盐亭县第二高级中学2018-2019学年高二上学期第二次月考试卷数学

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

盐亭县第二高级中学2018-2019学年高二上学期第二次月考试卷数学
班级__________ 姓名__________ 分数__________
一、选择题
1. 如果命题p ∨q 是真命题,命题¬p 是假命题,那么( ) A .命题p 一定是假命题 B .命题q 一定是假命题
C .命题q 一定是真命题
D .命题q 是真命题或假命题
2. 在△ABC 中,a 2=b 2+c 2+bc ,则A 等于( )
A .120°
B .60°
C .45°
D .30°
3. 已知命题“如果﹣1≤a ≤1,那么关于x 的不等式(a 2﹣4)x 2+(a+2)x ﹣1≥0的解集为∅”,它的逆命题、否命题、逆否命题及原命题中是假命题的共有( )
A .0个
B .1个
C .2个
D .4个
4. 圆01222
2
=+--+y x y x 上的点到直线2=-y x 的距离最大值是( )
A .
B .12+
C .
12
2
+ D .122+ 5. 执行右面的程序框图,如果输入的[1,1]t ∈-,则输出的S 属于( ) A.[0,2]e - B. (,2]e -? C.[0,5] D.[3,5]e -
【命题意图】本题考查程序框图、分段函数等基础知识,意在考查运算能力和转化思想的运用. 6. 已知复数z 满足:zi=1+i (i 是虚数单位),则z 的虚部为( )
A .﹣i
B .i
C .1
D .﹣1
7. 5名运动员争夺3项比赛冠军(每项比赛无并列冠军),获得冠军的可能种数为( )
A .35
B

C

D .53
8. 从一群学生中抽取一个一定容量的样本对他们的学习成绩进行分析,已知不超过70分的人数为8人,其累计频率为0.4,则这样的样本容量是( )
A .20人
B .40人
C .70人
D .80人
9.
若向量=(3,m
),=(2,﹣1
),
∥,则实数m 的值为( ) A
.﹣ B
. C .2
D .6
10
.双曲线

=1(a >0,b >0)的一条渐近线被圆M :(x ﹣8)2+y 2=25截得的弦长为6,则双曲线的离心率为( ) A .2
B

C .4
D

11.复数
z=在复平面上对应的点位于( )
A .第一象限
B .第二象限
C .第三象限
D .第四象限
12.在ABC ∆中,角A ,B ,C 的对边分别是,,,BH 为AC 边上的高,5BH =,若
2015120aBC bCA cAB ++=,则H 到AB 边的距离为( )
A .2
B .3 C.1 D .4
二、填空题
13.已知函数f (x )=,若关于x 的方程f (x )=k 有三个不同的实根,则实数k 的取值范
围是 .
14.已知θ是第四象限角,且sin (θ
+

