城中区三中2018-2019学年高二上学期数学期末模拟试卷含解析

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

城中区三中2018-2019学年高二上学期数学期末模拟试卷含解析班级__________ 座号_____ 姓名__________ 分数__________
一、选择题
1. -2sin 80°的值为( )
sin 15°sin 5°A .1 B .-1C .2
D .-2
2. 以A={2,4,6,7,8,11,12,13}中的任意两个元素分别为分子与分母构成分数,则这种分数是可约分
数的概率是( )
A .
B .
C .
D .
3. 已知P (x ,y )为区域内的任意一点,当该区域的面积为4时,z=2x ﹣y 的最大值是
( )A .6B .0C .2
D .2
4. 如图所示,网格纸表示边长为1的正方形,粗实线画出的是某几何体的三视图,则该几何体的体积为(

A .4
B .8
C .12
D .20
【命题意图】本题考查三视图、几何体的体积等基础知识,意在考查空间想象能力和基本运算能力.5. 已知高为5的四棱锥的俯视图是如图所示的矩形,则该四棱锥的体积为(

A .
B .
C .
D .248064240
6. 复数是虚数单位)的虚部为( )i i
i
z (21+=
A .
B .
C .
D .1-i -i 22
【命题意图】本题考查复数的运算和概念等基础知识,意在考查基本运算能力.
7. 在ABC ∆中,若60A ∠=
,45B ∠=
,BC =,则AC =(

A .
B .
C.
D 8. 函数y=sin2x+cos2x 的图象,可由函数y=sin2x ﹣cos2x 的图象( )
A .向左平移个单位得到
B .向右平移个单位得到
C .向左平移
个单位得到D .向左右平移
个单位得到
9. 圆上的点到直线的距离最大值是( )
01222
2
=+--+y x y x 2=-y x A .
B .
C .
D .12+12
2
+1
22+10.已知函数f (x )=xe x ﹣mx+m ,若f (x )<0的解集为(a ,b ),其中b <0;不等式在(a ,b )中有且只有一个整数解,则实数m 的取值范围是( )
A .
B .
C .
D .
11.命题“∀a ∈R ,函数y=π”是增函数的否定是( )
A .“∀a ∈R ,函数y=π”是减函数
B .“∀a ∈R ,函数y=π”不是增函数
C .“∃a ∈R ,函数y=π”不是增函数
D .“∃a ∈R ,函数y=π”是减函数
12.在平面直角坐标系中,向量=(1,2),=(2,m),若O ,A ,B 三点能构成三角形,则
( )A .
B .
C .
D .
二、填空题
13.平面向量,满足|2﹣|=1,|﹣2|=1,则的取值范围 . 
14.在复平面内,记复数+i 对应的向量为,若向量饶坐标原点逆时针旋转60°得到向量所对应
的复数为 .
15.设直线系M :xcos θ+(y ﹣2)sin θ=1(0≤θ≤2π),对于下列四个命题:A .M 中所有直线均经过一个定点
B .存在定点P 不在M 中的任一条直线上
C .对于任意整数n (n ≥3),存在正n 边形,其所有边均在M 中的直线上
D .M 中的直线所能围成的正三角形面积都相等
其中真命题的代号是 (写出所有真命题的代号).
16.【2017-2018第一学期东台安丰中学高三第一次月考】在平面直角坐标系中,直线与函数
xOy l 和均相切(其中为常数),切点分别为和
()()2220f x x a x =+>()()3220g x x a x =+>a ()11,A x y ,则的值为__________.
()22,B x y 12x x +17.在下列给出的命题中,所有正确命题的序号为 . ①函数y=2x 3+3x ﹣1的图象关于点(0,1)成中心对称;②对∀x ,y ∈R .若x+y ≠0,则x ≠1或y ≠﹣1;③若实数x ,y 满足x 2+y 2=1,则
的最大值为

