16分,)11. 当代数式2x−2与3+x的值相等时,x=________.12. 已知:(m−2)x−1=0是关于x的一元一次方程,则m________.13. 在等式5x−8=7−9x的两边同时________,得14x=15,这是根据________.14. 李大叔去年承包了10亩地种植甲、乙两种蔬菜,共获利18000元,其中甲种蔬菜每亩获利2000元,乙种蔬菜每亩获利1500元,李大叔的承包地去年甲种蔬菜有________亩.三、解答题(本题共计 5 小题,共计74分,)15.(20分) 解下列方程:(1)8(a+1)−2(3a−4)=13;(2)2x−13=2x+16−1;(3)y−y−12=2−y+25;(4)2x0.3+223=1.4−3x0.2.16.(12分) 列方程.(1)甲班有学生58人,乙班有学生46人,要使甲、乙两班的人数相等,应如何调动?(2)某推销员,卖出全部商品的2后,得到400元,卖出全部商品共得到多少元?517. (14分) “五一”期间,某电器城按成本价提高30%后标价,再打8折(标价的80%)销售,售价为2080元,该电器的成本价为多少元?(只列方程)18. (14分)一个长方形的周长为28cm,将此长方形的长减少2cm,宽增加4cm,就可成为一个正方形,那么原长方形的长和宽分别是多少?19.(14分) 某公园门票价格规定如下表:某校七年级(1)(2)两个班共102人去游园,其中(1)班有40多人,不足50人.经计算,如果两个班都以班为单位购票,则一共应付1320元.问:(1)如果两班联合起来,作为一个团体购票,可省多少钱?(2)两班各有多少名学生?参考答案与试题解析一、选择题(本题共计 10 小题,每题 3 分,共计30分)1.【答案】B【考点】一元一次方程的解【解析】把x=1代入方程,即可得出一个关于k的一元一次方程,求出方程的解即可.【解答】把x=1代入方程x−2k3=12−32x得:1−2k3=12−32×1,解得:k=2,2.【答案】B【考点】一元一次方程的应用——打折销售问题【解析】此题暂无解析【解答】解:设该商品原价为:x元,∵ 某商品打七折后价格为a元,∵ 0.7x=a,则x=107a(元),故选B.3.【答案】B方程的定义【解析】方程是含有未知数的等式,是等式但不含未知数不是方程,含未知数不是等式也不是方程.【解答】(1)2x+1,含未知数但不是等式,所以不是方程.(2)1+7=15−8+1,是等式但不含未知数,所以不是方程.x=x−1,是含有未知数的等式,所以是方程.(3)1−12(4)x+2y=3,是含有未知数的等式,所以是方程.故有所有式子中有2个是方程.故选:B.4.【答案】D【考点】方程的解【解析】此题暂无解析【解答】解:∵ x=0是方程3x+(2a+1)=x−(3a+2)的解,∵ 2a+1=−(3a+2),,解得:a=−35故选D.5.【答案】B【考点】一元一次方程的应用——其他问题列代数式根据题意得出原正方形的边长,再得出新正方形的边长,继而得出答案.【解答】解:∵ 原正方形的周长为acm,cm,∵ 原正方形的边长为a4∵ 将它按图的方式向外等距扩1cm,+2)cm,∵ 新正方形的边长为(a4+2)=(a+8)(cm),则新正方形的周长为4(a4因此需要增加的长度为a+8−a=8(cm).故选B.6.【答案】B【考点】由实际问题抽象出一元一次方程【解析】设只会下围棋的有x人,则只会下象棋的有(x+5)人,根据该班有30人会下象棋或围棋且两种棋都会下的有17人,即可得出关于x的一元一次方程,此题得解.【解答】设只会下围棋的有x人,则只会下象棋的有(x+5)人,依题意,得:x+(x+5)+17=30.7.【答案】B【考点】一元一次方程的应用——其他问题解一元一次方程【解析】可设中间的数为x,根据竖列上相邻的数相隔7可得其余2个数,相加等于各选项中数字求解即可.【解答】解:A、设中间的数为x,则最小的数为x−7,最大的数为x+7.x+(x−7)+(x+7)=39,解得:x=13,故此选项错误;B、设中间的数为x,则最小的数为x−7,最大的数为x+7.x+(x−7)+(x+7)=43,解得:x=433,故此选项符合题意;C、设中间的数为x,则最小的数为x−7,最大的数为x+7.x+(x−7)+(x+7)=57,解得:x=19,故此选项错误;D、设中间的数为x,则最小的数为x−7,最大的数为x+7.x+(x−7)+(x+7)=66,解得:x=22,故此选项错误;故选B.8.【答案】D【考点】解一元一次方程【解析】方程两边乘以6去分母得到结果,即可做出判断.【解答】解:方程x3−x−12=1,等式两边同时乘6得:2x−3(x−1)=6.故选D.9.【答案】B【考点】等式的性质【解析】利用等式的性质对每个等式进行变形即可找出答案.【解答】解:A、利用等式性质1,两边都加c,得到a+c=b+c,所以A不成立,故A选项错误;B、利用等式性质2,两边都乘以c,得到a=b,所以B成立,故B选项正确;C、成立的条件c≠0,故C选项错误;D、成立的条件a≠0,故D选项错误.故选B.10.【答案】A【考点】解一元一次方程【解析】把X=2代入方程得到一个关于m的方程,求出方程的解即可【解答】解得:m=2,故选A.二、填空题(本题共计 4 小题,每题 4 分,共计16分)11.【答案】5【考点】解一元一次方程【解析】此题暂无解析【解答】解:由已知得:2x−2=3+x,移项合并得:x=5,故答案为:5.12.【答案】m≠2【考点】一元一次方程的定义【解析】依据一元一次方程的定义可知m−2≠0,从而可求得m的取值范围.【解答】解:∵ (m−2)x−1=0是关于x的一元一次方程,∵ m−2=0.∵ m≠2.故答案为:m≠2.13.【答案】9x+8,等式的性质1【考点】等式的性质【解析】根据等式的基本性质即可解答.【解答】解:两边同时加上9x得:5x+9x−8=7,两边再同时加上8得:14x=5,故5x−8=7−9x两边同时加上9x+8,得到14x=15,根据是:等式的性质1.故答案是:9x+8,等式的性质1.14.【答案】6【考点】一元一次方程的应用——工程进度问题【解析】可设甲种蔬菜种植了x亩,则乙种蔬菜种植了(10−x)亩,等量关系为:甲种蔬菜总获利+乙种蔬菜总获利=18000.【解答】解:设甲种蔬菜种植了x亩,则乙种蔬菜种植了(10−x)亩,依题意得2000x+1500(10−x)=18000,解得x=6,答:甲种蔬菜种植了6亩.故答案为6.三、解答题(本题共计 5 小题,共计74分)15.【答案】去括号得:8a+8−6a+8=13,移项得:8a−6a=13−8−8,合并得:2a=−3,解得:a=−1.5;去分母得:2(2x−1)=2x+1−6,去括号得:4x−2=2x+1−6,移项得:4x−2x=1−6+2,合并得:2x=−3,解得:x=−1.5;去分母得:10y−5(y−1)=20−2(y+2),去括号得:10y−5y+5=20−2y−4,移项得:10y−5y+2y=20−4−5,合并得:7y=11,解得:y=117;方程整理得:20x3+83=7−15x,去分母得:20x+8=21−45x,移项得:20x+45x=21−8,合并得:65x=13,解得:x=0.2.【考点】解一元一次方程【解析】(1)方程去括号,移项合并,把a系数化为1,即可求出解;(2)方程去分母,去括号,移项合并,把x系数化为1,即可求出解;(3)方程去分母,去括号,移项合并,把y系数化为1,即可求出解;(4)方程整理后,去分母,去括号,移项合并,把x系数化为1,即可求出解.【解答】去括号得:8a+8−6a+8=13,移项得:8a−6a=13−8−8,合并得:2a=−3,解得:a=−1.5;去分母得:2(2x−1)=2x+1−6,去括号得:4x−2=2x+1−6,移项得:4x−2x=1−6+2,合并得:2x=−3,解得:x=−1.5;去分母得:10y−5(y−1)=20−2(y+2),去括号得:10y−5y+5=20−2y−4,移项得:10y−5y+2y=20−4−5,合并得:7y=11,解得:y=117;方程整理得:20x3+83=7−15x,去分母得:20x+8=21−45x,移项得:20x+45x=21−8,合并得:65x=13,解得:x=0.2.16.【答案】解:(1)设从甲班调x人到乙班,则:58−x=46+x;(2)设卖出全部商品共得到x元,则:25x=400.【考点】由实际问题抽象出一元一次方程【解析】(1)根据要使甲、乙两班的人数相等,表示出两班的人数即可得出等式;后,得到400元”,得出等式即可.(2)根据“卖出全部商品的25【解答】解:(1)设从甲班调x人到乙班,则:58−x=46+x;(2)设卖出全部商品共得到x元,则:2x=400.517.【答案】解:设该电器的成本价为x元,依题意有x(1+30%)×80%=2080.【考点】由实际问题抽象出一元一次方程【解析】设该电器的成本价为x元,根据成本价×(1+30%)×80%=售价为2080元可列出方程.【解答】解:设该电器的成本价为x元,依题意有x(1+30%)×80%=2080.18.【答案】长方形的长为10cm,宽为4cm.【考点】一元一次方程的应用——工程进度问题【解析】设长方形的长是xcm,根据正方形的边长相等即可列出方程求解.【解答】解:设长方形的长是xcm,则宽为(14−x)cm,根据题意得:x−2=(14−x)+4,解得:x=10,14−x=14−10=4.19.【解析】(1)根据题意得出两个班联合购票比分别购票的差值即可;(2)设(1)班有xx人,根据题意列出方程解答即可.【解答】解:(1)(1)1320−102×10=1320−102×10=300300(元)答:两个班联合购票比分别购票要省300300元.(2)(2)设(1)(1)班有xx人,因为(1)(1)班有4040多人,不足5050人,所以(2)(2)班人数必定大于5050,则:14x+12(102−x)=132014x+12(102−x)=1320,解得:x=48x=48,102−48=54102−48=54.答:(1)(1)班有4848人,(2)(2)班有5454人.【答案】解:(1)(1)1320−102×10=1320−102×10=300300(元)答:两个班联合购票比分别购票要省300300元.(2)(2)设(1)(1)班有xx人,因为(1)(1)班有4040多人,不足5050人,所以(2)(2)班人数必定大于5050,则:14x+12(102−x)=132014x+12(102−x)=1320,解得:x=48x=48,102−48=54102−48=54.答:(1)(1)班有4848人,(2)(2)班有5454人.。

人教版七年级数学上册单元测试题全套含答案

人教版七年级数学上册单元测试题全套含答案

三、解答题(共 66 分) 19.(8 分)将下列各数在如图所示的数轴上表示出来,并用“>”把这些数连接起来. -11,0,2,-|-3|,-(-3.5).
2
20.(16 分)计算: -1 2 -1
(1)5×(-2)+(-8)÷(-2); (2) 2-5× 2 ÷ 4 ;
1-12-3 (3)(-24)× 2 3 8 ;
A.点 A B.点 B C.点 C D.点 D 4.2016 年第一季度,某市“蓝天白云、繁星闪烁”天数持续增加,获得省环境空气质量生态补偿资金 408 万元.408 万用科学记数法表示正确的是( ) A.408×104 B.4.08×104 C.4.08×105 D.4.08×106 5.下列算式正确的是( ) A.(-14)-5=-9 B.0-(-3)=3 C.(-3)-(-3)=-6 D.|5-3|=-(5-3) 6.有理数(-1)2,(-1)3,-12,|-1|,-(-1),- 1 中,化简结果等于 1 的个数是( )
输入 x ―→ ×(-3) ―→ -2 ―→ 输出 16.太阳的半径为 696000 千米,用科学记数法表示为________千米;把 210400 精确到万位是________. 17.已知(a-3)2 与|b-1|互为相反数,则式子 a2+b2 的值为________. 18.填在下面各正方形中的四个数之间都有一定的规律,据此规律得出 a+b+c=________.
24.(12 分)下面是按规律排列的一列数:
1+-1 第 1 个数:1- 2 ;
1+-1 1+(-1)2 1+(-1)3
第 2 个数:2- 2
3
4;
1+-1 1+(-1)2 1+(-1)3 1+(-1)4 1+(-1)5
第 3 个数:3- 2

七年级上册数学各单元测试题(含答案)人教版

七年级上册数学各单元测试题(含答案)人教版

第 一 章 有 理 数班级 学号 姓名 得分一、选择题(4分³10=40分) 1、2008的绝对值是( )A 、2008B 、-2008C 、±2008D 、200812、下列计算正确的是( )A 、-2+1=-3B 、-5-2=-3C 、-112-=D 、1)1(2-=-3、近几年安徽省教育事业加快发展,据2005年末统计的数据显示,仅普通初中在校生就约有334万人,334万人用科学记数法表示为( )A 、0.334³710人B 、33.4³510人C 、3.34³210人D 、3.34³610人 4、下列各对数互为相反数的是( )A 、-(-8)与+(+8)B 、-(+8)与+︱-8︱C 、-2222)与(-D 、-︱-8︱与+(-8)5、计算(-1)÷(-5)³51的结果是( )A 、-1B 、1C 、251D 、-256、下列说法中,正确的是( )A 、有最小的有理数B 、有最小的负数C 、有绝对值最小的数D 、有最小的正数7、小明同学在一条南北走向的公路上晨练,跑步情况记录如下:(向北为正,单位:m ):500,-400,-700,800 小明同学跑步的总路程为( )A 、800 mB 、200 mC 、2400 mD 、-200 m 8、已知︱x ︱=2,y 2=9,且x ²y<0,则x +y=( )A 、5B 、-1C 、-5或-1D 、±19、已知数轴上的A 点到原点的距离为2个单位长度,那么在数轴上到A 点的距离是3个单位长度的点所表示的数有( )A 、1个B 、2个C 、3个D 、4个10、有一张厚度是0.1mm 的纸,将它对折20次后,其厚度可表示为( )A 、(0.1³20)mmB 、(0.1³40)mmC 、(0.1³220)mmD 、(0.1³202)mm二、填空题(5分³4=20)11、妈妈给小颖10元钱,小颖记作“+10元”,那么“-5元”可能表示什么12、一个正整数,加上-10,其和小于0,则这个正整数可能是 .(写出两个即可)13、某同学用计算器计算“2÷13”时,计算器上显示结果为0.153846153,将此结果保留三位有效数字为 .14、观察下列各数,按规律在横线上填上适当的数。

人教版七年级数学上册第三章《一元一次方程》单元测试题(含答案)

人教版七年级数学上册第三章《一元一次方程》单元测试题(含答案)

人教版七年级数学上册第三章《一元一次方程》单元测试题(含答案)一、单选题1.一商店在某一时间以每件120元的价格卖出两件衣服,其中一件盈利20%,另一件亏损20%,在这次买卖中,这家商店( )A .不盈不亏B .盈利20元C .亏损10元D .亏损30元2.下列方程中,一元一次方程一共有( )①9x+2;②12x =;③(1-x)(1+x)=3;④()1113352x x x -=- A .1个 B .2个 C .3个 D .4个3.(古代数学问题)今有共买物,人出八,盈三;人出七,不足四.问人数、物价各几何?意思是:几个人一起去买某物品,如果每人出8钱,则多了3钱;如果每人出7钱,则少了4钱.问有多少人,物品的价格是多少?设有x 人,则根据题意列出方程正确的是( ) A .8x+3=7x ﹣4B .8x ﹣3=7x+4C .8x ﹣3=7x ﹣4D .8x+3=7x+44.下图是某超市中“飘柔”洗发水的价格标签,一服务员不小心将墨水滴在标签上,使得原价看不清楚,请帮忙第一算,该洗发水的原价是:( )A .22元B .23元C .24元D .25元5.若关于x 的方程321(32)x a x a ++=-+的解是0,则a 的值为( )A .15B .35C .15- D .356.下列方程:21126740.343492x x x x x x x +=-=+=-=①;②;③;④;0x =⑤;328x y -=⑥;112x =⑦;12x=⑧中是一元一次方程的个数是( ) A .6个 B .5个 C .4个 D .3个7.下列运用等式的性质,变形正确的是( )A .若x ﹣m =y +m ,则x =yB .若a =b ,则ac =bcC .若x =y ,则x ﹣m =y +mD .若ac =bc ,则a =b8. 下列方程中,属于一元一次方程的是( ).A .021=+xB .2y 432=+x C .22x 3x =+x D .x 31232=++x x9.某书店把一本新书按标价的八折出售,仍获利20%,若该书进价为20元,则标价( ) A .24元 B .26元 C .28元 D .30元10.方程3x ﹣6=0的解是( )A .x =3B .x =﹣3C .x =2D .x =﹣2第II 卷(非选择题)二、填空题11.关于x 的方程a 2x+x=1的解是__.12.某学校组织八年级6个班参加足球比赛,如果采用单循环制,一共安排______场比赛 13.某商品进价为40元,若按标价的8折出售仍可获利20%,则按标价出售可获利______元.14.当x=4时,式子5(x+b )﹣10与bx+4x 的值相等,则b=_____.15.我国古代数学著作《孙子算经》中记载了这样一个有趣的数学问题“今有五等诸侯,共分橘子60颗,人别加三颗,问五人各得几何?”题目大意是:诸侯5人,共同分60个橘子,若后面的人总比前一个人多分3个,问每个人各分得多少个橘子?若设中间的那个人分得x 个,依题意可列方程得_____.16.一个两位数,个位数字与十位数字的和是9,如果将个位数字与十位数字对调后所得的新数比原数大9,则原来的两位数是____.17.若293x +=2,且x y =94,则x =______,y =_______. 18.当a =____时,关于x 的方程314x -=-与方程562a x -=-的解相同.三、解答题19.解方程:x ﹣3=﹣12x ﹣4. 20.解方程:(1)5(x-1)+2=3-x(2)2121 1=63x x-+ -21.某纺织厂收购某种特色棉花,若直接转卖这种特色棉花,则每吨可获得的利润为500元.若经过B级加工再转卖,则每吨可获得的利润为1000元;若经过A级加工再转卖,则每吨可获得的利润为2000元.已知该纺织厂对棉花进行B级加工,每天可加工16吨;进行A级加工,每天可加工6吨,且这两种等级的加工不能同时进行.若该纺织厂收购了140吨这种特色棉花,决定15天内加工完,且有如下三种可行方案:方案一:将所收购的特色棉花直接转卖.方案二:将尽可能多的特色棉花进行A级加工,余下的部分直接转卖.方案三:一部分进行A级加工,另一部分进行B级加工,恰好15天完成.若你是该纺织厂负责人,想要获利最多,你决定使用哪套方案?请说明理由.22.一列客车和一列货车同时从甲、乙两个城市相对开出,已知客车每小时行55千米,客车速度与货车速度的比是11:9,两车开出后5小时相遇,甲、乙两城市间的铁路长多少千米?23.阅读理解:若A、B、C为数轴上三点,若点C到A的距离是点C到B的距离2倍,我们就称点C是(A,B)的好点.例如,如图1,点A表示的数为-1,点B表示的数为2,表示1的点C到点A的距离是2,到点B的距离是1,那么点C是(A,B)的好点;又如,表示0的点D到点A的距离是1,到点B的距离是2,那么点D就不是(A,B)的好点,但点D是(B,A)的好点.知识运用:(1)如图2,M,N为数轴上两点,点M所表示的数为-2,点N所表示的数为4.①在点M和点N中间,数_______所表示的点是(M,N)的好点:②在数轴上,数________和数_________所表示的点都是(N,M)的好点;(2)如图3,A、B为数轴上两点,点A所表示的数为-20,点B所表示的数为40,现有一只电子蚂蚁P从点B出发,以2个单位每秒的速度向左运动,到达点A停止,当t为何值时,P,A和B中恰有一个点为其余两点的好点?24.某电影院某日某场电影的票价是:成人票30元,学生票15元,满40人可以购买团体票(不足40人可按40人计算,票价打9折).某班在4位老师带领下去电影院看电影,学生人数为x人.(1)若学生人数为31人,该班买票至少应付多少元?(2)若学生人数为32人,该班买票至少应付多少元?(3)请用含x的代数式表示该班买票至少应付多少元.25.小明在学习了《展开与折叠》这一课后,明白了很多几何体都能展开成平面图形.于是他在家用剪刀展开了一个长方体纸盒,可是一不小心多剪了一条棱,把纸盒剪成了两部分,即图中的①和②.根据你所学的知识,回答下列问题:(1)小明总共剪开了______条棱.(2)现在小明想将剪断的②重新粘贴到①上去,而且经过折叠以后,仍然可以还原成一个长方体纸盒,你认为他应该将剪断的纸条粘贴到①中的什么位置?请你帮助小明在①上补全.(3)小明说:他所剪的所有棱中,最长的一条棱是最短的一条棱的5倍.现在已知这个长方体纸盒的底面是一个正方形,并且这个长方体纸盒所有棱长的和是880cm,求这个长方体纸盒的体积.26.一队学生去校外进行军事野营训练,他们以6千米/时的速度行进,在他们走了一段时间后,学校要将一个紧急通知传给队长,通讯员从学校出发,以10千米/时的速度按原路追上去,用了15分钟追上了学生队伍,问通讯员出发前,学生走了多少时间?27.如图,已知A、B、C是数轴上的三点,点C表示的数为6,BC=4,AB=14,动点P、Q分别从A、C同时出发,点P以每秒3个单位的速度沿数轴向右匀速运动,点Q以每秒1个单位的速度沿数轴向左匀速运动,M为AP的中点,点N在线段CQ上,且CQ=3CN.设运动的时间为t(t>0)秒.(1)写出点A表示的数,点B表示的数;(2)求MN的长(用含t的式子表示);(3)t为何值时,原点O恰为线段PQ的中点.参考答案1.C2.A3.B4.C5.D6.C7.B8.C9.D10.C11.211a.12.1513.2014.615.(x﹣6)+(x﹣3)+x+(x+3)+(x+6)=60.16.45.17.-32218.-319.x=-2320.(1)x=1;(2)x=5621.选方案二.理由见解析22.500.23.①2,②0或-8;(2)10秒、15秒或20秒24.(1)585;(2)594;(3)若0<x≤31时,该班买票至少应付(120+15x)元;若32≤x≤36时,该班买票至少应付594元;若x>36时,该班买票至少应付(108+13.5x)元.25.(1)8;(2)答案见解析:(3)200000立方厘米26.1627.(1)A:-12,B:2;(2) 18−116t;。

人教版七年级数学上册单元测试题全套含答案

人教版七年级数学上册单元测试题全套含答案

输入 x ―→ ×(-3) ―→ -2 ―→ 输出 16.太阳的半径为 696000 千米,用科学记数法表示为________千米;把 210400 精确到万位是________. 17.已知(a-3)2 与|b-1|互为相反数,则式子 a2+b2 的值为________. 18.填在下面各正方形中的四个数之间都有一定的规律,据此规律得出 a+b+c=________.
-1 A.3 个 B.4 个 C.5 个 D.6 个 7.将一把刻度尺按如图所示放在数轴上(数轴的单位长度是 1cm),刻度尺上的“0cm”和“8cm”分别对应 数轴上的-3.6 和 x,则 x 的值为( )
A.4.2 B.4.3 C.4.4 D.4.5 8.有理数 a,b 在数轴上的位置如图所示,下列各式成立的是( )
A.b>0 B.|a|>-b C.a+b>0 D.ab<0 9.若|a|=5,b=-3,则 a-b 的值为( ) A.2 或 8 B.-2 或 8 C.2 或-8 D.-2 或-8
10.观察下列算式:21=2,22=4,23=8,24=16,25=32,26=64,27=128,28=256,…用你所发
5
3
___________________.
13.绝对值大于 4 而小于 7 的所有整数之和是________.
14.点 A,B 表示数轴上互为相反数的两个数,且点 A 向左平移 8 个单位到达点 B,则这两点所表示
的数分别是________和________.
15.如图是一个简单的数值运算程序.当输入 x 的值为-1 时,则输出的数值为________.
现的规律得出 22016 的末位数字是( )
A.2 B.4 C.6 D.8
二、填空题(每小题 3 分,共 24 分)

人教版数学七年级上册单元质量评估测试卷及答案(全册)(完美版)

人教版数学七年级上册单元质量评估测试卷及答案(全册)(完美版)