=,则tan (θ

)= .
15.【2017-2018学年度第一学期如皋市高三年级第一次联考】已知函数()211{
5
2128
lnx x x
f x m x mx x +>=-++≤,,
,,
若()()g x f x m =-有三个零点,则实数m 的取值范围是________.
16.函数2
()2(1)2f x x a x =+-+在区间(,4]-∞上递减,则实数的取值范围是 .
17.某工厂产生的废气经过过虑后排放,过虑过程中废气的污染物数量P (单位:毫克/升)与时间t (单
位:小时)间的关系为0e
kt
P P -=(0P ,k 均为正常数).如果前5个小时消除了10%的污染物,为了
消除27.1%的污染物,则需要___________小时.
【命题意图】本题考指数函数的简单应用,考查函数思想,方程思想的灵活运用. 18.若的展开式中含有常数项,则n的最小值等于.
三、解答题
19.在锐角△ABC中,角A、B、C的对边分别为a、b、c,且.(Ⅰ)求角B的大小;
(Ⅱ)若b=6,a+c=8,求△ABC的面积.
20.(本小题满分10分)选修4-1:几何证明选讲1111]
CP=.
如图,点C为圆O上一点,CP为圆的切线,CE为圆的直径,3
(1)若PE交圆O于点F,16
EF=,求CE的长;
5
⊥于D,求CD的长. (2)若连接OP并延长交圆O于,A B两点,CD OP
21
.已知函数,(其中常数m>0)
(1)当m=2时,求f(x)的极大值;
(2)试讨论f(x)在区间(0,1)上的单调性;
(3)当m∈[3,+∞)时,曲线y=f(x)上总存在相异两点P(x1,f(x1))、Q(x2,f(x2)),使得曲线y=f(x)在点P、Q处的切线互相平行,求x1+x2的取值范围.
22.(本题满分12分)如图所示,在正方体ABCD—A1B1C1D1中,E、F分别是棱DD1、C1D1的中点. (1)求直线BE和平面ABB1A1所成角 的正弦值;
(2)证明:B1F∥平面A1BE.
23.已知函数f(x)
=+lnx﹣1(a是常数,e≈=2.71828).
(1)若x=2是函数f(x)的极值点,求曲线y=f(x)在点(1,f(1))处的切线方程;
(2)当a=1时,方程f(x)=m在x∈
[,e2]上有两解,求实数m的取值范围;
(3)求证:n∈N*,ln(en)>
1+.
A1
B1
C1
D
D1
C
B
A
E
F
24.(本题满分12分)为了了解某地区心肺疾病是否与性别有关,在某医院随机地对入院的50人进行了问 卷调查,得到了如下的22⨯
(1(2)在上述抽取的6人中选2人,求恰有一名女性的概率.
(3)为了研究心肺疾病是否与性别有关,请计算出统计量2
K ,判断心肺疾病与性别是否有关?
(参考公式:)
)()()(()(2
d b c a d c b a bc ad n K ++++-=,其中d c b a n +++=)
盐亭县第二高级中学2018-2019学年高二上学期第二次月考试卷数学(参考答案)一、选择题
1.【答案】D
【解析】解:∵命题“p或q”真命题,则命题p与命题q中至少有一个命题为真命题,
又∵命题“非p”也是假命题,
∴命题p为真命题.
故命题q为可真可假.
故选D
【点评】本题考查的知识点是命题的真假判断与应用,其中熟练掌握复合命题真值表是解答本题的关键.2.【答案】A
【解析】解:根据余弦定理可知cosA=
∵a2=b2+bc+c2,
∴bc=﹣(b2+c2﹣a2)
∴cosA=﹣
∴A=120°
故选A
3.【答案】C
【解析】解:若不等式(a2﹣4)x2+(a+2)x﹣1≥0的解集为∅”,
则根据题意需分两种情况:
①当a2﹣4=0时,即a=±2,
若a=2时,原不等式为4x﹣1≥0,解得x≥,故舍去,
若a=﹣2时,原不等式为﹣1≥0,无解,符合题意;
②当a2﹣4≠0时,即a≠±2,
∵(a2﹣4)x2+(a+2)x﹣1≥0的解集是空集,
∴,解得,
综上得,实数a的取值范围是.
则当﹣1≤a≤1时,命题为真命题,则命题的逆否命题为真命题,
反之不成立,即逆命题为假命题,否命题也为假命题, 故它的逆命题、否命题、逆否命题及原命题中是假命题的共有2个,
故选:C .
【点评】本题考查了二次不等式的解法,四种命题真假关系的应用,注意当二次项的系数含有参数时,必须进行讨论,考查了分类讨论思想.
4. 【答案】B 【解析】
试题分析:化简为标准形式()()1112
2
=-+-y x ,圆上的点到直线的距离的最大值为圆心到直线的距离加半径,22
2
11=--=
d ,半径为1,所以距离的最大值是12+,故选B.
考点:直线与圆的位置关系 1 5. 【答案】B
6. 【答案】D
【解析】解:由zi=1+i ,得,
∴z 的虚部为﹣1. 故选:D .
【点评】本题考查复数代数形式的乘除运算,考查了复数的基本概念,是基础题.
7. 【答案】D
【解析】解:每一项冠军的情况都有5种,故5名学生争夺三项冠军,获得冠军的可能的种数是 53,
故选:D .
【点评】本题主要考查分步计数原理的应用,属于基础题.
8. 【答案】A
【解析】解:由已知中的频率分布直方图可得时间不超过70分的累计频率的频率为0.4,
则这样的样本容量是n==20.
故选A.
【点评】本题考查的知识点是频率分布直方图,熟练掌握频率的两个公式频率=矩形高×组距=是解答的关键.
9.【答案】A
【解析】解:因为向量=(3,m),=(2,﹣1),∥,
所以﹣3=2m,
解得m=﹣.
故选:A.
【点评】本题考查向量共线的充要条件的应用,基本知识的考查.
10.【答案】D
【解析】解:双曲线﹣=1(a>0,b>0)的一条渐近线方程为bx+ay=0,
∵渐近线被圆M:(x﹣8)2+y2=25截得的弦长为6,
∴=4,
∴a2=3b2,
∴c2=4b2,
∴e==.
故选:D.
【点评】本题考查双曲线的性质和应用,解题时要注意公式的合理运用.
11.【答案】A
【解析】解:∵z===+i,
∴复数z在复平面上对应的点位于第一象限.
故选A.
【点评】本题考查复数的乘除运算,考查复数与复平面上的点的对应,是一个基础题,在解题过程中,注意复数是数形结合的典型工具.
12.【答案】D
【解析】
考点:1、向量的几何运算及平面向量基本定理;2、向量相等的性质及勾股定理.
【方法点睛】本题主要考查向量的几何运算及平面向量基本定理、向量相等的性质及勾股定理,属于难题,平面向量问题中,向量的线性运算和数量积是高频考点,当出现线性运算问题时,注意两个向量的差
OA OB OD
+=(D点是AB的中点),另外,要选好基底-=,这是一个易错点,两个向量的和2
OA OB BA
AB AC,当涉及到向量数量积时,要记熟向量数量积的公式、坐标公式、几向量,如本题就要灵活使用向量,
何意义等.
二、填空题
13.【答案】(0,1).
【解析】解:画出函数f(x)的图象,如图示:
令y=k,由图象可以读出:0<k<1时,y=k和f(x)有3个交点,
即方程f(x)=k有三个不同的实根,
故答案为(0,1).
【点评】本题考查根的存在性问题,渗透了数形结合思想,是一道基础题.
14.【答案】 .
【解析】解:∵θ是第四象限角,
∴,则