④若△ABC 为锐角三角形,则sinA <cosB .
⑤在△ABC 中,BC=5,G ,O 分别为△ABC 的重心和外心,且•
=5,则△ABC 的形状是直角三角形.
18.若函数y=ln (
﹣2x )为奇函数,则a= .
三、解答题
19.已知椭圆
+
=1(a >b >0)的离心率为
,且a 2=2b .
(1)求椭圆的方程;
(2)直线l :x ﹣y+m=0与椭圆交于A ,B 两点,是否存在实数m ,使线段AB 的中点在圆x 2+y 2=5上,若存在,求出m 的值;若不存在,说明理由.
20.已知p :﹣x 2+2x ﹣m <0对x ∈R 恒成立;q :x 2+mx+1=0有两个正根.若p ∧q 为假命题,p ∨q 为真命题,求m 的取值范围.
21.(本题12分)
正项数列{}n a 满足2
(21)20n n a n a n ---=.
(1)求数列{}n a 的通项公式n a ;(2)令1
(1)n n
b n a =
+,求数列{}n b 的前项和为n T .
22.(本小题满分10分)选修4-4:坐标系与参数方程
已知曲线的极坐标方程是,以极点为平面直角坐标系的原点,极轴为轴的正半轴,建立
C 2cos ρθ=平面直角坐标系,直线的参数方程是(为参数).
243x t
y t =-+⎧⎨=⎩
(1)写出曲线的参数方程,直线的普通方程;
C (2)求曲线上任意一点到直线的距离的最大值.
C 23.【徐州市2018届高三上学期期中】已知函数(,是自然对数的底数).
(1)若函数在区间上是单调减函数,求实数的取值范围;
(2)求函数的极值;
(3)设函数
图象上任意一点处的切线为,求在轴上的截距的取值范围.
24.在某大学自主招生考试中,所有选报Ⅱ类志向的考生全部参加了“数学与逻辑”和“阅读与表达”两个科目的考试,成绩分为A,B,C,D,E五个等级.某考场考生的两科考试成绩的数据统计如图所示,其中“数学与逻辑”科目的成绩为B的考生有10人.
(Ⅰ)求该考场考生中“阅读与表达”科目中成绩为A的人数;
(Ⅱ)若等级A,B,C,D,E分别对应5分,4分,3分,2分,1分,求该考场考生“数学与逻辑”科目的平均分;
(Ⅲ)已知参加本考场测试的考生中,恰有两人的两科成绩均为A.在至少一科成绩为A的考生中,随机抽取两人进行访谈,求这两人的两科成绩均为A的概率.
城中区三中2018-2019学年高二上学期数学期末模拟试卷含解析(参考答案)
一、选择题
1. 【答案】
【解析】解析:选A.-2 sin 80°
sin 15°sin 5°
=-2cos 10°=
sin (10°+5°)sin 5°
sin 10°cos 5°+cos 10°sin 5°-2 cos 10°sin 5°
sin 5°===1,选A.
sin 10°cos 5°-cos 10°sin 5°sin5 °sin (10°-5°)
sin 5°
2. 【答案】D
【解析】解:因为以A={2,4,6,7,8,11,12,13}中的任意两个元素分别为分子与分母共可构成个分
数,
由于这种分数是可约分数的分子与分母比全为偶数,故这种分数是可约分数的共有个,则分数是可约分数的概率为P==