人教版数学七年级上册第一章质量评估测试卷一、选择题(共12小题,总分36分) 1.(3分)7的相反数是() A .7B .-7C.17D .-172.(3分)下列四个数中最大的数是()A .0B .-2C .-4D. -6 3.(3分)数轴上的点A 到原点的距离是4,则点A 表示的数为()A .4B .-4C .4或-4D .2或-24.(3分)下列说法正确的是()A .负数没有倒数B .正数的倒数比自身小C .任何有理数都有倒数D .-1的倒数是-15.(3分)已知:a =-2+(-10),b =-2-(-10),c =-2×(-110),下列判断正确的是()A .a >b >cB .b >c >aC .c >b >aD .a >c >b6.(3分)若a =2,|b|=5,则a +b =()A .-3B .7C .-7D .-3或77.(3分)我国是最早认识负数,并进行相关运算的国家.在古代数学名著《九章算术》里,就记载了利用算筹实施“正负术”的方法,图(1)表示的是计算3+(-4)的过程.按照这种方法,图(2)表示的过程应是在计算()(第7题) A .(-5)+(-2)B .(-5)+2C .5+(-2)D .5+2 8.(3分)据探测,月球表面白天阳光垂直照射的地方温度高达127 ℃,而夜晚温度可降低到零下183 ℃.根据以上数据推算,在月球上昼夜温差有()A .56 ℃B .-56 ℃C .310 ℃D .-310 ℃9.(3分)据科学家估计,地球的年龄大约是 4 600 000 000年,将4 600 000 000用科学记数法表示为()A .4.6×108B .46×108C .4.69D .4.6×10910.(3分)如果a +b <0,并且ab >0,那么()A .a <0,b <0B .a >0,b >0C .a <0,b >0D .a >0,b <011.(3分)已知某班有40名学生,将他们的身高分成4组,在160~165 cm 区间的有8名学生,那么这个小组的人数占全体的()A .10%B .15%C .20%D .25%12.(3分)下列各数|-2|,-(-2)2,-(-2),(-2)3中,负数的个数有()A .1个B .2个C .3个D .4个二、填空题(共6小题,总分18分)13.(3分)在知识抢答中,如果用+10表示得10分,那么扣20分表示为__ __.14.(3分)在-42,+0.01,π,0,120这5个数中,正有理数是__ _.15.(3分)计算14-12+23×()-12=__ __.16.(3分)已知3x -8与2互为相反数,则x =_.17.(3分)如果|x|=6,则x =_________.18.(3分)若a 、b 互为倒数,则2ab -5=__ _.三、解答题(共8小题,总分66分) 19.(6分)计算:(1)13+(-15)-(-23);(2)-17+(-33)-10-(-16).20.(6分)计算:(1)(-3)×6÷(-2)×12;(2)-14-16×[2-(-3)2].21.(8分)把下列各数填在相应的括号里:-8,0.275,227,0,-1.04,-(-3),-13,|-2|.正数集合{…};负整数集合{ …};分数集合{…};负数集合{…}.22.(8分)有5筐蔬菜,以每筐50千克为准,超过的千克数记为正,不足记为负,称重记录如下:+3,-6,-4,+2,-1,总计超过或不足多少千克?5筐蔬菜的总重量是多少千克?23.(8分)若a、b互为相反数,c、d互为倒数,m的绝对值为 2.(1)直接写出a+b,cd,m的值;(2)求m+cd+a+bm的值.24.(10分)已知|a|=5,|b|=3,且|a-b|=b-a,求a+b的值.25.(10分)一只小虫沿一根东西方向放着的木杆爬行,小虫从某点A出发在木杆上来回爬行7次,如果向东爬行的路程记为正数,向西爬行的路程记为负数,爬行过的各段路程依次如下(单位:cm):+5,-3,+11,-8,+12,-6,-11.(1)小虫最后是否回到了出发点A?为什么?(2)小虫一共爬行了多少厘米?26.(10分)解决问题:一辆货车从超市出发,向东走了3千米到达小彬家,继续走2.5千米到达小颖家,然后向西走了10千米到达小明家,最后回到超市.(1)以超市为原点,以向东的方向为正方向,用1个单位长度表示1千米,在数轴上表示出小明家,小彬家,小颖家的位置.(2)小明家距小彬家多远?(3)货车一共行驶了多少千米?(4)货车每千米耗油0.2升,这次共耗油多少升?答案一、1.B2.A 3.C 4.D 5.B 6.D 7.C8.C9.D10.A11.C12.B二、13.-2014.+0.01,12015.-516.217.±618.-3三、19.解:(1)原式=13-15+23=21;(2)原式=-17-33-10+16=-60+16 =-44.20.解:(1)原式=(-3)×6×-12×12=3×6×12×12=92;(2)原式=-1-16×(2-9)=-1-16×(-7)=-1+76=16. 21.正数集合0.275,227,-(-3),|-2|,…;负整数集合{}-8,…;分数集合0.275,227,-1.04,-13,…;负数集合-8,-1.04,-13,….22.解:与标准重量比较,5筐蔬菜总计超过3+(-6)+(-4)+2+(-1)=-6(千克),5筐蔬菜的总重量=50×5+(-6)=244(千克).故总计不足6千克,5筐蔬菜的总重量是244千克.23.解:(1)因为a 、b 互为相反数,c 、d 互为倒数,m 的绝对值为2,所以a+b=0,cd=1,m=±2.(2)当m=2时,m+cd+a+bm=2+1+0=3;当m=-2时,m+cd+a+bm=-2+1+0=-1.24.解:因为|a|=5,|b|=3,所以a=±5,b=±3,因为|a-b|=b-a,所以a=-5时,b=3或-3,所以a+b=-5+3=-2,或a+b=-5+(-3)=-8,所以a+b的值是-2或-8.25.解:(1)小虫最后回到了出发点A,理由是:(+5)+(-3)+(+11)+(-8)+(+12)+(-6)+(-11)=0,即小虫最后回到了出发点 A.(2)|+5|+|-3|+|+11|+|-8|+|+12|+|-6|+|-11|=56(cm),答:小虫一共爬行了56 cm.26.解:(1)如答图所示:(第26题答图)(2)根据数轴可知:小明家距小彬家7.5个单位长度,因而是7.5千米;(3)2×10=20(千米).答:货车一共行驶了20千米.(4)20×0.2=4(升).答:这次共耗油4升.第二章质量评估测试卷一、选择题(共12小题,总分36分)1.(3分)在代数式π,x2+2x+1,x+xy,3x2+nx+4,-x,3,5xy,yx中,整式共有()A.7个B.6个C.5个D.4个2.(3分)下列关于单项式-3xy25的说法中,正确的是()A.系数是-35,次数是2 B.系数是35,次数是2C.系数是-35,次数是3 D.系数是-3,次数是 33.(3分)多项式6x2y-3x-1的次数和常数项分别是()A.3和-1 B.2和-1C.3和1 D.2和14.(3分)下列运算正确的是()A.a+(b-c)=a-b-c B.a-(b+c)=a-b-cC.m-2(p-q)=m-2p+q D.x2-(-x+y)=x2+x+y5.(3分)对于式子:x+2y2,a2b,12,3x2+5x-2,abc,0,x+y2x,m,下列说法正确的是()A.有5个单项式,1个多项式B.有3个单项式,2个多项式C.有4个单项式,2个多项式D.有7个整式6.(3分)下列计算正确的是()A.3+2ab=5ab B.5xy-y=5xC.-5m2n+5nm2=0 D.x3-x=x27.(3分)若单项式x2y m+2与x n y的和仍然是一个单项式,则m、n的值是() A.m=2,n=2 B.m=-1,n=2C.m=-2,n=2 D.m=2,n=-18.(3分)多项式36x2-3x+5与3x3+12mx2-5x+7相加后,不含二次项,则常数m的值是()A.2 B.-3 C.-2 D.-89.(3分)若m-x=2,n+y=3,则(m-n)-(x+y)=()A.-1 B.1 C.5 D.-5 10.(3分)一个多项式减去x2-2y2等于x2+y2,则这个多项式是() A.-2x2+y2B.2x2-y2C.x2-2y2D.-x2+2y2 11.(3分)李老师做了一个长方形教具,其中一边长为2a+b,与其相邻的另一边长为a-b,则该长方形教具的周长为()A.6a+b B.6a C.3a D.10a-b 12.(3分)两个完全相同的大长方形,长为a,各放入四个完全一样的小长方形后,得到图(1)、图(2),那么图(1)阴影部分的周长与图(2)阴影部分的周长的差是()(用含a的代数式表示)(第12题)A.12a B.32a C.a D.54a二、填空题(共6小题,总分18分)13.(3分)请写出一个系数是-2,次数是3的单项式:__ __.14.(3分)若5m x n3与-6m2n y是同类项,则xy的值等于____.15.(3分)若整式(8x2-6ax+14)-(8x2-6x+6)的值与x的取值无关,则a的值是____.16.(3分)若多项式2x2+3x+7的值为10,则多项式6x2+9x-7的值为____.17.(3分)已知多项式A=ay-1,B=3ay-5y-1,且2A+B中不含字母y,则a 的值为___.18.(3分)观察下面一列单项式:2x,-4x2,8x3,-16x4,…,根据你发现的规律,第n个单项式为__ __.三、解答题(共8小题,总分66分)19.(8分)化简:(1)3x2-3x2-y2+5y+x2-5y+y2; (2)14a2b-0.4ab2-12a2b+25ab2.20.(8分)先化简,再求值:(1)2xy-12(4xy-8x2y2)+2(3xy-5x2y2),其中x=13,y=-3.(2)-a2b+(3ab2-a2b)-2(2ab2-a2b),其中a=1,b=-2.21.(6分)如果x2-x+1的2倍减去一个多项式得到3x2+4x-1,求这个多项式.22.(6分)若3x m y n是含有字母x和y的五次单项式,求m n的最大值.23.(8分)老师在黑板上写了一个正确的演算过程,随后用手掌捂住了一个多项式,形式如下:-(a2+4ab+4b2)=a2-4b2(1)求所捂的多项式;(2)当a=-1,b=2时,求所捂的多项式的值.24.(10分)已知A=2a2-a,B=-5a+1.(1)化简:3A-2B+2;(2)当a=-12时,求3A-2B+2的值.25.(10分)已知a2-1=0,求(5a2+2a-1)-2(a+a2)的值.26.(10分)阅读下面材料:计算1+2+3+…+99+100时,如果一个一个顺次相加显然太繁杂,我们仔细观察这个式子的特点,发现运用加法的运算律,可简化计算,提高计算速度.1+2+3+…+99+100=(1+100)+(2+99)+…+(50+51)=101×50=5050.根据阅读材料提供的方法,计算:a+(a+m)+(a+2m)+(a+3m)+…+(a+100m).答案一、1.B2.C3.A4.B5.C6.C7.B8.B9.A10.B11.B12.C二、13.-2a3(答案不唯一)14.615.116.217.118.(-1)n+1·2n·x n三、19.解:(1)原式=(3x2-3x2+x2)+(y2-y2)+(5y-5y)=x2.(2)原式=(14a2b-12a2b)+(-0.4a b2+25ab2)=-14a2b.20.解:(1)2xy-12(4xy-8x2y2)+2(3xy-5x2y2)=2xy-2xy+4x2y2+6xy-10x2y2=6xy-6x2y2,当x=13,y=-3时,原式=6×13×(-3)-6×132×(-3)2=-6-6=-12.(2)原式=-a2b+3ab2-a2b-4ab2+2a2b=(-1-1+2)a2b+(3-4)ab2=-ab2,当a=1,b=-2时,原式=-1×(-2)2=-4.21.解:2(x2-x+1)-(3x2+4x-1)=2x2-2x+2-3x2-4x+1=-x2-6x+3.故这个多项式为-x2-6x+3.22.解:因为3x m y n是含有字母x和y的五次单项式,所以m+n=5,且m、n均为正整数.当m=1,n=4时,m n=14=1;当m=2,n=3时,m n=23=8;当m=3,n=2时,m n=32=9;当m=4,n=1时,m n=41=4,故m n的最大值为9.23.解:(1)所捂的多项式为:(a2-4b2)+(a2+4ab+4b2)=a2-4b2+a2+4ab+4b2=2a2+4ab.(2)当a=-1,b=2时,2a2+4ab=2×(-1)2+4×(-1)×2=2-8=-6.24.解:(1)3A-2B+2=3(2a2-a)-2(-5a+1)+2=6a2-3a+10a-2+2=6a2+7a.(2)当a=-12时,3A-2B+2=6×-122+7×-12=-2.25.解:(5a2+2a-1)-2(a+a2)=5a2+2a-1-2a-2a2=3a2-1,因为a2-1=0,所以a2=1,所以原式=3×1-1=2.26.解:a+(a+m)+(a+2m)+(a+3m)+…+(a+100m)=101a+(m+2m+3m+…+100m)=101a+(m+100m)+(2m+99m)+(3m+98m)+…+(50m+51m) =101a+101m×50=101a+5 050m.期中质量评估测试卷一、选择题(共12小题,总分36分)1.(3分)如果汽车向南行驶5千米记作+5千米,那么汽车向北行驶3千米应记作()A .+3千米B .+2千米C .-3千米D .-2千米2.(3分)某大米包装袋上标注着“净含量:10 kg ±150 g ”,小华从商店买了2袋这样的大米,这两袋大米相差的克数不可能是()A .100 gB .150 gC .300 gD .400 g3.(3分)下列说法正确的是()A .一个数前面加上“-”号,这个数就是负数B .零既是正数也是负数C .若a 是正数,则-a 不一定是负数D .零既不是正数也不是负数4.(3分)如图,数轴上A 、B 、C 三点表示的数分别为a 、b 、c ,下列说法正确的是()(第4题)A .a >0B .b >cC .b >aD .a >c5.(3分)-8的相反数是()A .-8B.18C .8D .-186.(3分)计算-5+2的结果是()A .-3B .-1C .1D .3 7.(3分)某地一天的最高气温是8 ℃,最低气温是- 2 ℃,则该地这天的温差是()A .6 ℃B .-6 ℃C .10 ℃D .-10 ℃8.(3分)若2xa -1y 2与-3x 6y 2b是同类项,则a 、b 的值分别为()A .a =7,b =1B .a =7,b =3C .a =3,b =1D .a =1,b =39.(3分)下列运算正确的是()A.5a2-3a2=2 B.2x2+3x2=5x4 C.3a+2b=5ab D.7ab-6ba=ab10.(3分)式子1x,2x+y,13a2b,x-yπ,5y4x,0中整式有()A.3个B.4个C.5个D.6个11.(3分)已知某三角形的周长为3m-n,其中两边的和为m+n-4,则此三角形第三边的长为()A.2m-4 B.2m-2n-4 C.2m-2n+4 D.4m-2n+4 12.(3分)已知a、b、c在数轴上对应点的位置如图,则|a+b|+|a+c|-|b-c|=( A )(第12题)A.0 B.2a+2b C.2b-2c D.2a+2c 二、填空题(共6小题,总分18分)13.(3分)计算:|-6|=____.14.(3分)写出-2m3n的一个同类项:____.15.(3分)单项式-3a2bc35的系数是__ _,次数是___.16.(3分)长方形的长是3a,宽是2a-b,则长方形的周长是____.17.(3分)某食品厂从生产的袋装食品中抽出20袋进行称重检查,检测每袋的质量是否符合标准,超过或不足的部分分别用正数、负数来表示,记录如下:与标准质量的差值/克-5-2013 6袋数/袋14345 3若每袋的标准质量为350克,则抽测的总质量是___________克.18.(3分)若“△”表示一种新运算,规定:a△b=a×b-(a+b),则2△[(-4)△(-5)]=__________.三、解答题(共8小题,总分66分)19.(12分)计算:(1)2+(-8)-(-7)-5; (2)312+223+-12--13;(3)(-3)×6÷(-2)×12;(4)-34×-12÷-214.20.(6分)化简:(1)3x -2x 2+5+3x 2-2x -5;(2)2(2a -3b)+3(2b -3a).21.(6分)把下列各数填入它所属的集合内:15,-19,-5,215,0,-5.32,2.(1)分数集合:{…},(2)整数集合:{…},(3)正数集合:{…}.22.(6分)甲、乙两人同时从某地出发,如果甲向东走250 m 记作+250 m ,那么乙向西走150 m 怎样表示?这时甲、乙两人相距多远?23.(8分)整式A与x2-x-1的和是-3x2-6x+2.(1)求整式A;(2)当x=2时,求整式A的值.24.(8分)若a,b互为相反数,c,d互为倒数,|m|=2,求a-(-b)-mcd的值.25.(10分)某股民在上周星期五买进某种股票 1 000股,每股10元,星期六、星期天股市不交易,下表是本周每日该股票的涨跌情况(单位:元):星期一二三四五每股涨跌+0.3+0.1-0.2-0.5+0.2(1)本周星期五收盘时,每股是多少元?(2)已知买进股票和卖出股票时都需付成交额的 1.5‰作为手续费,如果在本周星期五收盘时将全部股票一次性卖出,那么该股民的收益情况如何?(精确到个位数)26.(10分)某出租车驾驶员从公司出发,在南北方向的人民路上连续接送5批客人,行驶路程记录如下(规定向南为正,向北为负):第1批第2批第3批第4批第5批5 km 2 km-4 km-3 km10 km(1)接送完第5批客人后,该驾驶员在公司什么方向,距离公司多少千米?(2)若该出租车每千米耗油0.2升,那么在这个过程中共耗油多少升?(3)若该出租车的计价标准为:行驶路程不超过 3 km收费10元,超过 3 km时,超过的部分按每千米 1.8元收费,在这个过程中该驾驶员共收到车费多少元?答案一、1.C2.D 3.D 4.C 5.C 6.A 7.C 8.A9.D10.B11.C12.A二、13.614.3m 3n(答案不唯一)15.-35;616.10a -2b17.7 02418.27三、19.解:(1)原式=2-8+7-5=9-13 =-4.(2)原式=312-12+223+13=3+3 =6.(3)原式=3×6×12×12=92. (4)原式=-34×-12×-49=-16.20.解:(1)原式=(3x -2x)+(-2x 2+3x 2)+(5-5)=x 2+x.(2)原式=4a -6b +6b -9a=-5a.21.(1)-19,215,-5.32,(2)15,-5,0,2,(3)15,215,2,22.解:乙向西走150 m 表示为-150 m.这时甲、乙两人相距250+150=400(m).23.解:(1)由题意可知:A +(x 2-x -1)=-3x 2-6x +2,所以A =(-3x 2-6x +2)-(x 2-x -1)=-3x2-6x+2-x2+x+1=-4x2-5x+3.(2)当x=2时,原式=-4×22-5×2+3=-16-10+3=-23.24.解:因为a,b互为相反数,c,d互为倒数,所以a+b=0,cd=1.因为|m|=2,所以m=±2.所以a-(-b)-m cd=a+b-m cd=0-m=-m.所以当m=2时,原式=-2;当m=-2时,原式=2.25.解:(1)10+0.3+0.1-0.2-0.5+0.2=9.9(元)答:本周星期五收盘时,每股是9.9元.(2)1 000×9.9-1 000×10-1 000×10×1.5‰-1 000×9.9×1.5‰=9 900-10 000-15-14.85=-129.85≈-130(元).答:该股民亏了约130元.26.解:(1)5+2+(-4)+(-3)+10=10(km)答:接送完第5批客人后,该驾驶员在公司的南边,距离公司10 km.(2)(5+2+|-4|+|-3|+10)×0.2=24×0.2=4.8(升)答:在这个过程中共耗油 4.8升.(3)[10+(5-3)×1.8]+10+[10+(4-3)×1.8]+10+[10+(10-3)×1.8]=68(元)答:在这个过程中该驾驶员共收到车费68元.第三章质量评估测试卷一、选择题(共12小题,总分36分) 1.(3分)下列方程中是一元一次方程的是() A .2x +y =3B .3x -1=0C.1x -2=4 D .x 2-4x =12.(3分)方程2x +1=3的解是()A .x =-1B .x =1C .x =2D .x =-23.(3分)如果a =b ,那么下列式子不一定成立的是()A .a +c =b +cB .a 2=b2C .ac =bcD .a -c =c -b4.(3分)已知||m -2+()n -12=0,则关于x 的方程2m +x =n 的解是()A .x =-4B .x =-3C .x =-2D .x =-1 5.(3分)关于x 的方程6x -5m =2的解是x =m ,则m 的值是() A .2B .-2C.211D .-2116.(3分)在解方程2x +13-5x -32=1时,去分母正确的是()A .2(2x +1)-3(5x -3)=6B .2x +1-5x -3=6C .2(2x +1)-3(5x -3)=1D .2x +1-3(5x -3)=67.(3分)下列式子变形正确的是()A .如果a =b ,那么a +c =b -cB .如果a =b ,那么a 3=b3C .如果a3=6,那么a =2D .如果a -b +c =0,那么a =b +c8.(3分)若x =-3是关于x 的一元一次方程2x +m +5=0的解,则m 的值为()A .-1B .0C .1D .119.(3分)若(m -2)x|m|-1=5是关于x 的一元一次方程,则m 的值为()A .2B .-2C .2或-2D .110.(3分)超市店庆促销,某种书包原价每个x 元,第一次降价打“八折”,第二次降价每个又减10元,经两次降价后售价为90元,下列方程正确的是()A .0.8x -10=90B .0.08x -10=90C .90-0.8x =10D .x -0.8x -10=9011.(3分)阳光中学七(2)班篮球队参加比赛,胜一场得2分,负一场得1分,该队共赛了12场,共得20分,该队胜了多少场?设该队胜了x场,下列方程正确的是()A.2(12-x)+x=20 B.2(12+x)+x=20C.2x+(12-x)=20 D.2x+(12+x)=2012.(3分)若规定:[a]表示小于a的最大整数,例如:[5]=4,[-6.7]=-7,则方程3[-π]-2x=5的解是()A.x=7 B.x=-7 C.x=-172D.x=172二、填空题(共6小题,总分18分)13.(3分)写出一个解是-6的一元一次方程:_____________.14.(3分)当x=___________时,x-1与3-4x互为相反数.15.(3分)30天中,小张长跑路程累计达到45 km,小李长跑路程累计达到x km(x >45),平均每天小李比小张多跑___________km.16.(3分)规定一种运算“*”,a*b=a-2b,则方程x*3=2*3的解为_________.17.(3分)一项工程,甲单独完成需要20天,乙单独完成需要25天,由甲先做2天,余下的部分甲、乙一起做,余下的部分还要做______天才能完成.18.(3分)公路一侧原有路灯106盏,相邻两盏灯的距离为36米,为节约用电,现计划全部更换为新型节能灯,且相邻两盏灯的距离变为54米,则需要节能灯______盏.(两端都安装)三、解答题(共8小题,总分66分)19.(16分)解方程.(1)2x+3=x+5; (2)0.5x-0.7=6.5-1.3x;(3)8x=-2(x+4); (4)3y-14-1=5y-7620.(6分)已知关于x的方程(m+3)x|m+4|+18=0是一元一次方程,试求:(1)m的值;(2)2(3m+2)-3(4m-1)的值.21.(6分)将4个数a,b,c,d排成2行、2列,两边各加一条竖直线记成a cb d,定义a cb d=ad-bc,上述记号就叫做2阶行列式.若321-x x+1=6,求x的值.22.(6分)如图,将面积为a2的小正方形和面积为b2的大正方形放在同一水平面上(b>a>0).(第22题)(1)用a、b表示阴影部分的面积;(2)当a=2,b=4时,计算阴影部分的面积.23.(6分)在某次羽毛球团体赛中,羽毛球协会组织一些会员到现场观看.已知该协会购买了每张300元和每张400元的两种门票共8张,总费用为 2 700元.请问该协会购买了这两种门票各多少张?24.(8分)某校七年级A班有x人,B班比A班人数的2倍少10人,如果从B 班调出8人到A班.(1)用代数式表示两个班共有多少人;(2)用代数式表示调动后B班人数比A班人数多几人;(3)x等于多少时,调动后两班人数一样多?25.(8分)小王购买了一套经济适用房,他准备将地面铺上地砖,地面结构如图所示.根据图中的数据(单位:m),解答下列问题:(第25题)(1)用含x的式子表示厨房的面积和卧室的面积.(2)此经济适用房的总面积为多少平方米?(3)已知厨房面积比卫生间面积多2m2,且铺1 m2地砖的平均费用为80元,那么铺地砖的总费用为多少元?26.(10分)根据下面的两种移动电话计费方式表,回答下列问题:方式一方式二月租费50元/月10元/月通话费0.30元/分0.5元/分(1)月通话时间为150分时,按两种移动电话计费方式各需要交费多少元?300分呢?(2)会出现两种移动电话计费方式收费一样的情况吗?请你说明怎样选择会省钱.答案一、1.B 2.B 3.D 4.B 5.A 6.A 7.B 8.C9.B 10.A 11.C 12.C二、13.x+6=0(答案不唯一)14.2315.x30-3216.x=217.1018.71三、19.解:(1)移项,得2x-x=5-3,合并同类项,得x=2.(2)移项,得0.5x+1.3x=6.5+0.7,合并同类项,得 1.8x=7.2,系数化为1,得x=4.(3)去括号,得8x=-2x-8,移项、合并同类项,得10x=-8,系数化为1,得x=-4 5 .(4)去分母,得3(3y-1)-12=2(5y-7),去括号,得9y-3-12=10y-14,移项、合并同类项,得-y=1,系数化为1,得y=-1.20.解:(1)由题意,得|m+4|=1且m+3≠0,解得m=-5.(2)当m=-5时,2(3m+2)-3(4m-1)=2×(-15+2)-3×(-20-1)=-26+63=37.21.解:根据题意中的运算规则,将321-x x+1=6转化为一元一次方程为:3(x+1)-2(1-x)=6,整理可得5x=5,系数化为1,得x=1.22.解:(1)S阴影=12a(a+b)+12b2=12a2+12ab+12b2;(2)当a=2,b=4时,原式=12×22+12×2×4+12×42=2+4+8=14.23.解:设每张300元的门票买了x张,则每张400元的门票买了(8-x)张,由题意,得300x+400(8-x)=2 700,解得x=5,8-x=3.答:每张300元的门票买了5张,每张400元的门票买了3张.24.解:(1)因为七年级A班有x人,B班比A班人数的2倍少10人,所以B 班有(2x-10)人.x+2x-10=3x-10.因此,两个班共有(3x-10)人.(2)调动后A班人数为(x+8)人,B班人数为2x-10-8=2x-18(人),(2x-18)-(x+8)=x-26.因此,调动后B班人数比A班人数多(x-26)人.(3)令x+8=2x-18,解得x=26.因此,x等于26时,调动后两班人数一样多.25.解:(1)厨房的面积:(6-3)x=3x(m2),卧室的面积:3(2+x)=6+3x(m2).(2)6×2x+(3x+6)+3x+2x=20x+6(m2).(3)由题意得:3x-2x=2,解得x=2,80×(20×2+6)=3 680(元),答:铺地砖的总费用为 3 680元.26.解:(1)150×0.3+50=95(元);150×0.5+10=85(元);300×0.3+50=140(元);300×0.5+10=160(元);(2)会出现两种移动电话计费方式收费一样的情况.设通话时间为t分时收费一样,则50+0.3t=10+0.5t,解得t=200,所以通话时间为200分时两种移动电话计费方式收费一样.当通话时间小于200分时,选择方式二省钱,当通话时间大于200分时,选择方式一省钱,当通话时间等于200分时,两种计费方式收费一样.第四章质量评估测试卷一、选择题(共12小题,总分36分)1.(3分)如图,从A到B有①,②,③三条路线,最短的路线是①,其理由是() A.因为它最直B.两点确定一条直线C.两点间的距离的概念D.两点之间,线段最短(第1题) (第2题)2.(3分)如图,O是直线AB上一点,∠AOC=50°,则∠BOC的度数是() A.120°B.130°C.140°D.150°3.(3分)将下列各选项中的平面图形绕轴旋转一周,可得到如图所示的立体图形的是()(第3题)4.(3分)如图,在直线l上有A,B,C三点,则图中线段共有()(第4题)A.1条B.2条C.3条D.4条5.(3分)下列各组图形中都是立体图形的是()A.三角形、圆柱、球、圆锥B.正方体、线段、棱锥、棱柱C.三棱柱、圆柱、正方体、球D.点、球、线段、长方体6.(3分)下列关系式正确的是()A.35.5°=35°5′ B.35.5°=35°50′ C.35.5°<35°5′ D.35.5°>35°5′7.(3分)如图,学校(记作A)在蕾蕾家(记作B)南偏西20°的方向上,若∠ABC=90°,则超市(记作C)在蕾蕾家的()A.南偏东60°的方向上B.南偏东70°的方向上C.北偏东70°的方向上D.北偏东60°的方向上(第7题) (第8题) (第9题)8.(3分)如图,将一副三角板如图放置,∠COD=20°,则∠AOB的度数为() A.140°B.150°C.160°D.170°9.(3分)如图,点E是AB的中点,点F是BC的中点,AB=4,BC=6,则E,F两点间的距离是()A.10 B.5 C.4 D.210.(3分)如果线段AB=5 cm,BC=4 cm,且A,B,C在同一条直线上,那么A,C两点的距离是()A.1 cm B.9 cmC.1 cm或9 cm D.以上答案都不正确11.(3分)如图,点A,B,O在同一条直线上,∠COE和∠BOE互余,射线OF 和OD分别平分∠COE和∠BOE,则∠AOF+∠BOD与∠DOF的关系是()A.∠AOF+∠BOD=∠DOF B.∠AOF+∠BOD=2∠DOFC.∠AOF+∠BOD=3∠DOF D.∠AOF+∠BOD=4∠DOF(第11题) (第12题)12.(3分)如图是一个正方体的平面展开图,正方体中相对的面上的数字或代数式互为相反数,则2x+y的值为()A.0 B.-1 C.-2 D.1二、填空题(共6小题,总分18分)=________.13.(3分)计算:59°33′+76°27′14.(3分)已知∠A和∠B互为余角,∠A=60°,则∠B的度数是________,∠A 的补角是________.15.(3分)如图所示,点O是直线AB上的点,OC平分∠AOD,∠BOD=30°,则∠AOC=_________°.(第15题) (第16题) (第17题) (第18题) 16.(3分)如图是一个钟面,时针和分针位置如图所示,则分针和时针所成角的度数是_________.17.(3分)如图所示,点C是线段AB上的一点,点M是AC的中点,点N是BC 的中点,若AB=8 cm,则线段MN的长是__________.18.(3分)如图,∠AOB=60°,OC是∠AOB的平分线,OC1是∠AOC的平分线,OC2是∠AOC1的平分线,…,OC n是∠AOC n-1的平分线,则∠AOC n=___________.三、解答题(共8小题,总分66分)19.(6分)计算:;(2)180°-21°17′×5.+67°31′(1)48°39′.20.(6分)如图,在平面内有A,B,C三点.(1)画直线AC,线段BC,射线AB;(2)在线段BC上任取一点D(不同于B,C),连接AD;(3)数数看,此时图中线段共有_______条.(第20题) (第21题)21.(6分)如图所示:在无阴影的方格中选出两个画出阴影,使它们与图中的4个有阴影正方形可以一起构成一个正方体的表面展示图.(填出两种答案)22.(8分)如图,已知线段AB的长为x,延长线段AB至点C,使BC=12AB.(1)用含x的代数式表示线段BC的长和AC的长;(2)取线段AC的中点D,若DB=3,求x的值.(第22题)23.(8分)在一个长方形中,长和宽分别为 4 cm、3 cm,若该长方形绕着它的一边旋转一周,形成的几何体的体积是多少?(结果用π表示)24.(10分)如图,B,C两点把线段MN分成三部分,其比为MB BC CN=,点P是MN的中点,PC=2 cm,求MN的长.(第24题)25.(10分)如图,点O为直线AB上一点,过点O作射线OC,已知0°<∠AOC <90°,射线OD平分∠AOC,射线OE平分∠BOC,射线OF平分∠DOE.(1)求∠DOE的度数;(2)求∠FOB+∠DOC的度数.(第25题)26.(12分)如图(1),点O为直线AB上一点,过点O作射线OC,将一直角三角板如图摆放(∠MON=90°).(1)将图(1)中的三角板绕点O旋转一定的角度得图(2),使边OM恰好平分∠BOC,问:ON是否平分∠AOC?请说明理由.(2)将图(1)中的三角板绕点O旋转一定的角度得图(3),使边ON在∠BOC的内部,如果∠BOC=60°,则∠BOM与∠NOC之间存在怎样的数量关系?请说明理由.(第26题)答案一、1.D2.B 3.C 4.C 5.C 6.D 7.B8.C9.B10.C11.C12.B二、13.136°14.30°;120°15.7516.75°17.4 cm18.12n +1×60°三、19.解:(1)48°39′+67°31′=115°70′=116°10′;(2)180°-21°17′×5=180°-105°85′=180°-106°25′=73°35′.20.解:(1)如图所示;(2)如图所示.(第20题)21.解:如图所示,答案不唯一.(第21题)22.解:(1)因为AB =x ,BC =12AB ,所以BC =12x.因为AC =AB +BC ,所以AC =x +12x =32x.(2)因为AD =DC =12AC ,AC =32x ,所以DC =34x.因为DB =3,BC =12x ,DB =DC -BC ,所以3=34x -12x.所以x =12.23.解:绕长所在的直线旋转一周得到圆柱体积:π×32×4=36π(cm 3).绕宽所在的直线旋转一周得到圆柱体积:π×42×3=48π(cm 3).故形成的几何体的体积是36π cm 3或48π cm 3.24.解:因为MBBCCN =,所以设MB =2x cm ,BC =3x cm ,CN =4x cm ,所以MN =MB +BC +CN =2x +3x +4x =9x cm. 因为点P 是MN 的中点,所以PN =12MN =92x cm ,所以PC=PN-CN=92x-4x=2,解得x=4,所以MN=9×4=36(cm).25.解:(1)因为射线OD平分∠AOC,所以∠AOD=∠COD=12∠AOC.因为射线OE平分∠BOC,所以∠COE=∠BOE=12∠BOC.因为∠AOC+∠BOC=180°,所以∠DOE=∠DOC+∠EOC=12∠AOC+12∠BOC=12(∠AOC+∠BOC)=12×180°=90°.(2)因为射线OF平分∠DOE,所以∠DOF=∠EOF=12∠DOE=45°.所以∠FOB+∠DOC=∠BOF+∠AOD=180°-∠DOF=180°-45°=135°.26.解:(1)ON平分∠AOC.理由如下:因为∠MON=90°,所以∠BOM+∠AON=90°,∠MOC+∠NOC=90°.又因为OM平分∠BOC,所以∠BOM=∠MOC,所以∠AON=∠NOC.所以ON平分∠AOC.(2)∠BOM=∠NOC+30°.理由如下:因为∠NOC+∠NOB=60°,∠BOM+∠NOB=90°,所以∠BOM=90°-∠NOB=90°-(60°-∠NOC)=∠NOC+30°.所以∠BOM与∠NOC之间存在的数量关系是:∠BOM=∠NOC+30°.期末质量评估测试卷一、选择题(共12小题,总分36分)1.(3分)下列说法不正确的是()A.0既不是正数,也不是负数B.绝对值最小的数是0C.绝对值等于自身的数只有0和1 D.平方等于自身的数只有0和1 2.(3分)如图是一个简单的运算程序:,如果输入的x 值为-2,则输出的结果为()A.6 B.-6 C.14 D.-14 3.(3分)据统计部门发布的信息,广州2016年常住人口14 043 500人,数字14 043 500用科学记数法表示为()A.0.140 435×108 B.1.404 35×107C.14.043 5×106 D.140.435×105 4.(3分)下列运用等式的性质,变形不正确的是()A.若x=y,则x+5=y+5 B.若a=b,则ac=bcC.若x=y,则xa=yaD.若ac=bc(c≠0),则a=b5.(3分)如果单项式x2y m+2与x n y的和仍然是一个单项式,则m,n的值是() A.m=2,n=2 B.m=-1,n=2C.m=-2,n=2 D.m=2,n=-16.(3分)在解方程x-12-2x+33=1时,去分母正确的是()A.3(x-1)-2(2x+3)=1 B.3(x-1)+2(2x+3)=1C.3(x-1)+2(2x+3)=6 D.3(x-1)-2(2x+3)=67.(3分)如图是用八块完全相同的小正方体搭成的几何体,从左面看几何体得到的图形是()(第7题)(第8题) (第9题)8.(3分)如图,把弯曲的河道改直,能够缩短航程.这样做根据的道理是() A.两点之间,直线最短B.两点确定一条直线C.两点之间,线段最短D.两点确定一条线段9.(3分)有理数a,b在数轴上的位置如图所示,则下列各式中错误的是() A.b<a B.|b|>|a| C.a+b>0 D.ab<0 10.(3分)把一些图书分给某班学生阅读,如果每人分3本,则剩余20本;如果每人分4本,则还缺25本.若设这个班有x名学生,则依题意所列方程正确的是()A.3x-20=4x-25 B.3x+20=4x+25C.3x-20=4x+25 D.3x+20=4x-2511.(3分)如图,图书馆A在蕾蕾家B北偏东30°的方向上,若∠ABC=90°,则超市C在蕾蕾家的()A.南偏东30°的方向上B.南偏东60°的方向上C.北偏东60°的方向上D.北偏东30°的方向上(第11题) (第12题)12.(3分)如图所示,将一张长方形纸的一角斜折过去,使顶点A落在A′处,BC 为折痕,如果BD为∠A′BE的平分线,则∠CBD=()A.80°B.90°C.100°D.70°二、填空题(共6小题,总分18分)13.(3分)-17的相反数是______.14.(3分)计算:a-3a=_______.15.(3分)若|m -2|+(n +1)2=0,则2m +n =_____.16.(3分)如图,把图折叠成一个正方体,如果相对面的值相等,则x ,y 的值是_____________________________________.(第16题) (第17题)17.(3分)如图,点D 是线段AB 的中点,点C 是线段AD 的中点,若CD =1,则AB =________.18.(3分)观察下列各式:31=3,32=9,33=27,34=81,35=243,36=729……你能从中发现底数为3的幂的个位数有什么规律吗?根据你发现的规律回答:32 018的个位数字是___________.三、解答题(共8小题,总分66分)19.(6分)所有的正数组成正数集合,所有的负数组成负数集合,所有的整数组成整数集合,所有的分数组成分数集合,请把下列各数填入相应的集合中:-2.5,3.14,-2,+72,-0.6,0.618,0,-0.101 正数集合:{…};负数集合:{ …};分数集合:{ …};非负数集合:{…}.20.(12分)计算:(1)-15+(-8)-(-11)-12;(2)(-312)×(-13)×314÷(-12);(3)-136÷16-19-13;(4)-23+[(-4)2-(1-32)×3].21.(8分)解方程:(1)2(3x-1)=16;(2)x+14-1=2x+16.22.(6分)先化简,再求值:2(a2b+ab2)-2(a2b-1)-ab2-2.其中a=1,b=-3. .23.(6分)如图所示,将面积为a2的小正方形和面积为b2的大正方形放在同一水平面上(b>a>0).(第23题)(1)用a,b表示阴影部分的面积;(2)计算当a=3,b=5时,阴影部分的面积.24.(8分)如图,点C在线段AB上,AC=8 cm,CB=6 cm,点M,N分别是AC,BC的中点.(第24题)(1)求线段MN的长;(2)若C为线段AB上任意一点,满足AC+CB=a cm,其他条件不变,你能猜出线段MN的长度吗?并说明理由.25.(10分)某学校刚完成一批结构相同的学生宿舍的修建,这些宿舍地板需要铺瓷砖,一天4名一级技工去铺4个宿舍,结果还剩12 m2地面未铺瓷砖;同样时间内6名二级技工铺4个宿舍刚好完成,已知每名一级技工比二级技工一天多铺3 m2瓷砖.(1)求每个宿舍需要铺瓷砖的地板面积.(2)现该学校有20个宿舍的地板和36 m2的走廊需要铺瓷砖,某工程队有4名一级技工和6名二级技工,一开始有4名一级技工来铺瓷砖,3天后,学校根据实际情况要求2天后必须完成剩余的任务,所以决定加入一批二级技工一起工作,问需要再安排多少名二级技工才能按时完成任务.26.(10分)如图,在∠AOB的内部作射线OC,使∠AOC与∠AOB互补.将射线OA,OC同时绕点O分别以每秒12°,每秒8°的速度按逆时针方向旋转,旋转后的射线OA,OC分别记为OM,ON,设旋转时间为t秒.已知t<30,∠AOB=114°.(第26题)(1)求∠AOC的度数;(2)在旋转的过程中,当射线OM,ON重合时,求t的值;(3)在旋转的过程中,当∠COM与∠BON互余时,求t的值.答案一、1.C2.C3.B4.C5.B6.D7.A8.C9.C10.D11.B12.B二、13.1714.-2a15.316.x=6,y=1或x=-1,y=-617.418.9三、19.正数集合:{3.14,+72,0.618,…};负数集合:{-2.5,-2,-0.6,-0.101,…};分数集合:{-2.5,3.14,-0.6,0.618,-0.101,…};非负数集合:{3.14,+72,0.618,0,…}.20.解:(1)原式=-15+(-8)+11+(-12)=-35+11=-24;(2)原式=-72×(-13)×314×(-2)=-12;(3)原式=-136÷318-218-618=-136÷-518=-136×-185=110;(4)原式=-8+[16-(1-9)×3]=-8+[16-(-8)×3]=-8+(16+24)=-8+40=32.21.解:(1)去括号得6x-2=16,移项、合并同类项得6x=18,系数化为1得x =3;(2)去分母得3(x+1)-12=2(2x+1),去括号得3x+3-12=4x+2,移项、合并同类项得-x=11,系数化为1得x=-11.22.解:原式=2a2b+2ab2-2a2b+2-ab2-2=ab2,当a=1,b=-3时,原式=1×(-3)2=9.23.解:(1)阴影部分的面积为12b2+12a(a+b);(2)当a=3,b=5时,12b2+12a(a+b)=12×25+12×3×(3+5)=492,即阴影部分的面积为49 2 .24.解:(1)因为点M,N分别是AC,BC的中点,AC=8 cm,CB=6 cm,所以CM=12AC=12×8=4(cm),CN=12BC=12×6=3(cm),所以MN=CM+CN=4+3=7(cm);41 (2)能.MN =12a cm. 理由如下:因为点M ,N 分别是AC ,BC 的中点,所以CM =12AC ,CN =12BC ,所以MN =CM +CN =12AC +12BC =12(AC +BC)=12a cm. 25.解:(1)设每个宿舍需要铺瓷砖的地板面积为x m 2,则依题意列出方程:4x -124-4x 6=3,解方程得:x =18.所以每个宿舍需要铺瓷砖的地板面积为18 m 2. (2)设需要再安排y 名二级技工才能按时完成任务.因为每名一级技工每天可铺砖面积:4×18-124=15(m 2),每名二级技工每天可铺砖面积:15-3=12(m 2),所以15×4×5+2×12y =20×18+36.解得:y =4. 所以需要再安排4名二级技工才能按时完成任务.26.解:(1)因为∠AOC 与∠AOB 互补,所以∠AOC +∠AOB =180°.因为∠AOB =114°,所以∠AOC =180°-114°=66°.(2)由题意得12t =8t +66.解得t =16.5.所以当t =16.5时,射线OM ,ON 重合.(3)当t <5.5时,射线OM 在∠AOC 内部,射线ON 在∠BOC 内部,由题意得66-12t +114-66-8t =90,解得t =1.2;当t >6时,射线ON 在∠BOC 外部,射线OM 在∠AOC 外部,由题意得12t -66+8t -(114-66)=90,解得t =10.2.综上所述,当∠COM 与∠BON 互余时,t 的值为1.2或10.2.2020年最新。

