教学设计3:1.2.2 第1课时 函数的表示法
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.2.2 第1课时函数的表示法
教学目标
1.了解函数的一些基本表示法(列表法、图象法、解析法),会根据不同实际情境选择合适的方法表示函数,树立应用数形结合的思想.
2.通过具体实例,了解简单的分段函数,并能简单应用,提高应用函数解决实际问题的能力,增加学习数学的兴趣.
3.会用描点法画一些简单函数的图象,培养学生应用函数的图象解决问题的能力.
4.了解映射的概念及表示方法,会利用映射的概念来判断“对应关系”是否是映射,感受对应关系在刻画函数和映射概念中的作用,提高对数学高度抽象性和广泛应用性的进一步认识.重点难点
教学重点:函数的三种表示方法,分段函数和映射的概念.
教学难点:分段函数的表示及其图象,映射概念的理解.
教学过程
导入新课
思路1.语言是沟通人与人之间的联系的,同样的祝福又有着不同的表示方法.例如,简体中文中的“生日快乐!”用繁体中文为:生日快樂!英文为:Happy Birthday!法文是Bon Anniversaire!德文是Alles Gute Zum Geburtstag!印度尼西亚文是Selamat Ulang Tahun!……那么对于函数,又有什么不同的表示方法呢?引出课题:函数的表示法.
思路2.我们前面已经学习了函数的定义,函数的定义域的求法,函数值的求法,两个函数是否相同的判定方法,那么函数的表示方法常用的有哪些呢?这节课我们就来研究这个问题(板书课题).
推进新课
新知探究
提出问题
初中学过的三种表示法:解析法、图象法和列表法各是怎样表示函数的?
讨论结果:(1)解析法:用数学表达式表示两个变量之间的函数关系,这种表示方法叫做解析法,这个数学表达式叫做函数的解析式.
(2)图象法:以自变量x的取值为横坐标,对应的函数值y为纵坐标,在平面直角坐标系中描出各个点,这些点构成了函数的图象,这种用图象表示两个变量之间函数关系的方法叫做
图象法.
(3)列表法:列一个两行多列的表格,第一行是自变量的取值,第二行是对应的函数值,这种用表格来表示两个变量之间的函数关系的方法叫做列表法.
应用示例
例1 某种笔记本的单价是5元,买x(x∈{1,2,3,4,5})个笔记本需要y元.试用函数的三种表示法表示函数y=f(x).
活动:学生思考函数的表示法的规定.注意本例的设问,此处“y=f(x)”有三种含义,它可以是解析表达式,可以是图象,也可以是对应值表.本题的定义域是有限集,且仅有5个元素.解:这个函数的定义域是数集{1,2,3,4,5},
用解析法可将函数y=f(x)表示为y=5x,x∈{1,2,3,4,5}.
用列表法可将函数y=f(x)表示为:
用图象法可将函数y=f(x)表示为图1.
图1
点评:本题主要考查函数的三种表示法.解析法的特点是:简明、全面地概括了变量间的关系,可以通过解析式求出任意一个自变量的值所对应的函数值,便于用解析式来研究函数的性质,还有利于我们求函数的值域;图象法的特点是:直观、形象地表示自变量变化时相应的函数值变化的趋势,有利于我们通过图象来研究函数的某些性质,图象法在生产和生活中有许多应用,如企业生产图、股市走势图等;列表法的特点是:不需要计算就可以直接看出与自变量的值对应的函数值,列表法在实际生产和生活中也有广泛的应用,如银行利率表、列车时刻表等等.并不是所有的函数都能用解析法表示,只有函数值随自变量的变化发生有规律的变化时,这样的函数才可能有解析式,否则写不出解析式,也就不能用解析法表示.例如:张丹的年龄n(n∈N*)每取一个值,那么他的身高y(单位:cm)总有唯一确定的值与之对
应,因此身高y 是年龄n 的函数y =f (n ),但是这个函数的解析式不存在,函数y =f (n )不能用解析法来表示.
注意:①函数图象既可以是连续的曲线,也可以是直线、折线、离散的点等等;
②解析法:必须注明函数的定义域,否则使函数解析式有意义的自变量的取值范围是函数的定义域;
③图象法:根据实际情境来决定是否连线;
④列表法:选取的自变量要有代表性,应能反映定义域的特征. 变式训练1
1.1 如图2所示为y =ax 2+bx +c 的图象,下列结论正确的是( )
图2
A .abc >0
B .a +b +c <0
C .a -b +c >0
D .2c <3b
【解析】由图象研究二次函数y =ax 2+bx +c 的性质,易知a <0,b >0,c >0. 当x =1时,y =a +b +c >0;当x =-1时,a -b +c <0,故A ,B ,C 都错. 【答案】D
1.2 已知2f (x )+f (-x )=3x +2,则f (x )=________.
【解析】由题意得2()()32,2()()32,
f x f x x f x f x x +-=+⎧⎨-+=-+⎩
把f (x )和f (-x )看成未知数,解方程即得. 【答案】3x +2
3
例2 下面是某校高一(1)班三位同学在高一学年度几次数学测试的成绩及班级平均分表:
请你对这三位同学在高一学年度的数学学习情况做一个分析.
活动:学生思考做学情分析,具体要分析什么?怎么分析?借助什么工具?本题利用表格给出了四个函数,它们分别表示王伟、张城、赵磊的考试成绩及各次考试的班级平均分.由于表格区分三位同学的成绩高低不直观,故采用图象法来表示.做学情分析,具体要分析学习成绩是否稳定,成绩变化趋势.
