天津市红桥区九年级上学期期中数学试卷(有答案)

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

天津市红桥区九年级(上)期中数学试卷
一、选择题(共12小题,每小题3分,满分36分)
1.下列方程中,关于x的一元二次方程是()
A.x2﹣2x﹣3=0 B.x2﹣2y﹣1=0 C.x2﹣x(x+3)=0 D.ax2+bx+c=0
2.将一元二次方程4x2+5x=81化为一般形式后,二次项系数、一次项系数、常数项分别为()A.4,5,81 B.4,5,﹣81 C.4,5,0 D.4x2,5x,﹣81
3.下列图案中既是中心对称图形,又是轴对称图形的是()
A.B.C.D.
4.关于x的一元二次方程x2﹣3x+m=0有两个不相等的实数根,则实数m的取值范围是()
A.m>B.m=C.m<D.m<﹣
5.如图,点A,B,C是⊙O上的三点,已知∠ACB=50°,那么∠AOB的度数是()
A.90°B.95°C.100° D.120°
6.在平面直角坐标系中,把点P(﹣3,2)绕原点O顺时针旋转180°,所得到的对应点P′的坐标为()
A.(3,2) B.(2,﹣3)C.(﹣3,﹣2)D.(3,﹣2)
7.函数y=﹣x2+1的图象大致为()
A.B.
C D.
8.抛物线y=﹣x2+x﹣1,经过配方化成y=a(x﹣h)2+k的形式是()
A.B.
C. D.
9.二次函数y=ax2+bx+c,自变量x与函数y的对应值如表:
A.抛物线的开口向下
B.当x>﹣3时,y随x的增大而增大
C.二次函数的最小值是﹣2
D.抛物线的对称轴是x=﹣
10.如图,点A、B、C是圆O上的三点,且四边形ABCO是平行四边形,OF⊥OA交圆O于点F,则∠CBF等于()
A.12.5°B.15°C.20°D.22.5°
11.已知x1是关于x的一元二次方程ax2+bx+c=0(a≠0)的一个根,记△=b2﹣4ac,M=(2ax1+b)2,则关于△与M大小关系的下列说法中,正确的是()
A.△>M B.△=M
C.△<M D.无法确定△与M的大小
12.如图,抛物线y=ax2+bx+c与x轴交于点A(﹣1,0),顶点坐标为(1,n),与y轴的交点在(0,2)、(0,3)之间(包含端点).有下列结论:
①当x=3时,y=0;
②3a+b>0;
③﹣1≤a≤﹣;
④≤n≤4.
其中正确的有()
A.1个 B.2个 C.3个 D.4个
二、填空题(共6小题,每小题3分,满分18分)
13.已知方程x2+100x+10=0的两根分别为x1,x2,则x1x2﹣x1﹣x2的值等于.
14.将二次函数y=﹣x2+2x+4的图象向下平移1个单位后,所得图象对应函数的最大值为.15.如图,将Rt△ABC(∠B=25°)绕点A顺时针方向旋转到△AB1C1的位置,使得点C,A,B1在同一条直线上,那么旋转角等于.
16.某工厂实行技术改造,产量年均增长率为x,已知2009年产量为1万件,那么2011年的产量y与x间的关系式为(万件).
17.如图,直线L1∥L2,圆O与L1和L2分别相切于点A和点B,点M和点N分别是L1和L2上的动点,MN沿L1和L2平移,圆O的半径为1,∠1=60°,当MN与圆相切时,AM的长度等于.
18.如图,抛物线y=x2+bx+与y轴相交于点A,与过点A平行于x轴的直线相交于点B(点B 在第一象限).抛物线的顶点C在直线OB上,对称轴与x轴相交于点D.平移抛物线,使其经过点A、D,则平移后的抛物线的解析式为.
三、解答题(共7小题,满分66分)
19.用适当的方法解下列方程:
(1)x(x﹣1)=3﹣3x
(2)2x2﹣4x﹣1=0(配方法)
20.如图所示,BC为⊙O的直径,弦AD⊥BC于E,∠C=60°.
求证:△ABD为等边三角形.
21.如图,已知抛物线y=ax2+bx﹣3的对称轴为直线x=1,交x轴于A、B两点,交y轴于C点,其中B点的坐标为(3,0).
(1)直接写出A点的坐标;
(2)求二次函数y=ax2+bx﹣3的解析式.
22.已知关于x的方程x2﹣(2k+1)x+4(k﹣)=0
(1)求证:无论k取何值,这个方程总有实数根;
(2)若等腰三角形ABC的一边长a=4,另两边b、c恰好是这个方程的两个根,求△ABC的周长.
23.如图,某市近郊有一块长为60米,宽为50米的矩形荒地,地方政府准备在此建一个综合性休闲广场,其中阴影部分为通道,通道的宽度均相等,中间的三个矩形(其中三个矩形的一边长均为a米)区域将铺设塑胶地面作为运动场地.
(1)设通道的宽度为x米,则a=(用含x的代数式表示);
(2)若塑胶运动场地总占地面积为2430平方米.请问通道的宽度为多少米?