新人教版七年级数学上册第一单元测试卷(含答案)

新人教版七年级数学上册第一单元测试卷(含答案)

新人教版七年级数学上册单元测试卷第一单元:有理数一、选择题(本题共10小题,每小题3分,共30分)1.如果水库的水位高于正常水位2m时,记作+2m,那么低于正常水位3m时,应记作()A.+3mB.-3mC.+13D.-132. 室内温度是150℃,室外温度是-30℃,则室外温度比室内温度低( )A .120℃ B.180℃ C.-120℃ D.-180℃3. 一个数和它的倒数相等,则这个数是()A.1B.-1C.±1 D.±1和04. 若|a|=5,b=-3,则a-b的值是()A.2或8B.-2或8C.2或-8D.-2或-85. 下列四组有理数的大小比较正确的是()A.−12>−13B.-|-1|>-|+1|C.12<13D.|−12|>|−13|6. 若三个有理数的和为0,则下列结论正确的是()A.这三个数都是0B.最少有两个数是负数C.最多有两个正数D.这三个数是互为相反数7. 下列各式中正确的是()A.a2=.(−a)2B. a3=.(−a)3C.−a2=.|−a2|D. a3=.|a|38. 若x的相反数是3,│y│=5,则x+y的值为()A.-8B.2C.-8或2D.8或-29. 两个数的差是负数,则这两个数一定是( )A.被减数是正数,减数是负数B.被减数是负数,减数是正数C.被减数是负数,减数也是负数D.被减数比减数小10. 点A在数轴上表示+2,从点A沿数轴向左平移3个单位到点B,点B表示的数是( )A. 3B.-1C.5D.-1或3二、填空题(本题共6小题,每小题3分,共18分)11. 甲潜水员所在高度为-45米,乙潜水员在甲的上方15米处,则乙潜水员的所在的高度是__________.12. 大肠杆菌每过20分便由1个分裂成2个,经过3小时后这种大肠杆菌由1个分裂成__________个。

13. 在数轴上,与表示数-1的点的距离是5的点表示的数是。

最新人教版七年级数学上册单元测试题及答案全册

最新人教版七年级数学上册单元测试题及答案全册

最新人教版七年级数学上册单元测试题及答案全册最新人教版七年级数学上册单元测试题及答案全册第一章有理数末章综合检测时间:90分钟满分:120分)一、选择题(每小题3分,共30分)1.有理数-4的相反数是()A.4B.-4C.4D.-42.比较-3,1,-2的大小,下列排序正确的是()A.-3<-2<1B.-2<-3<1C.1<-2<-3D.1<-3<-23.为了市民出行更加方便,某市政府大力发展交通,2016年某市公共交通客运量约为1 608 000 000人次,将1 608 000 000用科学记数法表示为()A.160.8×107B.16.08×108C.1.608×109D.0.1608×10104.某市一天上午的气温是10℃,下午上升了2℃,半夜(24时)下降了15℃,则半夜的气温是()A.3℃B.-3℃C.4℃D.-2℃5.杨梅开始采摘啦!每筐杨梅以5 kg为基准,超过的千克数记为正数,不足的千克数记为负数,记录如图1-1,则4筐杨梅的总质量是()A.19.7 kgB.19.9 kgC.20.1 kgD.20.3 kg6.(-3)的倒数是()A.3B.-2C.3D.27.下列运算错误的是()A.-8×2×6=-96B.(-1)2014+(-1)2015=0C.-(-3)2=-9D.2÷4÷3×3=28.如图1-2,A,B两点在数轴上表示的数分别为a,b,下列式子成立的是()A.ab>0B.a+b0 D.(b-1)(a-1)>09.若|a-1|+(b+3)2=0,则ba=()A.1B.-1C.3D.-310.规定一种新的运算“*”:对于任意有理数x,y满足x*y=x-y+xy.例如,3*2=3-2+3×2=7,则2*1=()A.4B.3C.2D.1二、填空题(每小题4分,共32分)11.一个点从数轴上表示-1的点开始,先向右平移6个单位长度,再向左平移8个单位长度,则此时这个点表示的数是_____。

人教版数学七年级上册单元测试卷-第一单元 有理数(含答案)

人教版数学七年级上册单元测试卷-第一单元 有理数(含答案)