故答案为:D
【点评】本题主要考查了等可能事件的概率,用到的知识点为:概率=所求情况数与总情况数之比. 
3. 【答案】A 解析:解:由
作出可行域如图,
由图可得A (a ,﹣a ),B (a ,a ),由
,得a=2.
∴A (2,﹣2),
化目标函数z=2x ﹣y 为y=2x ﹣z ,
∴当y=2x ﹣z 过A 点时,z 最大,等于2×2﹣(﹣2)=6.故选:A .4. 【答案】C
【解析】由三视图可知该几何体是四棱锥,且底面为长,宽的矩形,高为3,所以此四棱锥体积为
62,故选C.123123
1
=⨯⨯5. 【答案】B
【解析】试题分析:,故选B.805863
1
=⨯⨯⨯=
V 考点:1.三视图;2.几何体的体积.6. 【答案】A
【解析】,所以虚部为-1,故选A.()12(i)
122(i)
i i z i i i +-+===-- 7. 【答案】B 【解析】
考点:正弦定理的应用.8. 【答案】C
【解析】解:y=sin2x+cos2x=sin (2x+),y=sin2x ﹣cos2x=
sin (2x ﹣
)=
sin[2(x ﹣
)+
)],
∴由函数y=sin2x ﹣cos2x 的图象向左平移个单位得到y=
sin (2x+
),
故选:C .
【点评】本题主要考查三角函数的图象关系,利用辅助角公式将函数化为同名函数是解决本题的关键.
9. 【答案】B 【解析】
试题分析:化简为标准形式,圆上的点到直线的距离的最大值为圆心到直线的距离加半
()()1112
2
=-+-y x 径,,半径为1,所以距离的最大值是,故选B.
22
2
11=--=
d 12+考点:直线与圆的位置关系 110.【答案】C
【解析】解:设g (x )=xe x ,y=mx ﹣m ,由题设原不等式有唯一整数解,即g (x )=xe x 在直线y=mx ﹣m 下方,g ′(x )=(x+1)e x ,
g (x )在(﹣∞,﹣1)递减,在(﹣1,+∞)递增,故g (x )min =g (﹣1)=﹣
,y=mx ﹣m 恒过定点P (1,0),
结合函数图象得K PA ≤m <K PB ,即
≤m <


故选:C .
【点评】本题考查了求函数的最值问题,考查数形结合思想,是一道中档题. 
11.【答案】C
【解析】解:因为全称命题的否定是特称命题,所以,命题“∀a ∈R ,函数y=π”是增函数的否定是:“∃a ∈R ,函数y=π”不是增函数.故选:C .
【点评】本题考查命题的否定,特称命题与全称命题的否定关系,是基础题. 
12.【答案】B
【解析】【知识点】平面向量坐标运算
【试题解析】若O ,A ,B 三点能构成三角形,则O ,A ,B 三点不共线。