解:把“成绩”y看成“测试序号”x的函数,用图象法表示函数y=f(x),如图3所示.
图3
由图3可看到:
王伟同学的数学成绩始终高于班级平均分,学习情况比较稳定而且成绩优秀;
张城同学的数学成绩不稳定,总是在班级平均分水平上下波动,而且波动幅度较大;
赵磊同学的数学学习成绩呈上升趋势,表明他的数学成绩稳步提高.
点评:本题主要考查根据实际情境需要选择恰当的函数表示法的能力,以及应用函数解决实际问题的能力.通过本题可见,图象法比列表法和解析法更能直观反映函数值的变化趋势.注意:本例为了研究学生的学习情况,将离散的点用虚线连接,这样便于研究成绩的变化特点.
变式训练2
2.1 函数y=x2-4x+6,x∈[1,5)的值域是________.
【答案】[2,11)
2.2 将长为a的铁丝折成矩形,求矩形面积y关于一边长x的函数关系式,并求定义域和值域,作出函数的图象.
【解析】解此题的关键是先把实际问题转化成数学问题,即把面积y表示为x的函数,
用数学的方法解决,然后再回到实际中去.
解:设矩形一边长为x ,则另一边长为12(a -2x ),则面积y =12(a -2x )x =-x 2+1
2ax .
又0,20,
x a x >⎧⎨
->⎩得0<x <a 2
,即定义域为⎝⎛⎭⎫0,a 2.由于y =-⎝⎛⎭⎫x -a 42+116a 2≤1
16a 2, 如图4所示,结合函数的图象得值域为⎝⎛⎦
⎤0,1
16a 2.
图4
2.3 向高为H 的水瓶中注水,注满为止,如果注水量V 与水深h 的函数关系的图象如图5所示,那么水瓶的形状是( )
图5
【解析】要求由水瓶的形状识别容积V 和高度h 的函数关系,突出了对思维能力的考查. 观察图象,根据图象的特点发现:取水深h =H 2,注水量V ′>V 0
2,
即水深为一半时,实际注水量大于水瓶总水量的一半. A 中V ′<V 02,C 、D 中V ′=V 0
2,故排除A ,C ,D.
【答案】B 课堂训练
1.等腰三角形的周长是20,底边长y是一腰长x的函数,则()
A.y=10-x(0<x≤10)
B.y=10-x(0<x<10)
C.y=20-2x(5≤x≤10)
D.y=20-2x(5<x<10)
【解析】根据等腰三角形的周长列出函数解析式.
∵2x+y=20,∴y=20-2x.则20-2x>0.∴x<10.由构成三角形的条件(两边之和大于第三边)可知2x>20-2x,得x>5,∴函数的定义域为{x|5<x<10}.
∴y=20-2x(5<x<10).
【答案】D
2.定义在R上的函数y=f(x)的值域为[a,b],则y=f(x+1)的值域为()
A.[a,b] B.[a+1,b+1]
C.[a-1,b-1] D.无法确定
【解析】将函数y=f(x)的图象向左平移一个单位得函数y=f(x+1)的图象,由于定义域均是R,则这两个函数图象上点的纵坐标的取值范围相同,所以y=f(x+1)的值域也是[a,b].【答案】A
3.函数f(x)=1
1+x2
(x∈R)的值域是() A.(0,1) B.(0,1] C.[0,1) D.[0,1]
【解析】(观察法)定义域是R,由于x2≥0,则1+x2≥1,从而0<
1
1+x2
≤1.
【答案】B
拓展提升
问题:变换法画函数的图象都有哪些?
解答:变换法画函数的图象有三类:
1.平移变换:
(1)将函数y=f(x)的图象向左平移a(a>0)个单位得函数y=f(x+a)的图象;
(2)将函数y=f(x)的图象向右平移a(a>0)个单位得函数y=f(x-a)的图象;
(3)将函数y=f(x)的图象向上平移b(b>0)个单位得函数y=f(x)+b的图象;
(4)将函数y=f(x)的图象向下平移b(b>0)个单位得函数y=f(x)-b的图象.
简记为“左加(+)右减(-),上加(+)下减(-)”.
2.对称变换:
(1)函数y=f(x)与函数y=f(-x)的图象关于直线x=0即y轴对称;
(2)函数y=f(x)与函数y=-f(x)的图象关于直线y=0即x轴对称;
(3)函数y=f(x)与函数y=-f(-x)的图象关于原点对称.
3.翻折变换:
(1)函数y=|f(x)|的图象可以将函数y=f(x)的图象位于x轴下方部分沿x轴翻折到x轴上方,去掉原x轴下方部分,并保留y=f(x)的x轴上方部分即可得到.
(2)函数y=f(|x|)的图象可以将函数y=f(x)的图象位于y轴右边部分翻折到y轴左边替代原y 轴左边部分并保留y=f(x)在y轴右边部分图象即可得到.
函数的图象是对函数关系的一种直观、形象的表示,可以直观地显示出函数的变化状况及其特性,它是研究函数性质时的重要参考,也是运用数形结合思想研究和运用函数性质的基础.另一方面,函数的一些特性又能指导作图,函数与图象是同一事物的两个方面,是函数的不同表现形式.函数的图象可以比喻成人的相片,观察函数的图象可以解决研究其性质,当然,也可以由函数的性质确定函数图象的特点.借助函数的图象来解决函数问题,函数的图象问题是高考的热点之一,应引起重视.
课堂小结
本节课学习了:函数的三种表示方法,在具体的实际问题中能够选用恰当的表示法来表示函数.
作业
课本习题1.2A组7,8,9.。