保密★启用前人教版数学七年级上册单元测试卷第一单元 有理数一、单选题1.如果规定收入为正,那么支出为负,收入2元记作2+,支出5元记作( ). A .5元B .5-元C .3-元D .7元2.2022的相反数是( ) A .12022B .12022-C .−2022D .20223.下列计算结果为0的是( ) A .2222--B .223(3)-+-C .22(2)2-+D .2333--⨯4.数轴上,把表示2的点向左平移3个单位长度得到的点所表示的数是( ). A .-5B .-1C .1D .55.华为最新款手机芯片“麒麟990”是一种微型处理器,每秒可进行100亿次运算,它工作2022秒可进行的运算次数用科学记数法表示为( ) A .140.202210⨯B .1220.2210⨯C .132.02210⨯D .142.02210⨯6.下面算式与11152234-+的值相等的是( )A .111324234⎛⎫⎛⎫--+- ⎪ ⎪⎝⎭⎝⎭B .11133234⎛⎫--+ ⎪⎝⎭C .111227234⎛⎫+-+ ⎪⎝⎭D .11143234⎛⎫--+ ⎪⎝⎭7.观察下列三组数的运算:3(2)8-=-,328-=-;3(3)27-=-,3327-=-;3(4)64-=-,3446-=-.联系这些具体数的乘方,可以发现规律.下列用字母a 表示的式子:①当0a <时,33()a a =-;①当0a >时,33()a a -=-.其中表示的规律正确的是( ) A .①B .①C .①、①都正确D .①、①都不正确8.数轴上,点A 对应的数是6-,点B 对应的数是2-,点O 对应的数是0.动点P 、Q 从A 、B 同时出发,分别以每秒3个单位和每秒1个单位的速度向右运动.在运动过程中,下列数量关系一定成立的是( )A .2PQ OQ =B .2OP PQ =C .32QB PQ =D .PB PQ =9.如图,正方形的周长为8个单位,在该正方形的4个顶点处分别标上0,2,4,6,先让正方形上表示数字6的点与数轴上表﹣3的点重合,再将数轴按顺时针方向环绕在该正方形上,则数轴上表示2017的点与正方形上的数字对应的是( )A .0B .2C .4D .610.如图,数轴上4个点表示的数分别为a 、b 、c 、d .若|a ﹣d |=10,|a ﹣b |=6,|b ﹣d |=2|b ﹣c |,则|c ﹣d |=( )A .1B .1.5C .1.5D .2二、填空题11.用科学记数法表示的数的原数5.001×106=___.12.已知:a 、b 互为相反数,c 、d 互为倒数,2m =,则()()220212020a b m cd ++-=______.13.东京与北京的时差为1h +,伯伯在北京乘坐早晨9:00的航班飞行约3h 到达东京,那么李伯伯到达东京的时间是____.(注:正数表示同一时刻比北京时间早的时数) 14.大家知道,550=-,它在数轴上的意义是:表示5的点与原点(即表示0的点)之间的距离.又如式子63-,它在数轴上的意义是:表示6的点与表示3的点之间的距离.类似地,式子()5a --在数轴上的意义是______. 15.有理数,,a b c 在数轴上对应点位置如图所示,用“>”或“<”填空:(1)|a |______|b |; (2)a +b +c ______0:(3)a -b +c ______0; (4)a +c ______b ; (5)c -b ______a . 16.下列说法:①若a ,b 互为相反数,则ab=﹣1;①如果|a +b |=|a |+|b |,则ab ≥0;①若x 表示一个有理数,则|x +2|+|x +5|+|x ﹣2|的最小值为7; ①若abc <0,a +b +c >0,则a bc ab abc a bc ab abc+++的值为﹣2.其中一定正确的结论是____(只填序号). 三、解答题 17.计算:(1)2(7)18(2)-⨯--÷-; (2)212316()12()234-÷--⨯-.18.画出数轴,用数轴上的点表示下列各数,并用“>”将它们连接起来: 33,2,1.5,,0,0.54---.19.比较下列各数的大小,并用“<”号连接起来:2.5-,12,3,3--,(2)--,0.20.如图所示,在数轴上点A,B,C表示得数为﹣2,0,6,点A与点B之间的距离表示为AB,点B与点C之间的距离表示为BC,点A与点C之间的距离表示为AC.(1)求AB、AC的长;(2)点A,B,C开始在数轴上运动,若点A以每秒2个单位长度的速度向左运动,同时,点B和点C分别以每秒3个单位长度和4个单位长度的速度向右运动.请问:BC ﹣AB的值是否随着运动时间t的变化而变化?若不变,请求其值;若变化,请说明理由并判断是否有最值,若有求其最值.21.入冬以来,某品牌的羽绒服统计了在西乡市场某一周的销售情况,以每天100件为标准,超过的件数记作正数,不足的件数记作负数,记录如下:8,12,-9,6,-11,10,-2.(1)求销量最多的一天比销量最少的一天多销售______件;(2)该品牌羽绒服这一周的销售总量是多少件?若每件羽绒服的利润为130元,则这一周销售该品牌羽绒服的总利润为多少元?22.对于平面内的两点M、N,若直线MN上存在点P,使得MP=1NP成立,则称点P为点M、N的“和谐点”,但点P不是点N、M的“和谐点”.(1)如图1,点A、B在直线l上,点C、D是线段AB的三等分点,则是点A、B的“和谐点”(填“点C或“点D”);(2)如图2,已知点E、F、G在数轴上,点E表示数-2,点F表示数1,且点F是点E、G的“和谐点”,求点G表示的数;(3)如图3,数轴上的点P表示数5,点M从原点O出发,以每秒3个单位的速度向左运动,点N从点P出发,以每秒10个单位的速度向左运动,点M、N同时出发.在M、N、P三点中,若点M是另两个点的“和谐点”,则OM= .23.计算:已知|m|=1,|n|=4.(1)当mn<0时,求m+n的值;(2)求m﹣n的最大值.24.阅读下面的文字回答后面的问题:求231005555+++⋯+的值解:令231005555S=+++⋯+①将等式两边同时乘以5到:23410155555S=+++⋯+①①-①得:101455S=-①101554S-=即101231005555554-+++⋯+=问题:求231002222+++⋯+的值;参考答案:1.B【解析】【分析】结合题意,根据正负数的性质分析,即可得到答案.【详解】根据题意得:支出5元记作5-元故选:B.【点睛】本题考查了正数和负数的知识;解题的关键是熟练掌握正负数的性质,从而完成求解.2.C【解析】【分析】根据相反数的定义求解即可,只有符号不同的两个数互为相反数.【详解】解:2022的相反数是−2022.故选:C.【点睛】本题考查了相反数的定义,掌握相反数的定义是解题的关键.3.B【解析】【分析】根据有理数的乘方对各选项分别进行计算,然后利用排除法求解即可.【详解】A. 22--=−4−4=−8,故本选项错误;22B. 22-+-=−9+9=0,故本选项正确;3(3)C. 22-+=4+4=8,故本选项错误;(2)2D. 2333--⨯=−9−9=−18,故本选项错误.故选B.【点睛】此题考查有理数的乘方,解题关键在于掌握运算法则4.B【解析】【分析】根据数轴上点的坐标特点及平移的性质解答即可.【详解】解:根据题意:数轴上2所对应的点为A,将A点左移3个单位长度,得到点的坐标为2-3=-1,故选:B.【点睛】本题考查了数轴上的点与实数对应关系及图形平移的性质等有关知识.5.C【解析】【分析】科学记数法的表示形式为10na⨯的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的值与小数点移动的位数相同,题中:1亿810=.【详解】解:100亿1010=,1013102022 2.02210⨯=⨯,故选:C.【点睛】本题考查科学记数法的表示方法,关键要正确确定a的值以及n的值.6.C【解析】【分析】直接计算每个算式,对比答案即可.【详解】解:1111115 52527 23423412-+=+-++=;A 、1111111117324324324123423423412⎛⎫⎛⎫--+-=++-=+++--= ⎪ ⎪⎝⎭⎝⎭;B 、1111111111333333723423423412⎛⎫--+=++=++++= ⎪⎝⎭;C 、1111115227227723423412⎛⎫+-+=+--++= ⎪⎝⎭;D 、11111114343823423412⎛⎫--+=++++= ⎪⎝⎭,故选:C 【点睛】本题考查了有理数的加减运算,熟记有理数的加减混合运算的法则是解题的关键. 7.B 【解析】 【分析】根据三组数的运算的规律逐个判断即可得. 【详解】解:由三组数的运算得:[]333222))8((-=-==----, []3333(3)(3)27-=--=--=-,[]3334(4)(4)64-=--=--=-,归纳类推得:当0a <时,33()a a =--,式子①错误; 由三组数的运算得:3328(2)-=-=-, 33327(3)--=-=, 33464(4)--=-=,归纳类推得:当0a >时,33()a a -=-,式子①正确; 故选:B . 【点睛】本题考查了有理数乘方的应用,正确归纳类推出一般规律是解题关键. 8.A 【解析】 【分析】设运动时间为t秒,根据题意可知AP=3t,BQ=t,AB=2,然后分类讨论:①当动点P、Q在点O左侧运动时,①当动点P、Q运动到点O右侧时,利用各线段之间的和、差关系即可解答.【详解】解:设运动时间为t秒,由题意可知: AP=3t,BQ=t,AB=|-6-(-2)|=4,BO=|-2-0|=2,①当动点P、Q在点O左侧运动时,PQ=AB-AP+BQ=4-3t+t=2(2-t),①OQ= BO- BQ=2-t,①PQ= 2OQ ;①当动点P、Q运动到点O右侧时,PQ=AP-AB-BQ=3t-4-t=2(t-2),①OQ=BQ- BO=t-2,①PQ= 2OQ,综上所述,在运动过程中,线段PQ的长度始终是线段OQ的长的2倍,即PQ= 2OQ一定成立.故选: A.【点睛】本题考查了数轴上的动点问题及数轴上两点间的距离,解题时注意分类讨论的运用.9.B【解析】【分析】表示2017的点在﹣1的右侧,从点﹣1到2017共2018个单位长度,根据2018÷8=252……2,是252圈余2个单位长度,所以对应的数字就是2.【详解】解:因为正方形的周长为8个单位长度,所以正方形的边长为2个单位长度.表示2017的点与表示﹣1的点的距离等于2017﹣(﹣1)=2018个单位长度,因为2018÷8=252……2,所以252圈余2个单位长度,所以对应的数字是2.故选:B.【点睛】此题考查了数轴,解题的关键是找出正方形的周长与数轴上的数字的对应关系.10.D【解析】【分析】根据|a−d|=10,|a−b|=6得出b和d之间的距离,从而求出b和c之间的距离,然后假设a 表示的数为0,分别求出b,c,d表示的数,即可得出答案.【详解】解:①|a−d|=10,①a和d之间的距离为10,假设a表示的数为0,则d表示的数为10,①|a−b|=6,①a和b之间的距离为6,①b表示的数为6,①|b−d|=4,①|b−c|=2,①c表示的数为8,①|c−d|=|8−10|=2,故选:D.【点睛】本题主要考查数轴上两点间的距离、绝对值的意义,关键是要能恰当的设出a、b、c、d表示的数.11.5001000【解析】【分析】把5.001×106表示成原数的形式,就是把5.001的小数点向右移动6位即可得到.【详解】解:5.001×106=5001000,故答案为:5001000.【点睛】本题考查了科学记数法,把科学记数法表示的数还原成原数,当n>0时,n是几,小数点就向右移几位.12.1或-3##-3或1【解析】【分析】根据a、b互为相反数,c、d互为倒数,m的绝对值为2,可以得到a+b=0,cd=1,m=±2,然后代入所求式子计算即可.【详解】解:∵a、b互为相反数,c、d互为倒数,m的绝对值为2,∴a+b=0,cd=1,m=±2,当m=2时,()()2202120112020a bm cd++-=+-=;当m=﹣2时,()()220212013 2020a bm cd++-=-+-=-;故答案为:1或-3.【点睛】本题考查有理数的混合运算,解答本题的关键是求出a+b=0,cd=1,m=±2.13.13时【解析】【分析】根据题意,9点先加上3个小时,再加上时差的1个小时,得到达到东京的时间.【详解】由题意得93113++=,∴李伯伯到达东京是下午13时.故答案是:13时.【点睛】本题考查有理数加法的实际应用,解题的关键是掌握有理数加法运算法则.14.表示a的点与表示-5的点之间的距离【解析】【分析】利用绝对值的意义即可求解.【详解】=-,它在数轴上的意义是:表示5的点与原点(即表示0的点)之间的距解:因为550-,它在数轴上的意义是:表示6的点与表示3的点之间的距离,离,式子63a--在数轴上的意义是表示a的点与表示-5的点之间的距离.所以式子()5【点睛】本题考查了绝对值,掌握绝对值的意义是解题的关键.15.<<>>>【解析】【分析】首先根据数轴可得b<a<0<c,然后再结合绝对值的性质和有理数的加减法法法则进行计算即可.【详解】解:(1)①根据数轴可得b<a<0<c,①|a|<|b|故答案为:<;(2)①a<0<c,|a|>|c|,①a+c<0,①a+b+c<0;故答案为:<;(3)①a-b>0,①a-b+c>0;故答案为:>;(4)①a >b ,①a +c >b ;故答案为:>;(5)①c >b ,①c -b >0,①c -b >a .故答案为:>;【点睛】此题主要考查了有理数的比较大小,关键是掌握绝对值的定义和有理数的加减法法法则. 16.①①##①①【解析】【分析】根据相反数和绝对值的意义讨论即可得出答案.【详解】①若a ,b 互为相反数,则0a b +=,不能得出1a b=-,故①错误; ①当0,0a b ≥≥或0,0a b <<时,a b a b +=+成立,当0,0a b ><或0,0a b <>时,a b a b a b +=-≠+, ∴a b a b +=+成立,则0,0a b ≥≥或0,0a b <<,即0ab ≥,故①正确; ①252x x x ++++-表示x 到数2-、5-、2三个点的距离之和,所以2x =-时,252x x x ++++-取得最小值,最小值为2(5)7--=,故①正确;①当0,0,0c a b <>>且0a b c ++>时,111102abcababca bc ab abc a bc ab abc a bc ab abc--+++=+++=-+-=≠-,故①错误. 故答案为:①①.【点睛】本题考查相反数与绝对值,掌握绝对值的意义是解题的关键.17.(1)23(2)-63【解析】【分析】直接利用有理数混合运算法则计算即可.(1)解:2(7)18(2)14(9)14923-⨯--÷-=--=+=.(2) 解:21231116()12()1612()64163234412-÷--⨯-=-÷-⨯-=-+=-. 【点睛】本题考查有理数的混合运算,注意先算乘方,再算乘除,后算加减,有括号要先算括号里面的;可以结合题目特点,灵活运用结合律、分配律、交换律,从而起到简化运算的效果.18.作图见解析;33 1.500.524>>>->->-. 【解析】【分析】先在数轴上表示出各个数,再根据数轴上的点表示的数的大小规律即可得到结果.【详解】解:在数轴上表示出各个数如图所示:则可得3>1.5>0>−0.5>34->−2【点睛】本题考查了利用数轴比较有理数的大小,解题的关键是熟练掌握数轴上的点表示的数,右边的数始终大于左边的数.19.()13 2.50232-<-<<<--< 【解析】【分析】先把每个数进行化简,再根据有理数的大小排列起来即可.解:33--=-,(2)2--=, ①13 2.50232-<-<<<< , ①13 2.50(2)32--<-<<<--<.【点睛】本题考查比较数的大小,准确的把每个数进行化简是解题的关键.20.(1)2,8AB AC ==(2)变化,当0=t 时取得最大值4【解析】【分析】(1)根据点A ,B ,C 表示的数,即可求出AB , AC 的长;(2)根据题意分别求得点A 表示的数为-2-2t ,点B 表示的数为3t ,点C 表示的数为6+4t ,根据两点距离求得,BC AB ,进而根据整式的加减进行计算即可.(1)解:AB =0-(-2)=2, AC =()628--=.(2)当运动时间为t 秒时,点A 表示的数为-2-2t ,点B 表示的数为3t ,点C 表示的数为6+4t , 则6436BC t t t =+-=+,()32225AB t t t =---=+ ()62544BC AB t t t ∴-=+-+=-当0=t 时,BC AB -的值最大,最大值为4.【点睛】本题考查了列代数式、数轴以及两点间的距离,解题的关键是:(1)根据三个点表示的数,求出三条线段的长度;(2)利用含t 的代数式表示出BC ,AB 的长.21.(1)23(2)该品牌羽绒服这一周的销售总量是714件,总利润为92820元【解析】(1)直接利用有理数的减法法则,用最大的数减去最小的数即可;(2)可以先求出7天的标准件数,再加上比标准多或少件数即可,利用这周销售羽绒服的总件数×130即可.(1)12(11)23--=(件)故答案为:23;(2)7×100+8+12+(-9)+6+(-11)+10+(-2)=714(件)所以该品牌羽绒服这一周的销售总量是714件.714×130=92820(元)所以这一周销售该品牌羽绒服的总利润为92820元.【点睛】本题主要考查正数和负数,正确利用有理数的运算法则是解题的关键.22.(1)点C(2)-5或7(3)45或1517或4511【解析】【分析】(1)点C、D是线段AB的三等分点,故可直接依题意判断得到答案.(2)按“和谐点”的定义列出等式,然后可求得答案.(3)设经过t秒后满足点M是点N、P的“和谐点”或点M是P、N的“和谐点”,求出t的值,进而得到答案.(1)解:①点C、D是线段AB的三等分点①12 AC BC=故点C是点A、B的“和谐点”.(2)解:点F 是点E 、G 的“和谐点”,依题意有12EF GF =, ①3EF =①6GF =①点G 为-5或7.(3)解:设时间t 秒后:①满足点M 是点N 、P 的“和谐点”,此时点M 为-3t ,点N 为5-10t ,依题意有12NM PM = ①()157532t t -=+当570t ->时,()15757532t t t -=-=+,解得517t =①点M 为1517-,1517OM = 当570t -<时,()()157532t t --=+,解得1511t①点M 为1511-,4511OM =①满足点M 是P 、N 的“和谐点”,此时点M 为-3t ,点N 为5-10t ,依题意有12PM NM = ①153572t t +=- ,解得15t =①45OM =综上所述,45OM =或1517或4511 【点睛】本题考查数轴上的两点距离及动点问题,熟练掌握数轴的相关知识,按定义列出等式求解是解题的关键.23.(1)±3;(2)m ﹣n 的最大值是5.【解析】【分析】由已知分别求出m =±1,n =±4;(1)由已知可得m =1,n =﹣4或m =﹣1,n =4,再求m +n 即可;(2)分四种情况分别计算即可.【详解】①|m |=1,|n |=4,①m =±1,n =±4;(1)①mn <0,①m =1,n =﹣4或m =﹣1,n =4,①m +n =±3;(2)分四种情况讨论:①m =1,n =4时,m ﹣n =﹣3;①m =﹣1,n =﹣4时,m ﹣n =3;①m =1,n =﹣4时,m ﹣n =5;①m =﹣1,n =4时,m ﹣n =﹣5;综上所述:m ﹣n 的最大值是5.【点睛】本题考查了有理数的运算,绝对值的运算;掌握有理数和绝对值的运算法则,能够正确分类是解题的关键.24.10122-【解析】【分析】根据题目解题过程进行求解即可;【详解】解:令231002222S =+++⋯+①将等式两边同时乘以2到:20134122222S =+++⋯+①①-①得:10122S =-①10122S =-,即23100101222222++++=⋯-.【点睛】本题主要考查有理数混合运算的应用,正确理解题意,根据题目方法步骤进行求解是解题的关键.。

人教版七年级上册数学单元测试题带答案

人教版七年级上册数学单元测试题带答案

第一章有理数【课标要求】考点知识点知识与技能目标了解理解掌握灵活应用有理数有理数及有理数的意义∨相反数和绝对值∨有理数的运算∨解释大数∨【知识梳理】1.数轴:数轴三要素:原点,正方向和单位长度;数轴上的点与实数是一一对应的。

2.相反数实数a的相反数是-a;若a与b互为相反数,则有a+b=0,反之亦然;几何意义:在数轴上,表示相反数的两个点位于原点的两侧,并且到原点的距离相等。

3.倒数:若两个数的积等于1,则这两个数互为倒数。

4.绝对值:代数意义:正数的绝对值是它本身,负数的绝对值是它的相反数,0的绝对值是0;几何意义:一个数的绝对值,就是在数轴上表示这个数的点到原点的距离. 5.科学记数法:,其中。

6.实数大小的比较:利用法则比较大小;利用数轴比较大小。

7.在实数范围内,加、减、乘、除、乘方运算都可以进行,但开方运算不一定能行,如负数不能开偶次方。

实数的运算基础是有理数运算,有理数的一切运算性质和运算律都适用于实数运算。

正确的确定运算结果的符号和灵活的使用运算律是掌握好实数运算的关键。

【能力训练】一、选择题。

1.下列说法正确的个数是 ( )①一个有理数不是整数就是分数②一个有理数不是正数就是负数③一个整数不是正的,就是负的④一个分数不是正的,就是负的A 1B 2C 3D 42. a,b是有理数,它们在数轴上的对应点的位置如下图所示:把a,-a,b,-b按照从小到大的顺序排列( )A -b<-a<a<bB -a<-b<a<bC -b<a<-a<bD -b<b<-a <a3.下列说法正确的是( )①0是绝对值最小的有理数②相反数大于本身的数是负数③数轴上原点两侧的数互为相反数④两个数比较,绝对值大的反而小A ①②B ①③C ①②③D ①②③④4.下列运算正确的是( )A B -7-2×5=-9×5=-45C 3÷D -(-3)2=-95.若a+b<0,ab<0,则( )A a>0,b>0B a<0,b<0C a,b两数一正一负,且正数的绝对值大于负数的绝对值D a,b两数一正一负,且负数的绝对值大于正数的绝对值6.某粮店出售的三种品牌的面粉袋上分别标有质量为(25±0.1)kg,(25±0.2)kg, (25±0.3)kg的字样,从中任意拿出两袋,它们的质量最多相差()A 0.8kgB 0.6kgC 0.5kgD 0.4kg7.一根1m长的小棒,第一次截去它的,第二次截去剩下的,如此截下去,第五次后剩下的小棒的长度是()A ()5m B [1-()5]m C ()5m D [1-()5]m8.若ab≠0,则的取值不可能是()A 0B 1C 2D -2二、填空题。