24.如图,抛物线y=x2+bx﹣2与x轴交于A、B两点,与y轴交于C点,且A(﹣1,0).(1)求抛物线的解析式及顶点D的坐标;
(2)判断△ABC的形状,证明你的结论;
(3)点M是x轴上的一个动点,当△DCM的周长最小时,求点M的坐标.
25.在平面直角坐标系中,边长为2的正方形OABC的两顶点A、C分别在y轴、x轴的正半轴上,点O在原点,现将正方形OABC绕O点顺时针旋转,当A点第一次落在直线y=x上时停止旋转,旋转过程中,AB边交直线y=x于点M,BC边交x轴于点N(如图).
(1)旋转过程中,当MN和AC平行时,求正方形OABC旋转的角度;
(2)试证明旋转过程中,△MNO的边MN上的高为定值;
(3)折△MBN的周长为p,在旋转过程中,p值是否发生变化?若发生变化,说明理由;若不发生变化,请给予证明,并求出p的值.
天津市红桥区九年级(上)期中数学试卷
参考答案与试题解析
一、选择题(共12小题,每小题3分,满分36分)
1.下列方程中,关于x的一元二次方程是()
A.x2﹣2x﹣3=0 B.x2﹣2y﹣1=0 C.x2﹣x(x+3)=0 D.ax2+bx+c=0
【考点】一元二次方程的定义.
【分析】利用一元二次方程的定义判断即可.
【解答】解:下列方程中,关于x的一元二次方程是x2﹣2x﹣3=0,
故选A
2.将一元二次方程4x2+5x=81化为一般形式后,二次项系数、一次项系数、常数项分别为()A.4,5,81 B.4,5,﹣81 C.4,5,0 D.4x2,5x,﹣81
【考点】一元二次方程的一般形式.
【分析】根据一元二次方程的一般形式是:ax2+bx+c=0(a,b,c是常数且a≠0)特别要注意a≠0的条件,a、b、c分别叫二次项系数,一次项系数,常数项,可得答案.
【解答】解:一元二次方程4x2+5x=81化为一般形式为4x2+5x﹣81=0,
二次项系数,一次项系数,常数项4,5,﹣81,
故选:B.
3.下列图案中既是中心对称图形,又是轴对称图形的是()
A.B.C.D.
【考点】中心对称图形;轴对称图形.
【分析】根据轴对称图形与中心对称图形的概念求解.
【解答】解:A、是轴对称图形,不是中心对称图形,故错误;
B、是轴对称图形,不是中心对称图形,故错误;
C、是轴对称图形,又是中心对称图形,故正确;
D、是轴对称图形,不是中心对称图形,故错误.
故选C.
4.关于x的一元二次方程x2﹣3x+m=0有两个不相等的实数根,则实数m的取值范围是()
A.m>B.m=C.m<D.m<﹣
【考点】根的判别式.
【分析】根据一元二次方程的根的判别式,建立关于m的不等式,求出m的取值范围即可.【解答】解:∵关于x的一元二次方程x2﹣3x+m=0有两个不相等的实数根,
∴△=b2﹣4ac=(﹣3)2﹣4×1×m>0,
∴m<.
故选C.
5.如图,点A,B,C是⊙O上的三点,已知∠ACB=50°,那么∠AOB的度数是()
A.90°B.95°C.100° D.120°
【考点】圆周角定理.
【分析】直接根据圆周角定理即可得出结论.
【解答】解:∵∠ACB与∠AOB是同弧所对的圆周角与圆心角,∠ACB=50°,
∴∠AOB=100°.
故选C.
6.在平面直角坐标系中,把点P(﹣3,2)绕原点O顺时针旋转180°,所得到的对应点P′的坐标为()
A.(3,2) B.(2,﹣3)C.(﹣3,﹣2)D.(3,﹣2)
【考点】坐标与图形变化-旋转.
【分析】将点P绕原点O顺时针旋转180°,实际上是求点P关于原点的对称点的坐标.
【解答】解:根据题意得,点P关于原点的对称点是点P′,
∵P点坐标为(﹣3,2),
∴点P′的坐标(3,﹣2).
故选:D.
7.函数y=﹣x2+1的图象大致为()
A.B.
C. D.
【考点】二次函数的图象.
【分析】根据二次函数的开口方向,对称轴,和y轴的交点可得相关图象.
【解答】解:∵二次项系数a<0,
∴开口方向向下,
∵一次项系数b=0,
∴对称轴为y轴,
∵常数项c=1,
∴图象与y轴交于(0,1),
故选B.
8.抛物线y=﹣x2+x﹣1,经过配方化成y=a(x﹣h)2+k的形式是()
A.B.
C. D.
【考点】二次函数的三种形式.
【分析】利用配方法先提出二次项系数,再加上一次项系数的一半的平方来凑完全平方式,把一般式转化为顶点式.
【解答】解:
=﹣(x2﹣2x)﹣1
=﹣ [(x﹣1)2﹣1]﹣1
=﹣(x﹣1)2﹣.