又sin (θ+)=,
∴cos (θ+)=

∴cos ()=sin (θ+)=,sin (
)=cos (θ+
)=.
则tan (θ﹣
)=﹣tan (
)=﹣
=

故答案为:﹣.
15.【答案】714⎛⎤ ⎥⎝⎦

【解析】
16.【答案】3a ≤- 【解析】
试题分析:函数()f x 图象开口向上,对称轴为1x a =-,函数在区间(,4]-∞上递减,所以14,3a a -≥≤-. 考点:二次函数图象与性质. 17.【答案】15
【解析】由条件知5000.9e
k
P P -=,所以5e 0.9k
-=.消除了27.1%的污染物后,废气中的污染物数量为00.729P ,
于是00
0.729e kt
P P -=,∴315e 0.7290.9e kt
k --===,所以15t =小时.
18.【答案】5
【解析】解:由题意的展开式的项为T r+1=C n r (x 6)n ﹣r

)r
=C n r
=C n r

=0,得n=
,当r=4时,n 取到最小值5
故答案为:5.
【点评】本题考查二项式的性质,解题的关键是熟练掌握二项式的项,且能根据指数的形式及题设中有常数的条件转化成指数为0,得到n 的表达式,推测出它的值.
三、解答题
19.【答案】
【解析】解:(Ⅰ)由2bsinA=a ,以及正弦定理
,得sinB=