人教版初中数学七年级上册第1章《有理数》单元测试题及答案

人教版初中数学七年级上册第1章《有理数》单元测试题及答案

人教版初中数学七年级上册第1章《有理数》单元测试题及答案一、选择题(本大题共10小题,共30.0分)1.用表示的数一定是A. 负数B. 正数或负数C. 负整数D. 以上全不对2.若a、b都是不为零的数,则的结果为A. 3或B. 3或C. 或1D. 3或或13.实数a、b在数轴上的位置如图,则|a+b|-|a-b|等于()A. 2aB. 2bC.D.4.计算-42的结果等于()A. B. 16 C. D. 85.-23的意义是()A. 3个相乘B. 3个相加C. 乘以3D. 的相反数6.下列说法中:①若干个有理数相乘,如果负因数的个数是奇数,则乘积一定是负数;②若a、b互为相反数,则;③当a≠0时,|a|总是大于0;④如果a=b,那么,其中正确的说法个数是()A. 1B. 2C. 3D. 47.有理数在数轴上的位置如图所示,则在式子中,值最大的是()A. B. C. D.8.现定义一种新运算“*”,规定a*b=ab+a-b,如1*3=1×3+1-3,则(-2*5)*6等于()A. 120B. 125C.D.9.若m•n≠0,则+的取值不可能是()A. 0B. 1C. 2D.A. 0B.C. 10D. 20二、填空题(本大题共6小题,共18.0分)11.若-1<x<4,则|x+1|-|x-4|= ______ .12.如果a<0,则|a|=______.13.在数轴上,点P与表示有理数2的点A相距3个单位,则点P表示的数是______ .14.如图,在每个“〇”中填入一个整数,使得其中任意四个相邻“〇”中所填整数之和都相等,可得d的值为______.15.若输入整数a,按照下列程序,计算将无限进行下去且不会输出,则a所有可能取到的值为______.16.规定:[x]表示不大于x的最大整数,(x)表示不小于x的最小整数,[x)表示最接近x的整数(x≠n+0.5,n为整数),例如:[2.3]=2,(2.3)=3,[2.3)=2.当-1<x<1时,化简[x]+(x)+[x)的结果是______.三、计算题(本大题共1小题,共20.0分)17.计算下列各题(1)(-2)3-|2-5|-(-15)(2)-4(3)(4)(5).四、解答题(本大题共3小题,共32.0分)18.观察下列单项式:-x,3x2,-5x3,7x4,…,-37x19,39x20,…写出第n个单项式.为了解决这个问题,特提供下面的解题思路:(1)这组单项式的系数的符号、绝对值规律是什么?(2)这组单项式的次数的规律是什么?(4)请你根据猜想,请写出第2013个、第2014个单项式.19.如图,已知点A在数轴上,从点A出发,沿数轴向右移动3个单位长度到达点C,点B所表示的有理数是5的相反数,按要求完成下列各小题.(1)请在数轴上标出点B和点C;(2)求点B所表示的有理数与点C所表示的有理数的乘积;(3)若将该数轴进行折叠,使得点A和点B重合,则点C和数______所表示的点重合.20.观察下列等式:=1-,=,=三个等式两边分别相加得:=1-=1-=(1)猜想并写出:______ ;(2)直接写出下列各式的计算结果:+++…+= ______ ;(3)探究并计算:+++…+.答案和解析1.【答案】B【解析】【分析】此题主要考查了绝对值的定义及有理数的加法法则.由于m、n为非零的有理数,则有3种情况要考虑到,用到了分类讨论的思想.由于m、n为非零的有理数,根据有理数的分类,m、n的值可以是正数,也可以是负数.那么分三种情况分别讨论:①两个数都是正数;②两个数都是负数;③其中一个数是正数另一个是负数,针对每一种情况,根据绝对值的定义,先去掉绝对值的符号,再计算即可.【解答】解:分3种情况:①两个数都是正数;∴+=1+1=2,②两个数都是负数;∴+=-1-1=-2,③其中一个数是正数另一个是负数,所以,原式=-1+1=0.∴+的取值不可能是1.故选B.2.【答案】A【解析】【分析】此题考查了有理数的加法,绝对值的有关知识,熟练掌握运算法则是解本题的关键.找出绝对值小于5的所有整数,求和即可.【解答】解:绝对值小于5的所有整数为:0,±1,±2,±3,±4,∴0-1+1-2+2-3+3-4+4=0.故选A.3.【答案】D【解析】解:a>0时,-a<0,是负数,a=0时,-a=0,0既不是正数也不是负数,a<0时,-a>0,是正数,综上所述,-a表示的数可以是负数,正数或0.故选D.根据字母表示数解答.本题考查了有理数,熟练掌握字母表示数的意义是解题的关键.4.【答案】B【解析】【分析】本题考查了绝对值的意义及分式的化简.正数和0的绝对值是它本身,负数和0的绝对值是它的相反数.当x>0时,=1;当x<0时,=-1.互为相反数(0除外)的两个数的商为-1,相同两个数(0除外)的商为1.可从a、b同号,a、b异号,分类讨论得出结论.【解答】解:①当a>0,b>0时则++=1+1+1=3;②当a<0,b<0时=-1-1+1=-1;③当a>0,b<0时=1-1-1=-1;④当a<0,b>0时=-1+1-1=-1;故选B.5.【答案】A【解析】【分析】此题考查了整式的加减,绝对值,以及实数与数轴,熟练掌握运算法则是解本题的关键.根据数轴上点的位置判断出绝对值里边式子的正负,利用绝对值的代数意义化简,去括号合并即可得到结果.【解答】解:根据数轴上点的位置得:a<0<b,且|a|<|b|,∴a+b>0,a-b<0,则原式=a+b+a-b=2a.故选A.6.【答案】A【解析】解:-42=-16,根据有理数的乘方法则求出即可.本题考查了有理数的乘方,能区分-42和(-4)2是解此题的关键.7.【答案】D【解析】【分析】根据乘方的意义和相反数的定义判断.本题考查了有理数乘方:求n 个相同因数积的运算,叫做乘方.【解答】解:-23的意义是3个2相乘的相反数.故选D.8.【答案】A【解析】【分析】本题考查有理数的相关概念,学生需要充分理解正负数,0,相反数,绝对值等概念,特别需要注意0既不是正数也不是负数这一重要特性.【解答】①若干个有理数相乘,如果负因数的个数是奇数,还需要因数中没有0,才能得到乘积一定是负数,故错误;②0和它本身也是互为相反数,但是没有意义,故错误;③正数的绝对值是正数,负数的绝对值是正数,0的绝对值是0.当时,a的绝对值总是大于0,正确;④当c=0时,没有意义,故错误.故选A.9.【答案】D【解析】【分析】本题考查了数轴,有理数数的大小比较,根据数轴判断出a、b,c的正负情况以及绝对值的大小是解题的关键.根据数轴可得-1<a<0<b<c<1,且|a|=|c|,然后分别求得,c+a,-a,c-b的取值范围即可.【解答】解:由数轴可得,-1<a<0<b<c<1,且|a|=|c|,∴0<c-b<1,c+a=0,0<-a<1,,∴最大的数为.故选D.10.【答案】D【解析】解:∵a*b=ab+a-b,∴(-2*5)*6=(-2×5-2-5)*6=-17*6=-17×6+(-17)-6=-125.根据运算的规定首先求出(-2*5),然后再求出-17*6即可.本题主要考查了有理数的混合运算,正确理解题意,能掌握新定义是解题关键.11.【答案】2x-3【解析】解:原式=x+1-(-x+4),=x+1+x-4,=2x-3,故答案为:2x-3.根据绝对值的性质:当a是正有理数时,a的绝对值是它本身a;当a是负有理数时,a 的绝对值是它的相反数-a可得|x+1|=x+1,|x-4|=-x+4,然后再合并同类项即可.此题主要考查了绝对值,关键是掌握绝对值的性质,正确判断出x+1,x-4的正负性.12.【答案】-a【解析】解:∵a<0,则|a|=-a.故答案为-a.根据负数的绝对值是它的相反数可得所求的绝对值.考查绝对值的意义;用到的知识点为:负数的绝对值是它的相反数.13.【答案】5或-1【解析】解:∵数轴上的P点与表示有理数2的点的距离是3个单位长度,则P点表示的数是5或-1.故答案为:5或-1.由于P点与表示有理数2的点的距离是3个单位长度,所以P在表示2点左右两边都有可能,结合数轴即可求解.此题综合考查了数轴、绝对值的有关内容,解决本题的关键是明确P在表示2点左右两边都有可能.14.【答案】8【解析】【分析】本题是一道找规律的题目,考查了有理数的加法和方程组的思想,是中档题难度不大.由题意得a+8+b-5=8+b-5+c=b-5+c+d=-5+c+d+4,然后转化成方程组的形式,求得d的值即可.【解答】解:∵a+8+b-5=8+b-5+c=b-5+c+d=-5+c+d+4,∴a+8+b-5=8+b-5+c①,8+b-5+c=b-5+c+d②,b-5+c+d=-5+c+d+4③,∴a-5=c-5,8+c=c+d,b-5=-5+4,∴b=4,d=8,a=c,故答案为8.15.【答案】0或±1【解析】【分析】是整数,求解即可.【解答】解:依题意得:a2≤1且a是整数,解得a=0或a=±1.故答案为0或±1.16.【答案】-2或-1或0或1或2【解析】解:①-1<x<-0.5时,[x]+(x)+[x)=-1+0-1=-2;②-0.5<x<0时,[x]+(x)+[x)=-1+0+0=-1;③x=0时,[x]+(x)+[x)=0+0+0=0;④0<x<0.5时,[x]+(x)+[x)=0+1+0=1;⑤0.5<x<1时,[x]+(x)+[x)=0+1+1=2.故答案为:-2或-1或0或1或2.分五种情况讨论x的范围:①-1<x<-0.5,②-0.5<x<0,③x=0,④0<x<0.5,⑤0.5<x<1即可得到答案.本题考查了学生对[x]表示不大于x的最大整数,(x)表示不小于x的最小整数,[x)表示最接近x的整数(x≠n+0.5,n为整数)的理解,难度适中,解此题的关键是分类讨论思想的应用.17.【答案】解:(1)原式=-8-3+15=4;(2)原式=-10-5=-15;(3)原式=12-20+9-10=-9;(4)原式=;(5)原式==-10-39=-49.【解析】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.(1)原式第一项利用乘方的意义化简,第二项利用绝对值的代数意义化简,最后一项利用减法法则变形,计算即可得到结果;(2)原式利用减法法则变形,结合后,相加即可得到结果;(3)原式利用除法法则变形,再利用乘法分配律计算即可得到结果;(4)原式先计算乘方运算,再计算乘除运算,最后算加减运算即可得到结果;(5)原式结合后,利用乘法分配律计算即可得到结果.18.【答案】解:(1)根据各项系数的符号以及系数的值得出:这组单项式的系数的符号规律是(-1)n,系数的绝对值规律是2n-1.(2)这组单项式的次数的规律是从1开始的连续自然数.(3)第n个单项式是:(-1)n(2n-1)x n.(4)第2013个单项式是-4025x2013,第2014个单项式是4027x2014.【解析】(1)根据已知数据得出单项式的系数的符号规律和系数的绝对值规律;(2)根据已知数据次数得出变化规律;(3)根据(1)(2)中数据规律得出即可;(4)利用(3)中所求即可得出答案.此题主要考查了数字变化规律,得出次数与系数的变化规律是解题关键.19.【答案】-8【解析】解:(1)如图所示:(2)-5×2=-10.(3)A、B中点所表示的数为-3,点C与数-8所表示的点重合.故答案为:-8.(1)将点A向右移动3个单位长度得到点C的位置,依据相反数的定义得到点B表示的数;(2)依据有理数的乘法法则计算即可;(3)找出AB的中点,然后可得到与点C重合的数.本题主要考查的是数轴、相反数、有理数的乘法,在数轴上确定出点A、B、C的位置是解题的关键.20.【答案】解:(1);(2);(3)原式.【解析】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键. (1)观察已知等式,得到拆项规律,写出即可;(2)原式===故应该填;(3)原式利用程序法变形,计算即可得到结果.第11页,共11页。

新人教版七年级数学上册第一单元测试卷(含答案)

新人教版七年级数学上册第一单元测试卷(含答案)

新人教版七年级数学上册单元测试卷第一单元:有理数一、选择题(本题共10小题,每小题3分,共30分)1.如果水库的水位高于正常水位2m时,记作+2m,那么低于正常水位3m时,应记作()A.+3mB.-3mC.+13D.-132. 室内温度是150℃,室外温度是-30℃,则室外温度比室内温度低( )A .120℃ B.180℃ C.-120℃ D.-180℃3. 一个数和它的倒数相等,则这个数是()A.1B.-1C.±1 D.±1和04. 若|a|=5,b=-3,则a-b的值是()A.2或8B.-2或8C.2或-8D.-2或-85. 下列四组有理数的大小比较正确的是()A.−12>−13B.-|-1|>-|+1|C.12<13D.|−12|>|−13|6. 若三个有理数的和为0,则下列结论正确的是()A.这三个数都是0B.最少有两个数是负数C.最多有两个正数D.这三个数是互为相反数7. 下列各式中正确的是()A.a2=.(−a)2B. a3=.(−a)3C.−a2=.|−a2|D. a3=.|a|38. 若x的相反数是3,│y│=5,则x+y的值为()A.-8B.2C.-8或2D.8或-29. 两个数的差是负数,则这两个数一定是( )A.被减数是正数,减数是负数B.被减数是负数,减数是正数C.被减数是负数,减数也是负数D.被减数比减数小10. 点A在数轴上表示+2,从点A沿数轴向左平移3个单位到点B,点B表示的数是( )A. 3B.-1C.5D.-1或3二、填空题(本题共6小题,每小题3分,共18分)11. 甲潜水员所在高度为-45米,乙潜水员在甲的上方15米处,则乙潜水员的所在的高度是__________.12. 大肠杆菌每过20分便由1个分裂成2个,经过3小时后这种大肠杆菌由1个分裂成__________个。

13. 在数轴上,与表示数-1的点的距离是5的点表示的数是。

人教版数学七年级上册第一章有理数《单元测试》附答案

人教版数学七年级上册第一章有理数《单元测试》附答案

人教版数学七年级上学期第一章有理数测试时限:100分钟满分:120分一.选择题(本大题共12个小题,每小题3分,共36分内)1.下列说法不正确的是( )A. 0是最小数B. 0的相反数是0C. 0没有倒数D. 0是绝对值最小的数2.下列各对数中,互为相反数的是( )A. +(-3)与-3B. +(+3)与-3C. -(-3)与3D. 3 与+(+3)3.若两个有理数的和是正数,那么一定有结论( )A. 两个加数都是正数B. 两个加数有一个是正数C. 一个加数正数,另一个加数为零D. 两个加数不能同为负数4.两个非零有理数的和是0,则它们的商为:( )A. 0B. -1C. +1D. 不能确定5.下列各组数中,数值相等是()A. 32和23B. ﹣23和(﹣2)3C. ﹣32和(﹣3)2D. ﹣3×22 和(﹣3×2)26.绝对值相等的两个数在数轴上对应两点的距离为10,则这两个数为( )A. 10和-10B. 0和10C. 5和-5D. 5和07.a,b,c三个数在数轴上的位置如图所示,则下列结论中错误的是( )A. b<0B. a+c<0C. a﹣b>0D. b﹣c<08.计算16×(-6)÷(-16)×6值为( )A. 1B. 36C. -1D. +69.下列交换加数的位置的变形中,正确的是A. 1-4+5-4=1-4+4-5B.13111311 34644436 -+--=+--C. 1-2+3-4=2-1+4-3D. 4.5-1.7-2.5+1.8=4.5-2.5+1.8-1.710.学校、家、书店依次坐落在一条东西走向的大街上,学校在家的东边200米,书店在家西边1000米,某同学从家里出发,向西走了500米,接着又向西走了-700米,此时该同学的位置在( )A. 在家B. 在学校C. 在书店D. 不在上述地方11.比较大小:-22,(12-)2,(13-)3,正确的是( )A. -22>(12-)2>(13-)3 B. (13-)3>-22>(12-)2C. (12-)2>-22>(13-)3 D. (12-)2>(13-)3>-2212.若(-1)2=4,那么的值为()A. 27B. 3或-1C. 25或-1D. -1或27二、填空题(本大题共4个小题,每小题3分,共12分)13.月球距地球约为38万千米,用科学计数法表示为____________千米.14.绝对值小于6的所有数的积是_____________.15.如果数轴上的点A对应的数为-5,那么与A点相距3个单位长度的点所对应的有理数为__________.16.在﹣3,﹣2,﹣1,4,5中取出三个数,把三个数相乘,所得到的最大乘积是_.三、解答题(本大题共6个题,共72分)17.(1)将下列各数填入相应的圈内:212,5 , 0 ,1.5 ,+2 ,-3 .(2 )说出这两个圈的重叠部分表示的是什么数的集合:.18.数轴上表示下列各数,并用“<”号把它们连起来:1.5, 3, -2.5, 0 , -1 1 319.计算下列各题(1)15+(-14)-15-(-025) (2)(-81)÷94×49÷(-32)(3)292324×(-12) (4)25×34-(-25)×12+25×(-14)(5)-24-(-4)2 ×(-1)+(-3)3(6)3.25-[(-12)-(-52)+(-54)+243]20.按要求解答下列各题(1)已知a、b 互为相反数,c、d 互为倒数,x=(-2)2.试求x2 -(a + b + c×d) x +(a + b)2015 +(-c×d)2016的值.(2)已知有理数a、b、c 满足|a-1|+|b-3|+|3c-1|=0,求(a×b×c)178 ÷(a36×b7×c6)的值.21.某食品厂从生产的袋装食品中抽取20袋,检测每袋的质量是否符合标准,超过或不足的部分分别用正、负数来表示,记录如下表:(1)这批样品的质量比标准质量多还是少?多或少几克?(2)若每袋标准质量为450克,则抽样检测的总质量是多少?22.陈老师在上周五买进某公司股票1000股,每股28元,下表为本周内每日该股票的涨跌情况.(单位:元)(1)星期三收盘时,每股是多少?(2)本周内最高价是每股多少元?最低价是每股多少元?(3)已知陈老师买进股票时付了1.5%的手续费,卖出时需付成交手续费和交易税共2.5%,如果陈老师在星期五收盘时将全部股票卖出,他的收益情况如何?答案与解析一.选择题(本大题共12个小题,每小题3分,共36分内)1.下列说法不正确的是( )A. 0是最小的数B. 0的相反数是0C. 0没有倒数D. 0是绝对值最小的数【答案】A【解析】【分析】根据有理数0的意义进行分析.【详解】0不是最小的数,比0小的数是负数;0的相反数是0;0没有倒数;0是绝对值最小的数.故选A【点睛】本题考核知识点:0的意义. 解题关键点:理解有理数0的意义.2.下列各对数中,互为相反数的是( )A. +(-3)与-3B. +(+3)与-3C. -(-3)与3D. 3 与+(+3)【答案】B【解析】【分析】根据:只有符号不同的两个数互为相反数.逐个化简分析即可.【详解】A .+(-3)=-3与-3, 不是互为相反数;B.+(+3)=3与-3 , 是互为相反数;C.-(-3)=3与3, 不是互为相反数;D.3 与+(+3)=3, 不是互为相反数.故选B【点睛】本题考核知识点:相反数. 解题关键点:理解相反数的定义.3.若两个有理数的和是正数,那么一定有结论( )A. 两个加数都是正数B. 两个加数有一个是正数C. 一个加数正数,另一个加数为零D. 两个加数不能同为负数【答案】D【解析】试题分析:若两个有理数的和为正数,两个加数可能都为正数,也可能一个为正数,也可能一个加数为正数,另一个加数为0,不可能两加数为负数.故选D.考点:有理数的加法.4.两个非零有理数的和是0,则它们的商为:( )A. 0B. -1C. +1D. 不能确定【答案】B【解析】【分析】根据“互为相反数的两个数的和是0”判断出这两个数是互为相反数,互为相反数的两个数的商为-1.【详解】∵两个非零有理数的和是0∴这两个数互为相反数∴互为相反数的两个非零数的商为-1故选B【点睛】本题考查“互为相反数的两数相加得0”以及有理数除法法则,熟练掌握相关知识点是解题关键5.下列各组数中,数值相等的是()A 32和23 B. ﹣23和(﹣2)3 C. ﹣32和(﹣3)2 D. ﹣3×22 和(﹣3×2)2【答案】B【解析】【分析】原式各项利用乘方的意义计算得到结果,即可做出判断.【详解】A、32=9,23=8,数值不相等;B、﹣23=(﹣2)3=﹣8,数值相等;C、﹣32=﹣9,(﹣3)2=9,数值不相等;D、﹣3×22=﹣12,(﹣3×2)2=36,数值不相等,故选B6.绝对值相等的两个数在数轴上对应两点的距离为10,则这两个数为( )A. 10和-10B. 0和10C. 5和-5D. 5和0【答案】C【解析】【分析】绝对值相等的两个不同的数互为相反数,因为他们的距离是10,所以他们的绝对值是5.【详解】依题意可得,这两个数的绝对值是5,所以这两个数是5和-5.故选C【点睛】本题考核知识点:绝对值. 解题关键点:理解绝对值的意义.7.a,b,c三个数在数轴上的位置如图所示,则下列结论中错误的是( )A. b<0B. a+c<0C. a﹣b>0D. b﹣c<0【答案】C【解析】试题分析:根据数轴上点的特点,可知a<b<0<c,且︱a︱>︱c︱>︱b︱,因此a+b<0,故A正确;a+c<0,故B正确;a-b<0,故C错误;b-c<0,故D正确.故选C考点:数轴8.计算16×(-6)÷(-16)×6的值为( )A. 1B. 36C. -1D. +6 【答案】B【解析】【分析】先把除法运算化为乘法运算,再根据有理数乘法法则进行计算.【详解】16×(-6)÷(-16)×6=16×(-6)×(-6)×6=36故选B【点睛】本题考核知识点:有理数乘除法. 解题关键点:把除法转化为乘法.9.下列交换加数的位置的变形中,正确的是A. 1-4+5-4=1-4+4-5B.13111311 34644436 -+--=+--C. 1-2+3-4=2-1+4-3D. 45-1.7-2.5+1.8=4.5-2.5+1.8-1.7 【答案】D【解析】【详解】A. 1−4+5−4=1−4−4+5,故错误;B.13111311=-34644436-+--+--,故错误;C. 1-2+3-4=-2+1-4+3,故错误;D. 4.5−1.7−2.5+1.8=4.5−2.5+1.8−1.7,故正确.故选D.10.学校、家、书店依次坐落在一条东西走向的大街上,学校在家的东边200米,书店在家西边1000米,某同学从家里出发,向西走了500米,接着又向西走了-700米,此时该同学的位置在( )A. 在家B. 在学校C. 在书店D. 不在上述地方【答案】B【解析】【分析】某同学从家里出发,向西走了500米,接着又向西走了-700米,相当于向东走700米,最后离家向东200米. 【详解】依题意分析可得,向西走了-700米,相当于向东走700米,所以,该同学最后离家向东200米.即在学校.故选B【点睛】本题考核知识点:负数的意义,数轴. 解题关键点:理解负数的意义.11.比较大小:-22,(12-)2,(13-)3,正确的是( )A. -22>(12-)2>(13-)3 B. (13-)3>-22>(12-)2C. (12-)2>-22>(13-)3 D. (12-)2>(13-)3>-22【答案】D 【解析】解:∵﹣22=﹣4,(﹣12)2=14,(﹣13)3=﹣127,∴(﹣12)2>(﹣13)3>﹣22;故选D.点睛:本题考查了有理数大小的比较,不是最简的化到最简,然后根据正数大于0,0大于负数,两个负数比较,绝对值大的反而小得出答案.12.若(-1)2=4,那么的值为()A. 27B. 3或-1C. 25或-1D. -1或27【答案】D【解析】由题意得:-1=2解得:x=3或x=-1那么=27或-1故选D二、填空题(本大题共4个小题,每小题3分,共12分)13.月球距地球约为38万千米,用科学计数法表示为____________千米.【答案】3.8×105【解析】【分析】把一个大于10(或者小于1)的整数记为a×10n的形式(其中1 ≤| a| <10 )的记数法.【详解】38万=3.8×105.故答案为3.8×105【点睛】本题考核知识点:科学记数法. 解题关键点:理解科学计数法的意义.14.绝对值小于6的所有数的积是_____________.【答案】0【解析】【分析】先求出绝对值小于6的所有数,再求他们的积.要注意,其中有一个是0.【详解】绝对值小于6的所有数有无数个,但其中一个是0,所以,他们的积是0.故答案为0【点睛】本题考核知识点:有理数乘法. 解题关键点:记住0与任何数相乘等于0.15.如果数轴上的点A对应的数为-5,那么与A点相距3个单位长度的点所对应的有理数为__________.【答案】-8或-2【解析】【分析】与A点相距3个单位长度的点可能在A的左侧或在A的右侧.【详解】与A点相距3个单位长度的点可能在A的左侧或在A的右侧,所以,对应的数是:-5-3=-8,或-5+3=-2. 故答案为-8或-2【点睛】本题考核知识点:数轴上两点距离、有理数加减. 解题关键点:运用有理数加减法求两点的距离.16.在﹣3,﹣2,﹣1,4,5中取出三个数,把三个数相乘,所得到最大乘积是_.【答案】30 ;【解析】根据正数大于一切负数,同号得正,异号得负,找出乘积是正数绝对值最大的三个数相乘即可.解:最大乘积是:(-3)×(-2)×5=3×2×5=30.故答案为30.“点睛”本题考查了有理数的乘法,以及有理数的大小比较,比较简单,熟记运算法则是解题的关键.三、解答题(本大题共6个题,共72分)17.(1)将下列各数填入相应的圈内:212,5 , 0 ,1.5 ,+2 ,-3 .(2 )说出这两个圈的重叠部分表示的是什么数的集合:.【答案】(1)见解析;(2)正整数的集合【解析】【分析】根据有理数的分类解答即可.【详解】(1)如图,(2)∵5,+2是正整数,∴两个圈的重叠部分表示的是正整数的集合.【点睛】本题考查了有理数的分类,熟练掌握有理数的两种分类方式是解答本题的关键. 有理数可分为整数和分数,整数分正整数,零和负整数;分数分正分数和负分数.有理数也可分为正有理数,零和负有理数,正有理数分为正整数和正分数,负有理数分为负整数和负分数.18.在数轴上表示下列各数,并用“<”号把它们连起来:1.5, 3, -2.5, 0 , -1 1 3【答案】见解析【解析】【分析】先按要求画好数轴,在数轴上表示各数,根据数轴上右边的数大于左边的数进行连接. 【详解】解:如图:-2.5<-1.3<0<1.5<3.【点睛】本题考核知识点:利用数轴表示数的大小. 解题关键点:画好数轴,表示各数.19.计算下列各题(1)15+(-14)-15-(-025) (2)(-81)÷94×49÷(-32)(3)292324×(-12) (4)25×34-(-25)×12+25×(-14)(5)-24-(-4)2 ×(-1)+(-3)3(6)3.25-[(-12)-(-52)+(-54)+243]【答案】(1)0 (2)12(3)-35912(4) 25(5)-27 (6)-136【解析】【分析】根据有理数的运算法则,逐个计算.【详解】解:(1)15+(-14)-15-(-0.25)=15-15- 14+0.25=0(2)(-81)÷94×49÷(-32)=81×49×49×132= 1 2(3)292324×(-12)= (30- 124) ×(-12)= 30×(-12) -1 24× (-12)=-35912(4)25×3 4-(-25)×12+25×(-14) =25×(34+1 2-1 4) =25×1=25 (5)-24-(-4)2 ×(-1)+(-3)3 = -16+16-27= -27(6)3.25-[(-12)-(-52)+(-5 4)+243] =31 4+1 2 -5 2+5 4-243 1515234442231242423122423136=++--=--=-=- 【点睛】本题考核知识点:有理数混合运算. 解题关键点:掌握有理数运算法则.20.按要求解答下列各题(1)已知a 、b 互为相反数,c 、d 互为倒数,x=(-2)2.试求x 2 -(a + b + c×d) x +(a + b)2015 +(-c×d)2016的值. (2)已知有理数a 、b 、c 满足|a-1|+|b-3|+|3c-1|=0,求(a×b×c)178 ÷(a 36×b 7×c 6)的值.【答案】(1)13 (2)13【解析】【分析】(1)由已知可得a+b=0,cd=1,x=4,再代入原式可得;(2)由非负数性质得a-1=0,b-3=0,3c-1=0.求出a,b,c,再代入求值.【详解】解:(1)因为a 、b 互为相反数,c 、d 互为倒数,x=(-2)2所以,a+b=0,cd=1,x=4,所以,x 2 -(a + b + c×d) x +(a + b)2015 +(-c×d)2016=42-(0+1)×4+02015+(-1)2016=16-4+0+1=13.(2)因为|a-1|+|b-3|+|3c-1|=0,所以,根据非负数性质得:a-1=0,b-3=0,3c-1=0.所以,a=1,b=3,c=13, 所以,(a×b×c)178 ÷(a 36×b 7×c 6) =(1×3×13)178 ÷[136×37×(13)6] =1÷3 =13. 【点睛】本题考核知识点:非负数、倒数、相反数的应用. 解题关键点:理解非负数、倒数、相反数的性质. 21.某食品厂从生产的袋装食品中抽取20袋,检测每袋的质量是否符合标准,超过或不足的部分分别用正、负数来表示,记录如下表:(1)这批样品的质量比标准质量多还是少?多或少几克?(2)若每袋标准质量为450克,则抽样检测的总质量是多少?【答案】(1)这批样品的质量比标准质量多,多24克;(2)9024克【解析】【分析】(1)根据表格列出算式,计算得到结果,即可做出判断;(2)根据每袋标准质量为450克列出算式,计算即可得到结果.【详解】(1)根据题意得:﹣5×1﹣2×4+0×3+1×4+3×5+6×3=﹣5﹣80+4+15+18=24(克), 则这批样品的质量比标准质量多,多24克;(2)根据题意得:20×450+24=9024(克),则抽样检测的总质量是9024克.【点睛】此题考查了正数与负数,弄清题意是解本题的关键.22.陈老师在上周五买进某公司股票1000股,每股28元,下表为本周内每日该股票的涨跌情况.(单位:元)(1)星期三收盘时,每股是多少?(2)本周内最高价是每股多少元?最低价是每股多少元?(3)已知陈老师买进股票时付了1.5%的手续费,卖出时需付成交手续费和交易税共2.5%,如果陈老师在星期五收盘时将全部股票卖出,他的收益情况如何?【答案】(1)34.5元 (2)36.5元、30元(3)盈利830元.【解析】【分析】(1)根据题意得:28+4+4.5−2=34.5(元);(2)算出每天股价,再作比较;(3)根据题意得:1000×(30−28)−1000×28×1.5%−30×1000×2.5%=830(元),可得收益.【详解】解:(1)根据题意得:28+4+4.5−2=34.5(元),则星期三收盘时,每股34.5元;(2)本周的股价分别为28+4=32(元);32+4.5=36.5(元);36.5−2=34.5(元);34.5+1.5=36(元);36−6=30(元),则本周内最高价是每股36.5元,最低价是每股30元;(3)根据题意得:1000×(30−28)−1000×28×1.5%−30×1000×2.5%=830(元),则张先生在星期五收盘时将全部股票卖出,他的收益情况为830元.【点睛】本题考核知识点:有理数运算的应用.解题关键点:理解题意,根据实际列出算式并正确运算.。