若O ,A ,B 三点共线,有:-m=4,m=-4.故要使O ,A ,B 三点不共线,则。

故答案为:B
二、填空题
13.【答案】 [,1] .
【解析】解:设两个向量的夹角为θ,
因为|2﹣|=1,|﹣2|=1,
所以,,
所以,=
所以5=1,所以,所以5a2﹣1∈[],
[,1],
所以;
故答案为:[,1].
【点评】本题考查了向量的模的平方与向量的平方相等的运用以及通过向量的数量积定义,求向量数量积的范围.
14.【答案】 2i .
【解析】解:向量饶坐标原点逆时针旋转60°得到向量所对应的复数为
(+i)(cos60°+isin60°)=(+i)()=2i
,故答案为2i.
【点评】本题考查两个复数代数形式的乘法及其集合意义,判断旋转60°得到向量对应的复数为(+i)(cos60°+isin60°),是解题的关键.
15.【答案】BC
【解析】
【分析】验证发现,直线系M:xcosθ+(y﹣2)sinθ=1(0≤θ≤2π)表示圆x2+(y﹣2)2=1的切线的集合,A.M中所有直线均经过一个定点(0,2)是不对,可由圆的切线中存在平行线得出,
B.存在定点P不在M中的任一条直线上,观察直线的方程即可得到点的坐标.
C.对于任意整数n(n≥3),存在正n边形,其所有边均在M中的直线上,由直线系的几何意义可判断,D.M中的直线所能围成的正三角形面积一定相等,由它们是同一个圆的外切正三角形可判断出.
【解答】解:因为点(0,2)到直线系M:xcosθ+(y﹣2)sinθ=1(0≤θ≤2π)中每条直线的距离d=
=1,直线系M:xcosθ+(y﹣2)sinθ=1(0≤θ≤2π)表示圆x2+(y﹣2)2=1的切线的集合,A.由于直线系表示圆x2+(y﹣2)2=1的所有切线,其中存在两条切线平行,M中所有直线均经过一个定点
(0,2)不可能,故A不正确;
B.存在定点P不在M中的任一条直线上,观察知点M(0,2)即符合条件,故B正确;
C.由于圆的所有外切正多边形的边都是圆的切线,所以对于任意整数n(n≥3),存在正n边形,其所有边均在M中的直线上,故C正确;
D.如下图,M中的直线所能围成的正三角形有两类,
其一是如△ABB′型,是圆的外切三角形,此类面积都相等,另一类是在圆同一侧,如△BDC型,此一类面积相等,但两类之间面积不等,所以面积大小不一定相等,
故本命题不正确.
故答案为:BC.
16.【答案】56 27
【解析】
17.【答案】:①②③
【解析】解:对于①函数y=2x3﹣3x+1=的图象关于点(0,1)成中心对称,假设点(x0,y0)在函数图象上,则其关于①点(0,1)的对称点为(﹣x0,2﹣y0)也满足函数的解析式,则①正确;
对于②对∀x,y∈R,若x+y≠0,对应的是直线y=﹣x以外的点,则x≠1,或y≠﹣1,②正确;
对于③若实数x,y满足x2+y2=1,则=,可以看作是圆x2+y2=1上的点与点(﹣2,0)连线的斜率,其最大值为,③正确;
对于④若△ABC为锐角三角形,则A,B,π﹣A﹣B都是锐角,
即π﹣A﹣B<,即A+B>,B>﹣A,
则cosB<cos(﹣A),
即cosB<sinA,故④不正确.
对于⑤在△ABC中,G,O分别为△ABC的重心和外心,
取BC的中点为D,连接AD、OD、GD,如图:则OD⊥BC,GD=AD,
∵=|,
由则,
即则
又BC=5则有
由余弦定理可得cosC <0,即有C 为钝角.
则三角形ABC 为钝角三角形;⑤不正确.故答案为:①②③18.【答案】 4 .
【解析】解:函数y=ln (﹣2x )为奇函数,
可得f (﹣x )=﹣f (x ),ln (+2x )=﹣ln (﹣2x ).
ln (
+2x )=ln (
)=ln (
).
可得1+ax 2﹣4x 2=1,解得a=4.故答案为:4. 
三、解答题
19.【答案】
【解析】解:(1)由题意得e==
,a 2=2b ,a 2﹣b 2=c 2,
解得a=
,b=c=1
故椭圆的方程为x 2+
=1;
(2)设A (x 1,y 1),B (x 2,y 2),线段AB 的中点为M (x 0,y 0).联立直线y=x+m 与椭圆的方程得,
即3x 2+2mx+m 2﹣2=0,
△=(2m )2﹣4×3×(m 2﹣2)>0,即m 2<3,x 1+x 2=﹣,
所以x 0==﹣
,y 0=x 0+m=

即M (﹣,
).又因为M 点在圆x 2+y 2=5上,可得(﹣
)2+(
)2=5,
解得m=±3与m 2<3矛盾.故实数m 不存在.
【点评】本题考查椭圆的方程的求法,注意运用离心率公式,考查直线和椭圆方程联立,运用韦达定理和中点坐标公式,考查存在性问题的解法,属于中档题. 
20.【答案】
【解析】解:若p 为真,则△=4﹣4m <0,即m >1 …
若q 为真,则
,即m ≤﹣2

∵p ∧q 为假命题,p ∨q 为真命题,则p ,q 一真一假若p 真q 假,则,解得:m >1 …
若p 假q 真,则
,解得:m ≤﹣2

综上所述:m ≤﹣2,或m >1 … 
21.【答案】(1)n a n 2=;(2)=
n T )
1(2+n n
.