又∵B 为锐角,
∴B=
,﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣
(Ⅱ)由余弦定理b 2=a 2+c 2
﹣2accosB , ∴a 2+c 2
﹣ac=36,
∵a+c=8,
∴ac=,
∴S △ABC ==
.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣
20.【答案】(1)4CE =;(2)CD =. 【解析】
试题分析:(1)由切线的性质可知ECP ∆∽EFC ∆,由相似三角形性质知::EF CE CE EP =,可得4CE =;(2)由切割线定理可得2
(4)CP BP BP =+,求出,BP OP ,再由CD OP OC CP ⋅=⋅,求出CD 的值. 1 试题解析:
(1)因为CP 是圆O 的切线,CE 是圆O 的直径,所以CP CE ⊥,0
90CFE ∠=,所以ECP ∆∽EFC ∆,
设CE x =,EP =,又因为ECP ∆∽EFC ∆,所以::EF CE CE EP =,
所以2
x =
4x =.
考点:1.圆的切线的性质;2.切割线定理;3.相似三角形性质.
21.【答案】
【解析】解:(1)当m=2时,
(x>0)
令f′(x)<0,可得或x>2;
令f′(x)>0,可得,
∴f(x)在和(2,+∞)上单调递减,在单调递增

(2)(x>0,m>0)
①当0<m<1时,则,故x∈(0,m),f′(x)<0;
x∈(m,1)时,f′(x)>0
此时f(x)在(0,m)上单调递减,在(m,1)单调递增;
②当m=1时,则,故x∈(0,1),有恒成立,
此时f(x)在(0,1)上单调递减;
③当m>1时,则,
故时,f′(x)<0;时,f′(x)>0
此时f(x)在上单调递减,在单调递增
(3)由题意,可得f ′(x 1)=f ′(x 2)(x 1,x 2>0,且x 1≠x 2)


∵x 1≠x 2,由不等式性质可得恒成立,
又x 1,x 2,m >0
∴⇒
对m ∈[3,+∞)恒成立

,则
对m ∈[3,+∞)恒成立
∴g (m )在[3,+∞)上单调递增,


从而“
对m ∈[3,+∞)恒成立”等价于“

∴x 1+x 2的取值范围为
【点评】运用导数,我们可解决曲线的切线问题,函数的单调性、极值与最值,正确求导是我们解题的关键
22.【答案】解:(1)设G 是AA 1的中点,连接GE ,BG .∵E 为DD 1的中点,ABCD —A 1B 1C 1D 1为正方体,∴GE ∥AD ,又∵AD ⊥平面ABB 1A 1,∴GE ⊥平面ABB 1A 1,且斜线BE 在平面ABB 1A 1内的射影为BG ,∴Rt △BEG 中的∠EBG 是直线BE 和平面ABB 1A 1所成角,即∠EBG =θ.设正方体的棱长为a ,∴a GE =,
a BG 25=
,a GE BG BE 2
3
22=+=, ∴直线BE 和平面ABB 1A 1所成角θ的正弦值为:=
θsin 3
2
=BE GE ;……6分 (2)证明:连接EF 、AB 1、C 1D ,记AB 1与A 1B 的交点为H ,连接EH . ∵H 为AB 1的中点,且B 1H =
21C 1D ,B 1H ∥C 1D ,而EF =2
1
C 1
D ,EF ∥C 1D , ∴B 1H ∥EF 且B 1H =EF ,四边形B 1FEH 为平行四边形,即B 1F ∥EH , 又∵B 1F ⊄平面A 1B
E 且EH ⊆平面A 1BE ,∴B 1
F ∥平面A 1BE . ……12分 23.【答案】
【解析】解:(1).
因为x=2是函数f(x)的极值点,
所以a=2,则f(x)=,
则f(1)=1,f'(1)=﹣1,所以切线方程为x+y﹣2=0;
(2)当a=1时,,其中x∈[,e2],
当x∈[,1)时,f'(x)<0;x∈(1,e2]时,f'(x)>0,
∴x=1是f(x)在[,e2]上唯一的极小值点,∴[f(x)]min=f(1)=0.
又,,
综上,所求实数m的取值范围为{m|0<m≤e﹣2};
(3)等价于,
若a=1时,由(2)知f(x)=在[1,+∞)上为增函数,
当n>1时,令x=,则x>1,故f(x)>f(1)=0,
即,∴.

即,
即.
24.【答案】
【解析】【命题意图】本题综合考查统计中的相关分析、概率中的古典概型,突出了统计和概率知识的交汇,对归纳、分析推理的能力有一定要求,属于中等难度.。

相关文档
最新文档