人教版七年级上册数学单元测试试卷《第一章-有理数》(含答案解析)

人教版七年级上册数学单元测试试卷《第一章-有理数》(含答案解析)

人教版七年级上册数学单元测试试卷第一章《有理数》第Ⅰ卷考试时间:120分钟总分:100分得分:一、选择题(共10题,每小题2分,共20分)1.(2分)用科学记数法表示2500000000是()A.2.5×109B.0.25×10C.2.5×1010D.0.25×10102.(2分)-2022的倒数是()A.-2022B.2022C.12022-D.120223.(2分)下列各组数中,互为相反数的是()A.43和34-B.13和0.333-C.a 和a -D.14和44.(2分)温度由﹣3℃上升8℃是()A.5℃B.﹣5℃C.11℃D.﹣11℃5.(2分)下列说法错误的是()A.开启计算器使之工作的按键是ONB.输入 5.8-的按键顺序是C.输入0.58的按键顺序是58⋅D.按键6987-=能计算出6987--的结果6.(2分)小时候我们常常唱的一首歌“小燕子穿花衣,年年春天来这里”,研究表明小燕子从北方飞往南方过冬,迁徙路线长达25000千米左右,将数据25000用科学记数法表示为()A.32510⨯B.42.510⨯C.52.510⨯D.50.2510⨯7.(2分)若a 、b 为有理数,0a <,0b >,且a b >,那么a ,b ,a -,b -的大小关系是()A.b a b a -<<<-B.b b a a <-<<-C.a b b a<-<<-D.a b b a<<-<-8.(2分)a、b 两数在数轴上的位置如图所示,下列结论正确的是()A.a>b B.|a|=﹣a C.a<﹣b D.|a|>|b|9.(2分)小明家的汽车在阳光下暴晒后车内温度达到了60℃,打开车门后经过8min 降低到室外同温32℃,再启动空调关车门,若每分钟降低4℃,降到设定的20℃共用时间是()A.13minB.12minC.11minD.10min10.(2分)已知4,5x y ==,且x y >,则2x y -的值为()A.13-B.13+C.3-或13+D.3+或13-二、填空题(共10题;每题2分,共20分)11.(2分)45-的倒数是.12.(2分)比较大小:15-16-(填“>”“<”或“=”)13.(2分)如果向东走35米记作+35米,那么向西走50米记作米。

2024新人教版七年级上册数学《有理数》单元测试卷及答案

2024新人教版七年级上册数学《有理数》单元测试卷及答案

第一章有理数单元测试(提升卷)班级:___________________ 姓名:_________________ 得分:_______________ 注意事项:本试卷满分120分,试题共24题,其中选择10道、填空6道、解答8道.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级等信息填写在试卷规定的位置.一、选择题(本大题共10小题,每小题3分,共30分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.(2024年广东省汕头市潮南区百校联考中考三模数学试题)2024−的相反数是( )A .2024B .2024−C .12024D .12024− 2.(2024年辽宁省大连市九年级中考二模数学试题)随着商业的发展和技术的进步,手机支付已经成为常见的支付方式,若手机钱包收入100元记作100+元,则15−元表示( )A .支出15元B .收入15元C .支出115元D .收入115元3.(2024年广西壮族自治区柳州柳南区九年级教学实验研究质量监测试三模数学试题)2024年2月8日,某地记录到四个时刻的气温(单位:℃)分别为5−,0,5,2−,其中最低的气温是( ) A .5− B .0 C .5 D .2−4.(2024年吉林省长春市中考一模数学试题)如图,数轴上表示数 1.5−的点所在的线段是( )A .AB B .BOC .OCD .CD5.(2024年湖北省大冶市五月中考模拟数学试题)若足球质量与标准质量相比,超出部分记作正数,不足部分记作负数,则在下面4个足球中,质量最接近标准的是( )A .0.9+B . 3.5−C .0.5−D . 2.5+6.(黑龙江省哈尔滨市第四十九中学校2023-2024学年六年级下学期期中数学试题(五四制))若a a =−,则a 一定是( )A .负数 B .正数 C .0 D .负数或07.(2024年黑龙江省大庆市让胡路区中考模拟数学试题)下列各数,与2024相等的是( ) A .(2024)−+ B .4()202+− C .2024−− D .(2024)−−8.(2024年云南省昆明市中考二模数学试题)九年级(1)班期末考试数学的平均成绩是80分,小亮得了90分,记作10+分,如果小明的成绩记作5−分,那么他得了( )A .95分B .90分C .85分D .75分9.在110,1,3,,0.1,2,24 −−−−−a (a 是任意数)这些数中,负数的个数是( ) A .1 B .2 C .3 D .410.数轴上点A 表示的数是2−,将点A 沿数轴移动3单位长度得到点B ,则点B 表示的数是( )A .5−B .1C .1−或5D .5−或1二、填空题(本大题共6小题,每小题3分,共18分)请把答案直接填写在横线上11. 2−,0,0.2,14,3中正数一共有 个. 12.(2024年甘肃省陇南市中考模拟联考数学(三)试题)如果把火箭发射后10秒记为“10+秒”,那么火箭发射前6秒应记为“ 秒”.13.化简:35−= ; 1.5−−= ;(− 14.(2024年甘肃省庆阳市中考二模数学试题)某品牌酸奶外包装上标明“净含量:1805mL ±”,现随机抽取四种口味的这种酸奶,它们的净含量如下表所示,其中,净含量不合格的是 口味的酸奶. 种类原味 草莓味 香草味 巧克力味 净含量/mL 175 180 190 18515.(2024年陕西省西安市阎良区中考三模数学试题)如图,点A 是数轴上的点,若点B 在数轴上点A 的左边,且4AB =,则点B 表示的数是 .16.(黑龙江省哈尔滨工业大学附中2023-2024学年六年级下学期期中数学试题)已知a 为有理数,则24a −+的最小值为 .17.(陕西省西安市第八十九中学2024年中考二模数学试题)如图,点A 、B 在数轴上,若8AB =,且A 、B 两点表示的数互为相反数,则点A 表示的数为 .18.如图,一条数轴上有点A 、B 、C ,其中点A 、B 表示的数分别是14−,30,现以点C 为折点,将数轴向右对折,若点A 落在射线CB 上且到点B 的距离为6,则C 点表示的数是___________三、解答题(本大题共7小题,共72分.解答时应写出文字说明、证明过程或演算步骤)19.(贵州省铜仁市江口县第二中学(民族中学)2023-2024学年七年级上学期9月月考数学试题)把下列各数分别填在表示它所在的集合里:5−,34−,0, 3.14−,227,2012,1.99,()6−−,12−− (1)正数集合:{_____________________};(2)负数集合:{__________________________};(3)整数集合:{__________________________};(4)分数集合:{__________________________}.(5)负有理数:{__________________________}.20.(安徽省阜阳市第一初级中学2023-2024学年七年级上学期第一次月考数学试题)若320a b −+−=,求a b +的值.21.比较下列各对数的大小:①1−与0.01−; ②2−−与0;③0.3−与13−; ④19 −− 与110−−.22.(湖南省衡阳市第三中学2023-2024学年七年级上学期期中数学试题)已知下列各有理数:2.5−,0,3−,()2--.(1)画出数轴,在数轴上标出这些数表示的点;(2)用“<”号把这些数连接起来.23.(重庆市忠县乌杨初级中学2023-2024学年七年级上学期数学第一学月定时作业试题)某中学九(1)班学生的平均身高是166cm .姓名A B C D E F 身高170 160 175 与平均身高的差值+4+7 8− +2(1)上表给出了该班6名同学的身高(单位:cm ),试完成上表;(2)谁最高?谁最矮?(3)最高与最矮的同学身高相差多少?24.(黑龙江省大庆市肇源县第五中学2023-2024学年七年级下学期第一次月考数学试题)如图,数轴上有点a b c ,,三点.(1)用“<”将a b c ,,连接起来.(2)b a − 1,1c a −+ 0(填“<”“>”,“=”)(3)求下列各式的最小值: ①13x x −+−的最小值为 ; ②x a x b −+−的最小值为 ;③当x = 时,x a x b x c −+−+−的最小值为 .第一章有理数单元测试(提升卷)班级:___________________ 姓名:_________________ 得分:_______________ 注意事项:本试卷满分120分,试题共24题,其中选择10道、填空6道、解答8道.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级等信息填写在试卷规定的位置.一、选择题(本大题共10小题,每小题3分,共30分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.(2024年广东省汕头市潮南区百校联考中考三模数学试题)2024−的相反数是( )A .2024B .2024−C .12024D .12024− 【答案】A【分析】本题主要考查了求一个数的相反数,只有符号不同的两个数互为相反数,0的相反数是0,据此求解即可.【详解】解:有理数2024−的相反数是2024,故选:A .2.(2024年辽宁省大连市九年级中考二模数学试题)随着商业的发展和技术的进步,手机支付已经成为常见的支付方式,若手机钱包收入100元记作100+元,则15−元表示( )A .支出15元B .收入15元C .支出115元D .收入115元【答案】A【分析】本题考查了运用正数和负数表示两个相反意义的量,正确理解正、负数的意义是解题的关键.收入和支出相反,如果收入为正,那么负为支出,即可解决.【详解】∵收入100元记作100+元,∴15−元表示支出15元,故选:A .3.(2024年广西壮族自治区柳州柳南区九年级教学实验研究质量监测试三模数学试题)2024年2月8日,某地记录到四个时刻的气温(单位:℃)分别为5−,0,5,2−,其中最低的气温是( ) A .5−B .0C .5D .2− 【答案】A【分析】本题考查了有理数大小的比较的实际应用,有理数大小比较法则为:正数大于0,0大于负数,两个负数绝对值大的反而小;由此法则比较出两个负数的大小即可完成. 【详解】解:52−>− ,52∴−<−,即5−最小,故选:A .4.(2024年吉林省长春市中考一模数学试题)如图,数轴上表示数 1.5−的点所在的线段是( )A .ABB .BOC .OCD .CD 【答案】A【分析】本题主要考查了有理数与数轴,根据数轴上点的位置,结合2 1.51−<−<−即可得到答案.【详解】解:由数轴可知,数轴上表示数 1.5−的点所在的线段是AB ,故选:A .5.(2024年湖北省大冶市五月中考模拟数学试题)若足球质量与标准质量相比,超出部分记作正数,不足部分记作负数,则在下面4个足球中,质量最接近标准的是( )A .0.9+B .3.5−C .0.5−D . 2.5+【答案】C【分析】本题考查了绝对值和正数和负数的应用,主要考查学生的理解能力,题目具有一定的代表性,难度也不大.求出每个数的绝对值,根据绝对值的大小找出绝对值最小的数即可. 【详解】解:0.90.9, 3.5 3.5,0.50.5, 2.5 2.5+=−=−=+=,∵0.50.9 2.5 3.5<<<,∴从轻重的角度看,最接近标准的是0.5−,故选:C .6.(黑龙江省哈尔滨市第四十九中学校2023-2024学年六年级下学期期中数学试题(五四制))若a a =−,则a 一定是( )A .负数B .正数C .0D .负数或0 【答案】D【分析】本题考查绝对值,熟练掌握其性质是解题的关键.根据绝对值的性质即可求得答案. 【详解】解:∵a a =−,∴a 是非正数,即负数或0,故选:D7.(2024年黑龙江省大庆市让胡路区中考模拟数学试题)下列各数,与2024相等的是( ) A .(2024)−+ B .4()202+− C .2024−− D .(2024)−−【答案】D【分析】本题考查绝对值、化简多重符号.负数的绝对值等于它的相反数,化简多重符号时“正正得正,正负得负,负负得正”,由此逐项计算即可.【详解】解:A ,(2024)2024-+=-,与题干不符,不符合题意;B ,(2024)2024+-=-,与题干不符,不符合题意;C ,20242024−−=−,与题干不符,不符合题意;D ,(2024)2024−−=,与题干相符,符合题意.故选D .8.(2024年云南省昆明市中考二模数学试题)九年级(1)班期末考试数学的平均成绩是80分,小亮得了90分,记作10+分,如果小明的成绩记作5−分,那么他得了( )A .95分B .90分C .85分D .75分【答案】D【分析】本题考查了有理数的加法,整数和负数的定义,解题的关键是掌握正数和负数表示具有相反意义的量,以及有理数的加法法则.根据题意列出算式进行计算即可. 【详解】解:()80575+−=(分),故选:D .9.在110,1,3,,0.1,2,24 −−−−−a (a 是任意数)这些数中,负数的个数是( ) A .1B .2C .3D .4【答案】B【分析】本题主要考查了负数的定义,根据负数的定义进行判断即可.【详解】解:只有1−和0.1−是负数.124 −− 中124−是负数,故124 −− 不是负数,a −可以是正数或零或负数, ∴负数的个数是2个.故选:B .10.数轴上点A 表示的数是2−,将点A 沿数轴移动3单位长度得到点B ,则点B 表示的数是( )A .5−B .1C .1−或5D .5−或1【答案】D【分析】本题考查数轴上点移动后数字表示,解题关键是移动规律左减右加.根据数轴上点的移动规律,左减右加计算即可.【详解】解:根据数轴上点的移动规律,左减右加,可得点A 向左移动时:235−−=−,可得点A 向右移动时:231−+=, 综上可得点B 表示的数是5−或1,故选D .二、填空题(本大题共6小题,每小题3分,共18分)请把答案直接填写在横线上11. 2−,0,0.2,14,3中正数一共有 个. 【答案】3【分析】本题考查了有理数的分类.正确掌握有理数的分类是解答本题的关键.根据正数的定义解答即可.【详解】解:2−,0,0.2,14,3中正数有:0.2,14,3,一共有3个. 故答案为:3.12.(2024年甘肃省陇南市中考模拟联考数学(三)试题)如果把火箭发射后10秒记为“10+秒”,那么火箭发射前6秒应记为“ 秒”.【答案】6−【分析】本题考查正数和负数在实际生活中的应用,解题关键是理解“正”和“负”的相对性,确定一对具有相反意义的量.根据正负数表示相反意义的量,点火后记为正,可得点火前用负表示.【详解】解:把火箭发射后10秒记为“10+秒”,那么火箭发射前6秒应记为“6−秒”;故答案为:6−.13.化简:35−= ; 1.5−−= ;(− 【答案】 35 1.5− 2 【分析】本题考查了绝对值:若0a >,则a a =;若0a =,则0a =;若0a <,则a a =−.【详解】解:33||55−=, 1.5 1.5−−=−,()22−−=, 故答案为:35, 1.5−,2. 14.(2024年甘肃省庆阳市中考二模数学试题)某品牌酸奶外包装上标明“净含量:1805mL ±”,现随机抽取四种口味的这种酸奶,它们的净含量如下表所示,其中,净含量不合格的是 口味的酸奶. 种类原味 草莓味 香草味 巧克力味 净含量/mL175 180 190 185【答案】香草味【分析】本题主要考查了正数和负数等知识点,根据正数和负数的实际意义求得合格酸奶的重量范围,据此进行判断即可,理解正数和负数的实际意义是解决此问题的关键. 【详解】由题意可得:合格酸奶净含量的最小值为:()1805175ml −=,合格酸奶净含量的最大值为:()1805185ml +=,∴合格酸奶的重量范围为175ml 185ml ~,则净含量不合格的是香草味,故答案为:香草味.15.(2024年陕西省西安市阎良区中考三模数学试题)如图,点A 是数轴上的点,若点B 在数轴上点A 的左边,且4AB =,则点B 表示的数是 .【答案】3−【分析】本题考查数轴上两点的距离,根据两点之间的距离公式a b −求解即可.【详解】解:由数轴,点A 表示的数为1,又点B 在数轴上点A 的左边,且4AB =,∴点B 表示的数是143−=−, 故答案为:3−.16.(黑龙江省哈尔滨工业大学附中2023-2024学年六年级下学期期中数学试题)已知a 为有理数,则24a −+的最小值为 .【答案】4【分析】本题考查了绝对值的非负性,解题的关键是掌握正数的绝对值是它本身,负数的绝对值是它的相反数,0的绝对值是0.根据绝对值的非负性即可解答.a−≥,【详解】解:∵20∴244a−+≥,∴24a−+的最小值为4,故答案为:4.17.(陕西省西安市第八十九中学2024年中考二模数学试题)如图,点A、B在数轴上,若8AB=,且A、B两点表示的数互为相反数,则点A表示的数为.【答案】4−【分析】此题考查了数轴上两点之间的距离,数轴上的点表示有理数,相反数的概念,÷=,然后根据点A在原点根据题意得到A,B两点到原点的距离相等,然后求出点A到原点的距离为824的左侧求解即可.【详解】解:∵数轴上A,B两点表示的数互为相反数,∴A,B两点到原点的距离相等,∵点A与点B之间的距离为8个单位长度,÷=,∴点A到原点的距离为824∵点A在原点的左侧,∴点A表示的数是4−.故答案为:4−.18.如图,一条数轴上有点A、B、C,其中点A、B表示的数分别是14−,30,现以点C为折点,将数轴向右对折,若点A落在射线CB上且到点B的距离为6,则C点表示的数是___________【答案】5/11【分析】本题考查了数轴,先根据两点间的距离公式求出点A落在对应点表示的数,在利用中点求出C点表示的数;能根据点A的位置不同进行分类讨论是解题的关键.【详解】解:设A ′是点A 的对应点,由题意可知点C 是A 和A ′的中点,当点A 在B 的右侧,6BA ′=,A ′表示的数为30636+=, 那么C 表示的数为:()1436211−+÷=;,当点A 在B 的左侧,6BA ′=,A ′表示的数为30624−=,那么C 表示的数为:(1424)25−+÷=, 故答案:5或11.三、解答题(本大题共8小题,共72分.解答时应写出文字说明、证明过程或演算步骤)19.(贵州省铜仁市江口县第二中学(民族中学)2023-2024学年七年级上学期9月月考数学试题)把下列各数分别填在表示它所在的集合里:5−,34−,0, 3.14−,227,2012,1.99,()6−−,12−− (1)正数集合:{________};(2)负数集合:{________};(3)整数集合:{________};(4)分数集合:{________}.(5)负有理数:{________}.【答案】(1)227,2012,1.99,()6−−, (2)5−,34−, 3.14−, 12−−, (3)5−,0, 2012, ()6−−,12−−, (4)34−, 3.14−,227, 1.99, (5)5−,34−, 3.14−, 12−−,【分析】本题考查的是化简双重符号,化简绝对值,有理数的分类,熟记有理数的分类是解本题的关键; (1)根据正数的定义填写即可;(2)根据负数的定义填写即可;(3)根据整数的定义填写即可;(4)根据分数的定义填写即可;(5)根据负有理数的定义填写即可;【详解】(1)解:∵()66−−=,1212−−=−, ∴正数集合:{227,2012,1.99,()6−−, }; (2)负数集合:{5−,34−, 3.14−, 12−−, }; (3)整数集合:{5−,0, 2012, ()6−−,12−−, };(4)分数集合:{34−, 3.14−,227, 1.99, }; (5)负有理数:{5−,34−, 3.14−, 12−−, }; 20.(安徽省阜阳市第一初级中学2023-2024学年七年级上学期第一次月考数学试题)若320a b −+−=,求a b +的值.【答案】5【分析】本题考查非负数的性质.根据非负数的性质,可得30a −=,20b −=,求出a 、b 的值,据此即可求解. 【详解】解:∵320a b −+−=, ∴30a −=,20b −=, ∴3a =,2b =,∴325a b +=+=.21.比较下列各对数的大小:①1−与0.01−;②2−−与0; ③0.3−与13−; ④19 −−与110−−. 【答案】①10.01−<−;②20−−<;③10.33−>−;④11910 −−>−− 【分析】本题主要考查有理数比较大小,绝对值的性质的运用,掌握有理数比较大小的方法是解题的关键.①两个负数比较大小,绝对值大的反而小,由此即可求解;②先化简绝对值,再根据负数小于零,即可求解;③两个负数比较大小,绝对值大的反而小,由此即可求解;④先化简,再根据负数小于零,即可求解.【详解】解:①∵11−=,0.010.01−=,10.01>, ∴10.01−<−;②22−−=−,因为负数小于0,所以20−−<; ③∵0.30.3−=,•110.333−==, 0.30.3•<, ∴10.33−>−; ④分别化简两数,得:1111991010 −−=−−=− ,, ∵正数大于负数, ∴11910 −−>−−. 22.(湖南省衡阳市第三中学2023-2024学年七年级上学期期中数学试题)已知下列各有理数:2.5−,0,3−,()2--.(1)画出数轴,在数轴上标出这些数表示的点;(2)用“<”号把这些数连接起来.【答案】(1)见解析 (2)()2.5023−<<−−<−【分析】本题考查了在数轴上表示数和有理数大小比较,能准确地在数轴上表示出所给的各个数是解题的关键. (1)在数轴上直接表示出各个数即可;(2)根据(1)中数轴上表示的数,结合数轴右边的数比左边的数大即可比较.【详解】(1)解:33−=,()22−−=, ∴在数轴上标出 2.5−,0,3−,()2−−,如图所示:(2)解:由(1)中数轴可得:()2.5023−<<−−<−.23.(重庆市忠县乌杨初级中学2023-2024学年七年级上学期数学第一学月定时作业试题)某中学九(1)班学生的平均身高是166cm .姓名A B C D E F 身高170 160 175 与平均身高的差值 +4 +7 8− +2(1)上表给出了该班6名同学的身高(单位:cm ),试完成上表;(2)谁最高?谁最矮?(3)最高与最矮的同学身高相差多少?【答案】(1)173,6−,158,168,9+(2)同学F 最高,同学D 最矮;(3)最高与最矮的同学身高相差17cm【分析】本题考查有理数加减法的实际应用、正负数的应用.读懂题意,正确的列出算式,是解题的关键. (1)利用身高减去平均身高进行计算即可;(2)由表格信息可确定最高和最矮的学生;(3)确定最高和最矮的学生,两者的身高作差即可.【详解】(1)解:∵某中学九(1)班学生的平均身高是166cm .∴完善表格如下:姓名 A B C D E F身高170 173 160 158 168 175 与平均身高的差值+4 +7 6− 8− +2 9+(2)同学F 身高175cm ,最高,同学D 身高158cm ,最矮;(3)∵()17515817cm −=, ∴最高与最矮的同学身高相差17cm .24.(黑龙江省大庆市肇源县第五中学2023-2024学年七年级下学期第一次月考数学试题)如图,数轴上有点a b c ,,三点.(1)用“<”将a b c ,,连接起来.(2)b a − 1,1c a −+ 0(填“<”“>”,“=”)(3)求下列各式的最小值: ①13x x −+−的最小值为 ; ②x a x b −+−的最小值为 ;③当x = 时,x a x b x c −+−+−的最小值为 .【答案】(1)c<a<b(2)<,<(3)①2;②b a −③a ,b c −【分析】本题考查了数轴、绝对值的意义、数轴上两点之间的距离、利用数轴判断式子的正负,熟练掌握以上知识点并灵活运用,采用数形结合的思想是解此题的关键.(1)根据数轴即可得出答案;(2)由数轴可得012c a b <<<<<,从而即可得出答案;(3)①由13x x −+−的意义即可得出最小值;②由x a x b −+−的意义,结合a b <即可得解;③由||x a x b x c −+−+−的意义,结合c<a<b 即可得解.【详解】(1)解:由数轴可得:c<a<b ;(2)解:由数轴可得:012c a b <<<<<,1b a ∴−<,10c a −+<,故答案为:<,<;(3)解:①13x x −+−的意义是数轴上表示数x 的点到表示数1,到表示数3的点的距离之和, 故13x x −+−的最小值为312−=, 故答案为:2; ②x a x b −+−的意义是数轴上表示数x 的点到表示数a ,到表示数b 的点的距离之和, a b < , 故x a x b −+−的最小值为b a −,故答案为:b a −; ③||x a x b x c −+−+−的意义是数轴上表示数x 的点到表示数a ,到表示数b ,到表示数c 的点的距离之和, c a b <<故当x a =时,||x a x b x c −+−+−的值最小,为b c −,故答案为:b c −.。