点:1.一元二次方程;2.裂项相消法求和.22.【答案】(1)参数方程为,;(2).
1cos sin x y θθ
=+⎧⎨=⎩3460x y -+=14
5【解析】
试题分析:(1)先将曲线的极坐标方程转化为直角坐标系下的方程,可得,利用圆的参数方
C 2
2
(1)1x y -+=程写出结果,将直线的参数方程消去参数变为直线的普通方程;(2)利用参数方程写出曲线上任一点坐标,C 用点到直线的距离公式,将其转化为关于的式子,利用三角函数性质可得距离最值.试题解析:
(1)曲线的普通方程为,∴,
C 2
2cos ρρθ=2
2
20x y x +-=∴,所以参数方程为,
2
2
(1)1x y -+=1cos sin x y θ
θ=+⎧⎨=⎩
直线的普通方程为.
3460x y -+=(2)曲线上任意一点到直线的距离为
C (1cos ,sin )θθ+,所以曲线上任意一点到直线的距离的最大值为.
33cos 4sin 65sin()914555d θθθϕ+-+++=
=≤C 14
5
考点:1.极坐标方程;2.参数方程.
23.【答案】(1)
(2)见解析(3)
【解析】试题分析:(1)由题意转化为
在区间
上恒成立,化简可得一次函数恒成立,根据一次函
数性质得不等式,解不等式得实数的取值范围;(2)导函数有一个零点,再根据a 的正负讨论导函数符号变化规律,确定极值取法(3)先根据导数得切线斜率再根据点斜式得切线方程,即得切线在x 轴上的截距,最后根据a 的正负以及基本不等式求截距的取值范围.
试题解析:(1)函数的导函数,
则在区间上恒成立,且等号不恒成立,
又,所以在区间上恒成立,
记,只需,即,解得.
(2)由,得,
①当时,有;,
所以函数在单调递增,单调递减,
所以函数在取得极大值,没有极小值.
②当时,有;,
所以函数在单调递减,单调递增,
所以函数在取得极小值,没有极大值.
综上可知: 当时,函数在取得极大值,没有极小值;
当时,函数在取得极小值,没有极大值.(3)设切点为,
则曲线在点处的切线方程为,
当时,切线的方程为,其在轴上的截距不存在.
当时,令,得切线在轴上的截距为

当时,

当且仅当,即或时取等号;
当时,

当且仅当,即或时取等号.
所以切线在轴上的截距范围是.
点睛:函数极值问题的常见类型及解题策略
(1)知图判断函数极值的情况.先找导数为0的点,再判断导数为0的点的左、右两侧的导数符号.
(2)已知函数求极值.求→求方程的根→列表检验在的根的附近两侧的符号→下结论.
(3)已知极值求参数.若函数在点处取得极值,则,且在该点左、右两侧的导数值符号相反.
24.【答案】
【解析】解:(Ⅰ)因为“数学与逻辑”科目中成绩等级为B的考生有10人,
所以该考场有10÷0.25=40人,
所以该考场考生中“阅读与表达”科目中成绩等级为A的人数为:
40×(1﹣0.375﹣0.375﹣0.15﹣0.025)=40×0.075=3人;
(Ⅱ)该考场考生“数学与逻辑”科目的平均分为:
×=2.9;
(Ⅲ)因为两科考试中,共有6人得分等级为A,又恰有两人的两科成绩等级均为A,
所以还有2人只有一个科目得分为A,
设这四人为甲,乙,丙,丁,其中甲,乙是两科成绩都是A的同学,
则在至少一科成绩等级为A的考生中,随机抽取两人进行访谈,基本事件空间为:
Ω={{甲,乙},{甲,丙},{甲,丁},{乙,丙},{乙,丁},{丙,丁}},一共有6个基本事件.
设“随机抽取两人进行访谈,这两人的两科成绩等级均为A”为事件B,所以事件B中包含的基本事件有1个,
则P(B)=.
【点评】本小题主要考查统计与概率的相关知识,具体涉及到频率分布直方图、平均数及古典概型等内容. 。

相关文档
最新文档