人教版七年级上册数学全册单元试卷测试题(Word版 含解析)

人教版七年级上册数学全册单元试卷测试题(Word版 含解析)

人教版七年级上册数学全册单元试卷测试题(Word版含解析)一、初一数学上学期期末试卷解答题压轴题精选(难)1.已知,,点E是直线AC上一个动点(不与A,C重合),点F是BC边上一个定点,过点E作,交直线AB于点D,连接BE,过点F作,交直线AC于点G.(1)如图①,当点E在线段AC上时,求证:.(2)在(1)的条件下,判断这三个角的度数和是否为一个定值?如果是,求出这个值,如果不是,说明理由.(3)如图②,当点E在线段AC的延长线上时,(2)中的结论是否仍然成立?如果不成立,请直接写出之间的关系.(4)当点E在线段CA的延长线上时,(2)中的结论是否仍然成立?如果不成立,请直接写出之间的关系.【答案】(1)解:∵∴∵∴∴(2)解:这三个角的度数和为一个定值,是过点G作交BE于点H∴∵∴∴∴即(3)解:过点G作交BE于点H∴∵∴∴∴即故的关系仍成立(4)不成立| ∠EGF-∠DEC+∠BFG=180°【解析】【解答】解:(4)过点G作交BE于点H∴∠DEC=∠EGH∵∴∴∠HGF+∠BFG=180°∵∠HGF=∠EGF-∠EGH∴∠HGF=∠EGF-∠DEC∴∠EGF-∠DEC+∠BFG=180°∴(2)中的关系不成立,∠EGF、∠DEC、∠BFG之间关系为:∠EGF-∠DEC+∠BFG=180°故答案为:不成立,∠EGF-∠DEC+∠BFG=180°【分析】(1)根据两条直线平行,内错角相等,得出;两条直线平行,同位角相等,得出,即可证明.(2)过点G作交BE于点H,根据平行线性质定理,,,即可得到答案.(3)过点G作交BE于点H,得到,因为,所以,得到,即可求解.(4)过点G作交BE于点H,得∠DEC=∠EGH,因为,所以,推得∠HGF+∠BFG=180°,即可求解.2.如图1,已知∠MON=140°,∠AOC与∠BOC互余,OC平分∠MOB,(1)在图1中,若∠AOC=40°,则∠BOC=°,∠NOB=°.(2)在图1中,设∠AOC=α,∠NOB=β,请探究α与β之间的数量关系(必须写出推理的主要过程,但每一步后面不必写出理由);(3)在已知条件不变的前提下,当∠AOB绕着点O顺时针转动到如图2的位置,此时α与β之间的数量关系是否还成立?若成立,请说明理由;若不成立,请直接写出此时α与β之间的数量关系.【答案】(1)解:如图1,∵∠AOC与∠BOC互余,∴∠AOC+∠BOC=90°,∵∠AOC=40°,∴∠BOC=50°,∵OC平分∠MOB,∴∠MOC=∠BOC=50°,∴∠BOM=100°,∵∠MON=40°,∴∠BON=∠MON-∠BOM=140°-100°=40°,(2)解:β=2α-40°,理由是:如图1,∵∠AOC=α,∴∠BOC=90°-α,∵OC平分∠MOB,∴∠MOB=2∠BOC=2(90°-α)=180°-2α,又∵∠MON=∠BOM+∠BON,∴140°=180°-2α+β,即β=2α-40°;(3)解:不成立,此时此时α与β之间的数量关系为:2α+β=40°,理由是:如图2,∵∠AOC=α,∠NOB=β,∴∠BOC=90°-α,∵OC平分∠MOB,∴∠MOB=2∠BOC=2(90°-α)=180°-2α,∵∠BOM=∠MON+∠BON,∴180°-2α=140°+β,即2α+β=40°,答:不成立,此时此时α与β之间的数量关系为:2α+β=40.【解析】【分析】(1)先根据余角的定义计算∠BOC=50°,再由角平分线的定义计算∠BOM=100°,根据角的差可得∠BON的度数;(2)同理先计算∠MOB=2∠BOC=2(90°-α)=180°-2α,再根据∠BON=∠MON-∠BOM列等式即可;(3)同理可得∠MOB=180°-2α,再根据∠BON+∠MON=∠BOM列等式即可.3.如图,在数轴上有三个点A、B、C,完成下列问题:(1)将点B向右移动六个单位长度到点D,在数轴上表示出点D.(2)在数轴上找到点E,使点E为BA的中点(E到A、C两点的距离相等),井在数轴上标出点E表示的数,求出CE的长.(3)O为原点,取OC的中点M,分OC分为两段,记为第一次操作:取这两段OM、CM 的中点分别为了N1、N2,将OC分为4段,记为第二次操作,再取这两段的中点将OC分为8段,记为第三次操作,第六次操作后,OC之间共有多少个点?求出这些点所表示的数的和.【答案】(1)解:如图所示,(2)解:如图所示,点E表示的数为:﹣3.5,∵点C表示的数为:4,∴CE=4﹣(﹣3.5)=7.5(3)解:∵第一次操作:有3=(21+1)个点,第二次操作,有5=(22+1)个点,第三次操作,有9=(23+1)个点,∴第六次操作后,OC之间共有(26+1)=65个点;∵65个点除去0有64个数,∴这些点所表示的数的和=4×()=130.【解析】【分析】(1)根据数轴上的点移动时的大小变化规律“左减右加”即可求解;(2)根据题意和数轴上两点间的距离等于两坐标之差的绝对值即可求解;(3)由题意可得点数依次是2的指数次幂+1,再求和即可求解.4.如图,O是直线AB上一点,OD平分∠AOC.(1)若∠AOC=60°,请求出∠AOD和∠BOC的度数.(2)若∠AOD和∠DOE互余,且∠AOD= ∠AOE,请求出∠AOD和∠COE的度数.【答案】(1)解:∠AOD= ×∠AOC= ×60°=30°,∠BOC=180°﹣∠AOC=180°﹣60°=120°(2)解:∵∠AOD和∠DOE互余,∴∠AOE=∠AOD+∠DOE=90°,∴∠AOD= ∠AOE= ×90°=30°,∴∠AOC=2∠AOD=60°,∴∠COE=90°﹣∠AOC=30°【解析】【分析】(1)①由角平分线的定义可得:∠AOD=∠COD= ∠AOC即可求解;②由邻补角的定义可得:∠BOC+∠AOC= 180°,所以∠BOC= 180° -∠AOC即可求解;(2)①由互为余角的定义和图形可得∠AOE=∠AOD+∠DOE= 90°,所以∠AOD= ∠AOE 可求解;②由①可得∠AOD的度数,由角平分线的定义可得∠AOC=2∠AOD,所以∠COE=∠AOE-∠AOC,把∠AOE和∠AOC的度数代入计算即可求解。

人教版七年级数学上册全册单元试卷测试卷(含答案解析)

人教版七年级数学上册全册单元试卷测试卷(含答案解析)
(1)如图 1.则∠ DPC 为多少度? (2)如图 2,若三角板 PAC 的边 PA 从 PN 处开始绕点 P 逆时针旋转的角度为 α,PF 平分 ∠ APD,PE 平分∠ CPD,求∠ EPF 的度数; (3)如图 3,若三角板 PAC 的边 PA 从 PN 处开始绕点 P 逆时针旋转,转速为 3。/秒,同 时三角板 PBD 的边 PB 从 PM 处开始绕点 P 逆时针旋转,转速为 2。/秒,在两个三角板旋 转过程中,当 PC 转到与 PM 重合时,两个三角板都停止转动.设两个三角板旋转时间为 t
∴ ∠ BPN=1800-2t,
∠ CPD=3600-∠ DPB-∠ BPN-∠ NPA-∠ CPA=900-t,
∴ 【解析】【分析】(1)利用含有 30゜、60゜的三角板得出∠ DPC=180°-∠ CPA-∠ DPB,代 入计算即可;
( 2 ) 根 据 角 平 分 线 的 定 义 得 出 ∠ DPF= ∠ APD,∠ DPE= ∠ CPD , 根 据 角 的 和 差 得 出 APD=180°−30°−α=150°−α ,∠ CPD=180°−30°−60°−α=90°−α ,从而得出∠ DPF 及,∠ DPE 的度 数,最后根据 EPF=∠ DPF−∠ DPE 算出结果;
的度数;
(2)过点 O 作射线
,求
的度数.
【答案】 (1)解:



:3,

(2)解:



OF 在
的内部时,



OF 在
的内部时, ,


综上所述

【解析】【分析】(1)根据对顶角相等得出
, 然后根据

:3 即可算出∠ BOE 的度数;

人教版初中七年级上册数学第一章《有理数》单元测试含答案解析

人教版初中七年级上册数学第一章《有理数》单元测试含答案解析

《第1章有理数》一、选择题1.﹣的相反数是()A. B.±C.D.﹣2.下列各组数中,互为相反数的是()A.3和﹣3 B.﹣3和C.﹣3和D.和33.一个数的相反数仍是它本身,这个数是()A.1 B.﹣1 C.0 D.正数4.下面关于表示互为相反数的m与﹣m的点到原点的距离,表述正确的是()A.表示数m的点距离原点较远 B.表示数﹣m的点距离原点较远C.一样远D.无法比较5.下列说法中,正确的是()A.因为相反数是成对出现的,所以0没有相反数B.数轴上原点两旁的两点表示的数是互为相反数C.符号不同的两个数是互为相反数D.正数的相反数是负数,负数的相反数是正数6.下列各对数中,是互为相反数的是()A.﹣(+7)与+(﹣7)B.﹣与+(﹣0.5)C.与D.+(﹣0.01)与7.下列说法正确的是()A.﹣5是的相反数B.与互为相反数C.﹣4是4的相反数D.是2的相反数8.下列各组数中,相等的一组是()A.+2.5和﹣2.5 B.﹣(+2.5)和﹣(﹣2.5)C.﹣(﹣2.5)和+(﹣2.5)D.﹣(+2.5)和+(﹣2.5)9.﹣(﹣2)的值是()A.﹣2 B.2 C.±2 D.410.﹣的相反数是()A.5 B.C.﹣ D.﹣511.一个实数a的相反数是5,则a等于()A.B.5 C.﹣ D.﹣512.如图,数轴上表示数﹣2的相反数的点是()A.点P B.点Q C.点M D.点N13.下列四个数中,其相反数是正整数的是()A.3 B.C.﹣2 D.﹣二、填空题.14.数轴上表示互为相反数的两个点之间的距离为4,则这两个数是.15.若a=13,则﹣a= ;若﹣x=3,则x= .16.数轴上点A、B的位置如图所示,若点B关于点A的对称点为C,则点C表示的数为.三、解答题.17.已知数a,b表示的点在数轴上的位置如图所示.(1)在数轴上表示出a,b的相反数的位置;(2)若数b与其相反数相距20个单位长度,则b表示的数是多少?(3)在(2)的条件下,若数a表示的点与数b的相反数表示的点相距5个单位长度,求a表示的数是多少?18.填表.原数﹣59.2 0 4相反数 3 ﹣719.求下列各数(式)的相反数.(1);(2)5;(3)0;(4)a;(5)x+1.20.化简下列各数的符号.(1)﹣(+4);(2)﹣(﹣7.1);(3)﹣[+(﹣5)];(4)﹣[﹣(﹣8)].21.在数轴上点A表示7,点B、C表示互为相反数的两个数,且点C与点A间的距离为2,求点B、C对应的数是什么?22.小李在做题时,画了一个数轴,在数轴上原有一点A,其表示的数是﹣3,由于粗心,把数轴的原点标错了位置,使点A正好落在﹣3的相反数的位置,想一想,要把数轴画正确,原点要向哪个方向移动几个单位长度?23.如图是具有互为相反数的三角形数阵.当最下面一行的两个数为多少时,这两个数以及它们上面的数的个数为2013.《第1章有理数》参考答案与试题解析一、选择题1.﹣的相反数是()A. B.±C.D.﹣【考点】相反数.【分析】求一个数的相反数的方法就是在这个数的前边添加“﹣”,据此解答即可.【解答】解:﹣的相反数是﹣(﹣)=.故选:A.【点评】此题主要考查了相反数的含义以及求法,要熟练掌握.2.下列各组数中,互为相反数的是()A.3和﹣3 B.﹣3和C.﹣3和D.和3【考点】相反数.【分析】根据相反数的定义分别判定得出答案即可.【解答】解:A、∵3+(﹣3)=0,∴3与﹣3为互为相反数,故选项正确;B、∵﹣3+≠0,∴不是互为相反数,故选项错误;C、∵﹣3﹣≠0,∴不是互为相反数,故选项错误;D、∵3+≠0,∴不是互为相反数,故选项错误;故选:A.【点评】此题主要考查了相反数的定义,利用定义分别判断是解题关键.3.一个数的相反数仍是它本身,这个数是()A.1 B.﹣1 C.0 D.正数【考点】相反数.【分析】根据相反数的定义,0的相反数仍是0.【解答】解:0的相反数是其本身.故选C.【点评】主要考查相反数的定义:只有符号相反的两个数互为相反数.0的相反数是其本身.4.下面关于表示互为相反数的m与﹣m的点到原点的距离,表述正确的是()A.表示数m的点距离原点较远 B.表示数﹣m的点距离原点较远C.一样远D.无法比较【考点】相反数;数轴.【分析】根据数轴表示数的方法与相反数的定义得到m与﹣m的点到原点的距离相等.【解答】解:互为相反数的m与﹣m的点到原点的距离相等.故选C.【点评】本题考查了相反数:a的相反数为﹣a.也考查了数轴.5.下列说法中,正确的是()A.因为相反数是成对出现的,所以0没有相反数B.数轴上原点两旁的两点表示的数是互为相反数C.符号不同的两个数是互为相反数D.正数的相反数是负数,负数的相反数是正数【考点】相反数.【分析】根据0的相反数为0对A进行判断;根据数轴表示数的方法对B进行判断;根据相反数的定义对C、D进行判断.【解答】解:A、0的相反数为0,所以A选项错误;B、数轴上原点两旁且到原点的距离的点所表示的数是互为相反数,所以B选项错误;C、符号不同且绝对值相等的两个数是互为相反数,所以C选项错误;D、正数的相反数是负数,负数的相反数是正数,所以D选项正确.故选D.【点评】本题考查了相反数:a的相反数为﹣a.也考查了数轴.6.下列各对数中,是互为相反数的是()A.﹣(+7)与+(﹣7)B.﹣与+(﹣0.5)C.与D.+(﹣0.01)与【考点】相反数.【分析】相反数的概念:只有符号不同的两个数叫做互为相反数.【解答】解:﹣(+7)=﹣7,+(﹣7)=﹣7,故这对数不互为相反数,故本选项错误;B、﹣与﹣(0.5)不互为相反数,故本选项错误;C、﹣1=﹣,与互为相反数,故本选项正确;D、+(﹣0.01)=﹣0.01,﹣ =﹣0.01,故这对数不互为相反数,故本选项错误;故选C.【点评】本题考查了相反数的知识,属于基础题,解答本题的关键是掌握相反数的定义.7.下列说法正确的是()A.﹣5是的相反数B.与互为相反数C.﹣4是4的相反数D.是2的相反数【考点】相反数.【专题】存在型.【分析】根据相反数的定义对各选项进行逐一分析即可.【解答】接:A、∵﹣5与5是只有符号不同的两个数,∴﹣5的相反数是5,故本选项错误;B、∵﹣与,∴﹣的相反数是,故本选项错误;C、∵﹣4与4是只有符号不同的两个数,∴﹣4的相反数是4,故本选项正确;D、∵﹣与是只有符号不同的两个数,∴﹣的相反数是,故本选项错误.故选C.【点评】本题考查的是相反数的定义,即只有符号不同的两个数叫做互为相反数.8.下列各组数中,相等的一组是()A.+2.5和﹣2.5 B.﹣(+2.5)和﹣(﹣2.5)C.﹣(﹣2.5)和+(﹣2.5)D.﹣(+2.5)和+(﹣2.5)【考点】有理数大小比较.【分析】根据同号得正,异号得负可知,A,B,C中都互为相反数,相等的一组是D.【解答】解:根据同号得正,异号得负可排除A,B,C.故选D.【点评】简化符号可根据同号得正,异号得负求得.9.﹣(﹣2)的值是()A.﹣2 B.2 C.±2 D.4【考点】相反数.【分析】根据相反数的定义直接求得结果.【解答】解:﹣(﹣2)=2,故选B【点评】本题主要考查了相反数的性质,只有符号不同的两个数互为相反数,0的相反数是0.10.(•宜宾)﹣的相反数是()A.5 B.C.﹣ D.﹣5【考点】相反数.【分析】根据只有符号不同的两个数互为相反数,可得一个数的相反数.【解答】解:﹣的相反数是,故选B.【点评】本题考查了相反数,在一个数的前面加上负号就是这个数的相反数.11.(2012•大庆)一个实数a的相反数是5,则a等于()A.B.5 C.﹣ D.﹣5【考点】实数的性质.【分析】根据只有符号不同的两个数互为相反数,列出方程求解即可.【解答】解:根据题意得,﹣a=5,解得a=﹣5.故选D.【点评】本题考查了实数的性质,主要利用了互为相反数的定义,是基础题,熟记概念是解题的关键.12.如图,数轴上表示数﹣2的相反数的点是()A.点P B.点Q C.点M D.点N【考点】数轴;相反数.【分析】根据数轴得出N、M、Q、P表示的数,求出﹣2的相反数,根据以上结论即可得出答案.【解答】解:从数轴可以看出N表示的数是﹣2,M表示的数是﹣0.5,Q表示的数是0.5,P表示的数是2,∵﹣2的相反数是2,∴数轴上表示数﹣2的相反数是点P,故选A.【点评】本题考查了数轴和相反数的应用,主要培养学生的观察图形的能力和理解能力,题型较好,难度不大.13.下列四个数中,其相反数是正整数的是()A.3 B.C.﹣2 D.﹣【考点】相反数.【分析】根据相反数的概念,及正整数的概念,采用逐一检验法求解即可.【解答】解:其相反数是正整数的数本身首先必须是负数则可舍去A、B,而且相反数还得是整数又舍去D.故选C.【点评】主要考查相反数及整数的概念.二、填空题.14.数轴上表示互为相反数的两个点之间的距离为4,则这两个数是2,﹣2 .【考点】相反数;数轴.【分析】先根据互为相反数的定义,可设两个数是x和﹣x(x>0),再根据数轴上两点间的距离等于较大的数减去较小的数列方程计算.【解答】解:设两个数是x和﹣x(x>0),则有x﹣(﹣x)=4,解得:x=2.则这两个数分别是2和﹣2.故答案为:2,﹣2.【点评】本题考查了互为相反数的意义,一个数的相反数就是在这个数前面添上“﹣”号.掌握数轴上两点间的距离的计算方法.15.若a=13,则﹣a= ﹣13 ;若﹣x=3,则x= ﹣3 .【考点】相反数.【分析】根据相反数的定义,即可得出答案.【解答】解:若a=13,则﹣a=﹣13;若﹣x=3,则x=﹣3;故答案为:﹣13,﹣3.【点评】本题考查了相反数的知识,解答本题的关键是掌握相反数的定义.16.数轴上点A、B的位置如图所示,若点B关于点A的对称点为C,则点C表示的数为﹣5 .【考点】数轴.【专题】数形结合.【分析】点A表示的数是﹣1,点B表示的数是3,所以,|AB|=4;点B关于点A的对称点为C,所以,点C到点A的距离|AC|=4,即,设点C表示的数为x,则,﹣1﹣x=4,解出即可解答;【解答】解:如图,点A表示的数是﹣1,点B表示的数是3,所以,|AB|=4;又点B关于点A的对称点为C,所以,点C到点A的距离|AC|=4,设点C表示的数为x,则,﹣1﹣x=4,x=﹣5;故答案为:﹣5.【点评】此题综合考查了数轴、绝对值的有关内容,用几何方法借助数轴来求解,非常直观,且不容易遗漏,体现了数形结合的优点.三、解答题.17.已知数a,b表示的点在数轴上的位置如图所示.(1)在数轴上表示出a,b的相反数的位置;(2)若数b与其相反数相距20个单位长度,则b表示的数是多少?(3)在(2)的条件下,若数a表示的点与数b的相反数表示的点相距5个单位长度,求a表示的数是多少?【考点】相反数;数轴.【专题】数形结合.【分析】(1)根据互为相反数的点到原点的距离相等在数轴上表示出﹣a,﹣b;(2)先得到b表示的点到原点的距离为10,然后根据数轴表示数的方法得到b表示的数;(3)先得到﹣b表示的点到原点的距离为10,再利用数a表示的点与数b的相反数表示的点相距5个单位长度,则a表示的点到原点的距离为5,然后根据数轴表示数的方法得到a表示的数.【解答】解:(1)如图,;(2)数b与其相反数相距20个单位长度,则b表示的点到原点的距离为10,所以b表示的数是﹣10;(3)因为﹣b表示的点到原点的距离为10,而数a表示的点与数b的相反数表示的点相距5个单位长度,所以a表示的点到原点的距离为5,所以a表示的数是5.【点评】本题考查了相反数:a的相反数为﹣a.也考查了数轴.18.填表.原数﹣5﹣3 9.2 0 47相反数﹣5 3 ﹣9.2 0 ﹣4﹣7【考点】相反数.【分析】根据只有符号不同的两个数互为相反数,可得答案.【解答】解:原数﹣5﹣3 9.2 0 47相反数5 3 ﹣9.2 0 ﹣4﹣7故答案为:4,﹣3,﹣9.2,0,﹣4,7.【点评】本题考查了相反数,在一个数的前面加上负号就是这个数的相反数.19.求下列各数(式)的相反数.(1);(2)5;(3)0;(4)a;(5)x+1.【考点】相反数.【分析】根据相反数的定义,a的相反数是﹣a,分别得出即可.【解答】解:(1)的相反数为:;(2)5的相反数为:﹣5;(3)0的相反数为:0;(4)a的相反数为:﹣a;(5)x+1的相反数为:﹣x﹣1.【点评】此题主要考查了相反数的定义,熟练掌握相关定义是解题关键.20.化简下列各数的符号.(1)﹣(+4);(2)﹣(﹣7.1);(3)﹣[+(﹣5)];(4)﹣[﹣(﹣8)].【考点】相反数.【分析】去括号时,若括号前面是“+”则可直接去掉,若括号前面是“﹣”则括号里面各项需变号.【解答】解:(1)﹣(+4)=﹣4;(2)﹣(﹣7.1)=7.1;(3)﹣[+(﹣5)]=﹣5;(4)﹣[﹣(﹣8)]=﹣8.【点评】本题考查去括号的知识,属于基础题,注意掌握去括号时,若括号前面是“+”则可直接去掉,若括号前面是“﹣”则括号里面各项需变号.21.在数轴上点A表示7,点B、C表示互为相反数的两个数,且点C与点A间的距离为2,求点B、C对应的数是什么?【考点】相反数;数轴.【分析】根据数轴上两点间的距离等于较大的数减去较小的数列式计算,再根据相反数的定义写出最后答案.【解答】解:∵数轴上A点表示7,且点C到点A的距离为2,∴C点有两种可能5或9.又∵B,C两点所表示的数互为相反数,∴B点也有两种可能﹣5或﹣9.故B:﹣5,C:5或B:﹣9,C:9.【点评】本题综合考查了数轴和相反数:本题考查了互为相反数的意义,一个数的相反数就是在这个数前面添上“﹣”号.掌握数轴上两点间的距离的计算方法.22.小李在做题时,画了一个数轴,在数轴上原有一点A,其表示的数是﹣3,由于粗心,把数轴的原点标错了位置,使点A正好落在﹣3的相反数的位置,想一想,要把数轴画正确,原点要向哪个方向移动几个单位长度?【考点】数轴.【专题】综合题.【分析】先根据题意画出数轴,便可直观解答,点A的相反数是3,可得出原点需要向右移动.【解答】解:如图所示,可得应向右移动6个单位,故答案为原点应向右移动6个单位.【点评】此题综合考查了对数轴概念的理解,用几何方法借助数轴来求解,非常直观,且不容易遗漏,体现了数形结合的优点.23.如图是具有互为相反数的三角形数阵.当最下面一行的两个数为多少时,这两个数以及它们上面的数的个数为2013.【考点】规律型:数字的变化类.【专题】计算题;规律型;实数.【分析】根据题意归纳总结得到一般性规律,确定出所求即可.【解答】解:第一行,数值为1个数为1个,总个数为1;第二行,数值为+2,﹣2个数为2,总数为3;第三行,数值为+3,﹣3个数为2,总数为5,依此类推,第n行,数值为+n,﹣n个数为2,总数为2n﹣1,故令2n﹣1=2013,解得:n=1007,则这两个数为+1007和﹣1007.【点评】此题考查了规律型:数字的变化类,弄清题中的规律是解本题的关键.课后小知识--------------------------------------------------------------------------------------------------小学生每日名人名言1、读书要三到:心到、眼到、口到2、一日不读口生,一日不写手生。

第1章 有理数 人教版七年级数学上册单元测试卷(含答案)

第1章 有理数 人教版七年级数学上册单元测试卷(含答案)

人教版七年级数学上册第一章有理数一、选择题1.在―π3,3.1415,0,―0.333…,―22,2.010010001…中,非负数的个数( )7A.2个B.3个C.4个D.5个2.长江干流上的葛洲坝、三峡向家坝、溪洛渡、白鹤滩、乌东德6座巨型梯级水电站,共同构成目前世界上最大的清洁能走廊,总装机容量71695000千瓦,将71695000用科学记数法表示为( )A.7.1695×107B.716.95×105C.7.1695×106D.71.695×1063.生产厂家检测4个篮球的质量,结果如图所示,超过标准质量的克数记为正数,不足标准质量的克数记为负数,其中最接近标准质量的篮球是( )A.B.C.D.4.下列说法正确的是( )A.1是最小的自然数B.平方等于它本身的数只有1C.任何有理数都有倒数D.绝对值最小的数是05.计算3―(―3)的结果是( )A.6B.3C.0D.-66.下列说法:①有理数与数轴上的点一一对应;②1的平方根是它本身;③立方根是它本身的数是0,1;④对于任意一个实数a,都可以用1⑤任何无理数都是无限不循环小数.正确的有a表示它的倒数.( )个.A.0B.1C.2D.37.把数轴上表示数2的点移动3个单位后,表示的数为( )A.5B.1C.5或-1D.5或18.如果|a|=―a,那么a一定是( )A.正数B.负数C.非正数D.非负数9.法国的“小九九”从“一一得一”到“五五二十五”和我国的“小九九”是一样的,后面的就改用手势了.下面两个图框是用法国“小九九”计算7×8和8×9的两个示例,且左手伸出的手指数不大于右手伸出的手指数.若用法国的“小九九”计算7×9,左、右手依次伸出手指的个数是( )7×8=?8×9=?因为两手伸出的手指数的和为5,未伸出的手指数的积为6,所以7×8=56.7×8=10×(2+3)+3×2=56因为两手伸出的手指数的和为7,未伸出的手指数的积为2,所以8×9=72.8×9=10×(3+4)+2×1=72A .2,4B .1,4C .3,4D .3,110.如图是节选课本110页上的阅读材料,请根据材料提供的方法求和:11×2+12×3+13×4+⋅⋅⋅+12020×2021,它的值是( )上题是利用一系列等式相加消去项达到求和,这种方法不仅限于整数求和,如1―12=11×2①12―13=12×3②13―14=13×4③14―15=14×5④ ……继续写出上述第n 个算式,并把这些算式两边分别相加,会得到:11×2+12×3+13×4+⋅⋅⋅+1n ×(n +1).A .1B .20202021C .20192020D .12021二、填空题11.12的相反数是 . 12.-2的绝对值是 13.定义一种新运算“⊗”,规则如下:a ⊗b =a 2―ab ,例如:3⊗1=32―3×1=6,则4⊗[2⊗(―5)]的值为 .14.如图所示的运算程序中,若开始输入的值为―2,则输出的结果为  .15.若a ―2+|3―b |=0,则3a +2b = .16.若a ,b ,c 都不为0,则 a |a |+b |b |+c |c |+abc |abc | 的值可能是  . 三、解答题17.把下列各数在数轴上表示出来,并用“<”号把它们连接起来.―3,|―3|,32,(―2)2,―(―2)18.将有理数―2.5,0,212023,―35%,0.6分别填在相应的大括号里.2,整数:{ …};负数:{ …};正分数:{ …}19.小明有5张写着不同数字的卡片,完成下列各问题:(1)把卡片上的5个数在数轴上表示出来;(2)从中取出3张卡片,将这3张卡片上的数字相乘,乘积的最大值为 ;(3)从中取出2张卡片,将这2张卡片上的数字相除,商的最小值为 20.把相同的瓷碗按如图方式整齐地叠放在一起.叠放4个时,测量的高度为9.5cm;叠放6个时,测量的高度为12.5cm.(1)根据题意,可知每增加一个瓷碗,高度增加 cm;(2)求碗高;(3)若叠放10个瓷碗,高度为 cm.21.若a,b互为相反数,c,d互为倒数,m的绝对值为2.(1)直接写出a+b=______,cd=____,m=____.的值.(2)求m―cd+3a+3bm22.我们知道,|a|可以理解为|a―0|,它表示:数轴上表示数a的点到原点的距离,这是绝对值的几何意义.进一步地,数轴上的两个点A,B,分别用数a,b表示,那么A,B两点之间的距离为AB=|a―b|,反过来,式子|a―b|的几何意义是:数轴上表示数a的点和表示数b的点之间的距离,利用此结论,回答以下问题:(1)数轴上表示数8的点和表示数3的点之间的距离是_________,数轴上表示数―1的点和表示数―3的点之间的距离是_________.(2)数轴上点A用数a表示,则①若|a―3|=5,那么a的值是_________.②|a―3|+|a+6|有最小值,最小值是_________;③求|a+1|+|a+2|+|a+3|+⋯+|a+2021|+|a+2022|+|a+2023|的最小值.23.数轴上点A表示的数为10,点M,N分别以每秒a个单位长度,每秒b个单位长度的速度沿数轴运动,a,b满足|a-5|+(b-6)2=0.(1)请直接与出a= ,b= ;(2)如图1,点M从A出发沿数轴向左运动,到达原点后立即返回向右运动:同时点N从原点0出发沿数轴向左运动,运动时间为t,点P为线段ON的中点若MP=MA,求t的值:(3)如图2,若点M从原点向右运动,同时点N从原点向左运动,运动时间为t时M运动到点A的右侧,若此时以M,N,O,A为端点的所有线段的长度和为142,求此时点M对应的数.答案解析部分1.【答案】B2.【答案】A3.【答案】B4.【答案】D5.【答案】A6.【答案】B7.【答案】C8.【答案】C9.【答案】A10.【答案】B11.【答案】﹣1212.【答案】213.【答案】―4014.【答案】815.【答案】1216.【答案】0或4或﹣417.【答案】图见解答,―3<3<―(―2)<|―3|<(―2)2218.【答案】解:整数:0,2023;负数:―2.5,―35%;,0.6.正分数:21219.【答案】(1)解:如图所示(2)50(3)-820.【答案】(1)1.5(2)解:设碗高为xcm,根据题意得x+1.5×3=9.5.解方程得,x=5 .答:碗高为5cm .(3)18.521.【答案】(1)0,1,±2;(2)1或―322.【答案】(1)5,2(2)①8或―2;②9;③102313223.【答案】(1)5;6(2)解:①点M 未到达O 时(0<t≤2时),NP=OP=3t ,AM=5t ,OM=10-5t ,MP=3t+10-5t即3t+10-5t=5t ,解得t =107,②点M 到达O 返回,未到达A 点或刚到达A 点时,即当(2<t≤4时),OM=5t-10,AM=20-5t , MP=3t+5t-10即3t+5t-10=20-5t ,解得t =3013③点M 到达O 返回时,在A 点右侧,即t >4时OM=5t-10,AM=5t-20,MP=3t+5t-10,即3t+5t-10=5t-20,解得t =―103(不符合题意舍去).综上t =107或t =3013;(3)解:如下图:根据题意:NO=6t ,OM=5t ,所以MN=6t+5t=11t依题意: NO+OA+AM+AN+OM+MN=MN+MN+OA+MN=33t+10=142,解得t=4.此时M 对应的数为20.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一章有理数【课标要求】考点知识点知识与技能目标了解理解掌握灵活应用有理数有理数及有理数的意义∨相反数和绝对值∨有理数的运算∨解释大数∨【知识梳理】1.数轴:数轴三要素:原点,正方向和单位长度;数轴上的点与实数是一一对应的。

2.相反数实数a的相反数是-a;若a与b互为相反数,则有a+b=0,反之亦然;几何意义:在数轴上,表示相反数的两个点位于原点的两侧,并且到原点的距离相等。

3.倒数:若两个数的积等于1,则这两个数互为倒数。

4.绝对值:代数意义:正数的绝对值是它本身,负数的绝对值是它的相反数,0的绝对值是0;几何意义:一个数的绝对值,就是在数轴上表示这个数的点到原点的距离.5.科学记数法:,其中。

6.实数大小的比较:利用法则比较大小;利用数轴比较大小。

7.在实数范围内,加、减、乘、除、乘方运算都可以进行,但开方运算不一定能行,如负数不能开偶次方。

实数的运算基础是有理数运算,有理数的一切运算性质和运算律都适用于实数运算。

正确的确定运算结果的符号和灵活的使用运算律是掌握好实数运算的关键。

【能力训练】一、选择题。

1.下列说法正确的个数是 ( )①一个有理数不是整数就是分数②一个有理数不是正数就是负数③一个整数不是正的,就是负的④一个分数不是正的,就是负的A 1B 2C 3D 42.a,b是有理数,它们在数轴上的对应点的位置如下图所示:把a,-a,b,-b按照从小到大的顺序排列 ( )A -b<-a<a<bB -a<-b<a<bC -b<a<-a<bD -b<b<-a<a3.下列说法正确的是 ( )①0是绝对值最小的有理数②相反数大于本身的数是负数③数轴上原点两侧的数互为相反数④两个数比较,绝对值大的反而小A ①②B ①③C ①②③D ①②③④4.下列运算正确的是( )A B -7-2×5=-9×5=-45C 3÷D -(-3)2=-95.若a+b<0,ab<0,则 ( )A a>0,b>0B a<0,b<0C a,b两数一正一负,且正数的绝对值大于负数的绝对值D a,b两数一正一负,且负数的绝对值大于正数的绝对值6.某粮店出售的三种品牌的面粉袋上分别标有质量为(25±0.1)kg,(25±0.2)kg, (25±0.3)kg的字样,从中任意拿出两袋,它们的质量最多相差()A 0.8kgB 0.6kgC 0.5kgD 0.4kg7.一根1m长的小棒,第一次截去它的,第二次截去剩下的,如此截下去,第五次后剩下的小棒的长度是()A ()5mB [1-()5]mC ()5mD [1-()5]m8.若ab≠0,则的取值不可能是()A 0B 1C 2D -2二、填空题9.比大而比小的所有整数的和为。

10.若那么2a一定是。

11.若0<a<1,则a,a2,的大小关系是。

12.多伦多与北京的时间差为–12 小时(正数表示同一时刻比北京时间早的时数),如果北京时间是10月1日14:00,那么多伦多时间是。

13上海浦东磁悬浮铁路全长30km,单程运行时间约为8min,那么磁悬浮列车的平均速度用科学记数法表示约为 m/min。

14.规定a﹡b=5a+2b-1,则(-4)﹡6的值为。

15.已知=3,=2,且ab<0,则a-b= 。

16.已知a=25,b= -3,则a99+b100的末位数字是。

三、计算题。

17.18. 8-2×32-(-2×3)219.20.[-38-(-1)7+(-3)8]×[-53]21. –12 × (-3)2-(-)2003×(-2)2002÷22.–16-(0.5-)÷×[-2-(-3)3]-∣-0.52∣四、解答题。

23.已知1+2+3+…+31+32+33==17×33,求1-3+2-6+3-9+4-12+…+31-93+32-96+33-99的值。

24.在数1,2,3,…,50前添“+”或“-”,并求它们的和,所得结果的最小非负数是多少?请列出算式解答。

25.某检修小组从A地出发,在东西向的马路上检修线路,如果规定向东行驶为正,向西行驶为负,一天中七次行驶纪录如下。

(单位:km)第一次第二次第三次第四次第五次第六次第七次-4+7-9+8+6-5-2(1)求收工时距A地多远?(2)在第次纪录时距A地最远。

(3)若每km耗油0.3升,问共耗油多少升?26.如果有理数a,b满足∣ab-2∣+(1-b)2=0,试求+…+的值。

参考答案:一、选择题:1-8:BCADDBCB二、填空题:9.-3;10.非正数;11.;12.2:00;13.3.625×106;14.-9;15.5或-5;16.6三、计算题17.-9;18.-45;19.;20.;21.;22.四、解答题:23.-2×17×33;24.0;25.(1)1(2)五(3)12.3;26.第二章一元一次方程【课标要求】考点课标要求知识与技能目标了解理解掌握灵活应用一元一次方程了解方程、一元一次方程以及方程有解的概念∨会解一元一次方程,并能灵活应用∨∨∨会列一元一次方程解应用题,并能根据问题的实际意义检验所得结果是否合理。

∨∨∨【知识梳理】1.会对方程进行适当的变形解一元一次方程:解方程的基本思想就是转化,即对方程进行变形,变形时要注意两点,一时方程两边不能乘以(或除以)含有未知数的整式,否则所得方程与原方程的解可能不同;二是去分母时,不要漏乘没有分母的项,一元一次方程是学习二元一次方程组、一元二次方程、一元一次不等式及函数问题的基本内容。

2.正确理解方程解的定义,并能应用等式性质巧解考题:方程的解应理解为,把它代入原方程是适合的,其方法就是把方程的解代入原方程,使问题得到了转化。

3.理解方程ax=b在不同条件下解的各种情况,并能进行简单应用:(1)a≠0时,方程有唯一解x=;(2)a=0,b=0时,方程有无数个解;(3)a=0,b≠0时,方程无解。

4.正确列一元一次方程解应用题:列方程解应用题,关键是寻找题中的等量关系,可采用图示、列表等方法,根据近几年的考试题目分析,要多关注社会热点,密切联系实际,多收集和处理信息,解应用题时还要注意检查结果是否符合实际意义。

【能力训练】一、填空题(本题共20分,每小题4分):1.x=时,代数式与代数式的差为0;2.x=3是方程4x-3(a-x)=6x-7(a-x)的解,那么a=;3.x=9 是方程的解,那么,当1时,方程的解;4.若是2ab2c3x-1与-5ab2c6x+3是同类项,则x=;5.x=是方程|k|(x+2)=3x的解,那么k=.二、解下列方程(本题50分,每小题10分):1.2{3[4(5x-1)-8]-20}-7=1;2.=1;3.x-2[x-3(x+4)-5]=3{2x-[x-8(x-4)]}-2;4.;5..三解下列应用问题(本题30分,每小题10分):1.用两架掘土机掘土,第一架掘土机比第二架掘土机每小时多掘土40 m3, 第一架工作16小时,第二架工作24小时,共掘土8640 m3,问每架掘土机每小时可以掘土多少 m3?2.甲、乙、丙三个工厂共同筹办一所厂办学校,所出经费不同,其中甲厂出总数的,乙厂出甲丙两厂和的,已知丙厂出了16000元.问这所厂办学校总经费是多少,甲乙两厂各出了多少元?3.一条山路,从山下到山顶,走了1小时还差1km,从山顶到山下,用50分钟可以走完.已知下山速度是上山速度的1.5倍,问下山速度和上山速度各是多少,单程山路有多少km.参考答案:一、填空题:1.9;2.;3.或;4.x=;5.;二、解方程:1.x=1;2.;3.x=6;4.;5.三、应用题:1.第一架掘土机每小时掘土240立方米,第二架掘土机每小时掘土200 m3 2.总经费42000元,甲厂出12000元,乙厂出14000元3.上山速度为每小时4 km,下山速度为每小时6 km,单程山路为5 km.第三章图形认识初步【课标要求】考点课标要求知识与技能目标了解理解掌握灵活应用线段线段的定义、中点∨∨线段的比较、度量∨线段公理∨∨直线直线公理,垂线性质∨对顶角的性质∨平行线的性质、判定∨∨射线射线的定义∨∨射线的性质∨∨【知识梳理】1.点、线、面:通过丰富的实例,进一步认识点、线、面(如交通图上用点表示城市,屏幕上的画面是由点组成的)。

2.角①通过丰富的实例,进一步认识角。

②会比较角的大小,能估计一个角的大小,会计算角度的和与差,识别度分、秒,会进行简单换算。

③了解角平分线及其性质。

【能力训练】一、填空题1、如图,图中共有线段_____条,若是中点,是中点,⑴若,,_________;⑵若,,_________。

2、不在同一直线上的四点最多能确定条直线。

3、 2:35时钟面上时针与分针的夹角为______________。

4、如图,在的内部从引出3条射线,那么图中共有_______个角;如果引出5条射线,有_______个角;如果引出条射线,有_______个角。

5、⑴;⑵。

二、选择题1、对于直线,线段,射线,在下列各图中能相交的是()2、如果与互补,与互余,则与的关系是()、=、、、以上都不对3、为直线外一点,为上三点,且,那么下列说法错误的是()、三条线段中最短、线段叫做点到直线的距离、线段是点到的距离、线段的长度是点到的距离4、如图,,,点B、O、D在同一直线上,则的度数为()、、、、5、在海上,灯塔位于一艘船的北偏东40度方向,那么这艘船位于这个灯塔的()、南偏西50度方向、南偏西40度方向、北偏东50度方向、北偏东40度方向三、作图并分析1、⑴在图上过点画出直线、直线的垂线;⑵在图上过点画出直线的垂线,过点画出直线的垂线。

2、如图,⑴过点画直线∥;⑵连结;⑶过画的垂线,垂足为;⑷过点画的垂线,垂足为;⑸量出到的距离≈______(厘米)(精确到厘米)量出到的距离≈______(厘米)(精确到厘米)⑹由⑸知到的距离______到的距离(填“<”或“=”或“>”)四、解答题:1、如图,AD=DB, E是BC的中点,BE=AC=2cm,线段DE的长,求线段DE的长.2、如图,运动会上一名服务的同学要往返于百米起跑点A、终点记时处B(A、B位于东西方向)及检录处C,他在A处看C点位于北偏东60°方向上,在B处看C点位于西北方向(即北偏西45°)上。

(1)确定检录处C的位置;(2)现限定只用刻度尺作为工具,如果想知道这位同学在检录处C与百米起跑点A之间往返一次要走多少米(不考虑其他因素),你有什么办法?(要求:只写出一种办法,不需具体计算)解:参考答案:一、填空题:1.10、4、1;2.6;3.132.5°;4.10、21、;5.23.5、44、52二、选择题1-5:BCDCB 四、解答题:1.DE=6;第四章数据的收集与整理江苏省赣榆县沙河中学张庆华【课标要求】考点课标要求知识与技能目标了解理解掌握灵活应用数据的收会用扇形统计图表示数据∨理解频数、频率的概念∨了解频率分布的意义和作用∨会列频数分布表,画频数分布直方图和频数折线∨集整理与分析图能解决简单的实际问题∨【能力训练】一、选择题1.近年来国内生产总值年增长率的变化情况如图所示.从图上看,下列结论中不正确的是( ).A.1995~1999年,国内生产总值的年增长率逐年减小;B.2000年国内生产总值的年增长率开始回升;C.这7年中,每年的国内生产总值不断增长;D.这7年中,每年的国内生产总值不断减小.2.武汉市某校在“创新素质实践行”活动中,组织学生进行社会调查,并对学生的调查报告进行了评比.下图是将某年级66篇学生调查报告进行整理,•分成5组画出的频数分布直方图.已知从左到右5个小长方形的高的比为1:3:7:6:3,那么在这次评比中被评为优秀的调查报告有(分别大于或等于80分为优秀,且分数为整数)( ).A.18篇B.24篇C.25篇D.27篇3.星期天晚饭后,小红从家里出去散步,•右图描述了她散步过程中离家的距离s(米)与散步所用时间t(分)之间的函数关系.依据图象,下面描述符合小红散步情景的是( ).A.从家出发,到了一个公共阅报栏,看了一会儿报,就回家了;B.从家出发,到了一个公共阅报栏,看了一会儿报后,继续向前走了一段,然后回家了.C.从家出发,一直散步(没有停留),然后回家了;D.从家出发,散了一会儿步,就找同学去了,18分钟后才开始返回.4.某校为了了解学生的身体素质情况,对初三(2)班的50•名学生进行了立定跳远、铅球、100米三个项目的测试,每个项目满分为10分.如图,是将该班学生所得的三项成绩(成绩均为整数)之和进行整理后,分成5组画出的频率分布直方图,已知从左到右前4个小组的频率分别为0.02,0.1,0.12,0.46.下列说法:①学生的成绩≥27分的共有15人;②学生成绩的众数在第四小组(22.5~26.5)内;③学生成绩的中位数在第四小组(22.5~26.5)范围内.其中正确的说法是( ).A.①②B.②③C.①③D.①②③二、填空题1.现有A、B两个班级,每个班级各有45名学生参加一次测验.•每名参加者可获得0,1,2,3,4,5,6,7,8,9分这几种不同的分值中的一种.测试结果A•班的成绩如下表所示,B班的成绩如图所示.A班分数0123456789人数1357686432(1)由观察所得,_____班的标准差较大;(2)若两班合计共有60人及格,问参加者最少获_______分才可以及格.2.在相同条件下,对30辆同一型号的汽车进行耗油1•升所走路程的试验,根据测得的数据画出频率分布直方图如图.则本次试验中,耗油1升所行走的路程在13.•05•~13.•55km•范围内的汽车共有_____辆.3.2003年,在我国内地发生了“非典型肺炎”疫情,•在党和政府的正确领导下,目前疫情已得到有效控制,下图是今年5月1日至5月14日的内地新增确诊病例数据走势图(数据来源:卫生部每日疫情通报).中国内地非典新增确诊病例数据走势图(截止到2003年5月14日上午10时)从图中,可知道:(1)5月6日新增确诊病例人数为________人;(2)在5月9日至5月11日三天中,共新增确诊病例人数为______人;(3)从图上可看出,5月上半月新增确诊病例总体呈_______趋势.4.在世界环境日到来之际,希望中学开展了“环境与人类生存”主题研讨活动,活动之一是对我们的生存环境进行社会调查,并对学生的调查报告进行评比.初三.(3)班将本班50篇学生调查报告得分进行整理(成绩均为整数),列出了频率分布表,并画出了频率分布直方图(部分)如下:分组频率49.5~59.50.0459.5~69.50.0469.5~79.50.1679.5~89.50.3489.5~99.50.42合计1根据以上信息回答下列问题:(1)该班90分以上(含90分)的调查报告共有________篇;(2)该班被评为优秀等级(80分及80分以上)的调查报告占_________%;(3)补全频率分布直方图.三、解答题1.为了让学生了解环保知识,增强环保意识,•某中学举行了一次“环保知识竞赛”,共有900名学生参加了这次竞赛.为了解本次竞赛成绩情况,从中抽取了部分学生的成绩(得分取正整数,满分为100分)进行统计.•请你根据下面尚未完成并有局部污损的频率分布表和频率分布直方图,解答下列问题:频率分布表分组频数频率50.5~60.540.0860.5~70.580.1670.5~80.5100.2080.5~90.5160.3290.5~100.5合计(1)填充频率分布表中的空格;(2)初全频率分布直方图;(3)在该问题中的样本容量是多少?答:_________________.(4)全体参赛学生中,竞赛成绩落在哪组范围内的人数最多?(不要求说明理由).答:________________.(5)若成绩在90分以上(不含90分)为优秀,则该校成绩优秀的约为多少人?答:________________.2.新安商厦对销售较大的A、B、C三种品牌的洗衣粉进行了问卷调查,发放问卷270份(问卷由单选和多选题组成).对收回的238份问卷进行了整理,•部分数据如下:一、最近一次购买各品牌洗衣粉用户的比例(如图).二、用户对各品牌洗衣粉满意情况汇总表:内容质量广告价格品牌A B C A B C A B C满意的户数1941211171631721079896100根据上述信息回答下列问题:(1)A品牌洗衣粉的主要竞争优势是什么?你是怎样看出来的?(2)广告对用户选择品牌有影响吗?请简要说明理由.(3)你对厂家有何建议?参考答案:一、选择题:1-4:DDBD二、填空题:1.A班,5;2.12;3.138,-49,下降;4.21,76,略三、解答题:1.12,0.24,50,1,50,80。

相关文档
最新文档