故选:C.
9.二次函数y=ax2+bx+c,自变量x与函数y的对应值如表:
A.抛物线的开口向下
B.当x>﹣3时,y随x的增大而增大
C.二次函数的最小值是﹣2
D.抛物线的对称轴是x=﹣
【考点】二次函数的性质.
【分析】选出3点的坐标,利用待定系数法求出函数的解析式,再根据二次函数的性质逐项分析四个选项即可得出结论.
【解答】解:将点(﹣4,0)、(﹣1,0)、(0,4)代入到二次函数y=ax2+bx+c中,
得:,解得:,
∴二次函数的解析式为y=x2+5x+4.
A、a=1>0,抛物线开口向上,A不正确;
B、﹣=﹣,当x≥﹣时,y随x的增大而增大,B不正确;
C、y=x2+5x+4=﹣,二次函数的最小值是﹣,C不正确;
D、﹣=﹣,抛物线的对称轴是x=﹣,D正确.
故选D.
10.如图,点A、B、C是圆O上的三点,且四边形ABCO是平行四边形,OF⊥OA交圆O于点F,则∠CBF等于()
A.12.5°B.15°C.20°D.22.5°
【考点】圆周角定理;平行四边形的性质;垂径定理.
【分析】先根据平行四边形的性质得出AB=BC,故可得出△OAB是等边三角形,所以∠AOB=60°,再由OF⊥OA可知∠AOF=90°,OF⊥BC,故可得出∠BOF的度数,进而得出∠COF的度数,由圆周角定理即可得出结论.
【解答】解:∵四边形ABCO是平行四边形,
∴AB=BC,OA∥BC.
∵OA=OC,
∴△OAB是等边三角形,
∴∠AOB=60°.
∵OF⊥OA,
∴∠AOF=90°,OF⊥BC,
∴∠BOF=∠COF=90°﹣60°=30°,
∴∠CBF=∠COF=15°.
故选B.
11.已知x1是关于x的一元二次方程ax2+bx+c=0(a≠0)的一个根,记△=b2﹣4ac,M=(2ax1+b)2,则关于△与M大小关系的下列说法中,正确的是()
A.△>M B.△=M
C.△<M D.无法确定△与M的大小
【考点】根的判别式.
【分析】根据题意可以先对M化简,从而可以得到M和△的关系,本题得以解决.
【解答】解:∵x1是关于x的一元二次方程ax2+bx+c=0(a≠0)的一个根,
∴ax12+bx1+c=0,
∴ax12+bx1=﹣c,
∴M=(2ax1+b)2==4a(ax12+bx1)+b2=4a÷(﹣c)+b2=b2﹣4ac=△,
故选B.
12.如图,抛物线y=ax2+bx+c与x轴交于点A(﹣1,0),顶点坐标为(1,n),与y轴的交点在(0,2)、(0,3)之间(包含端点).有下列结论:
①当x=3时,y=0;
②3a+b>0;
③﹣1≤a≤﹣;
④≤n≤4.
其中正确的有()
A.1个 B.2个 C.3个 D.4个
【考点】二次函数图象与系数的关系.
【分析】①由抛物线的顶点坐标的横坐标可得出抛物线的对称轴为x=1,结合抛物线的对称性及点A的坐标,可得出点B的坐标,由点B的坐标即可断定①正确;②由抛物线的开口向下
可得出a<0,结合抛物线对称轴为x=﹣=1,可得出b=﹣2a,将b=﹣2a代入3a+b中,结合a<0即可得出②不正确;③由抛物线与y轴的交点的范围可得出c的取值范围,将(﹣1,0)代入抛物线解析式中,再结合b=﹣2a即可得出a的取值范围,从而断定③正确;④结合抛物
线的顶点坐标的纵坐标为,结合a的取值范围以及c的取值范围即可得出n的范围,从而断定④正确.综上所述,即可得出结论.
【解答】解:①由抛物线的对称性可知:
抛物线与x轴的另一交点横坐标为1×2﹣(﹣1)=3,
即点B的坐标为(3,0),
∴当x=3时,y=0,①正确;
②∵抛物线开口向下,
∴a<0.
∵抛物线的顶点坐标为(1,n),
∴抛物线的对称轴为x=﹣=1,
∴b=﹣2a,
3a+b=a<0,②不正确;
③∵抛物线与y轴的交点在(0,2)、(0,3)之间(包含端点),
∴2≤c≤3.
令x=﹣1,则有a﹣b+c=0,
又∵b=﹣2a,
∴3a=﹣c,即﹣3≤3a≤﹣2,
解得:﹣1≤a≤﹣,③正确;
④∵抛物线的顶点坐标为(﹣,),
∴n==c﹣,
又∵b=﹣2a,2≤c≤3,﹣1≤a≤﹣,
∴n=c﹣a,≤n≤4,④正确.
综上可知:正确的结论为①③④.
故选C.
二、填空题(共6小题,每小题3分,满分18分)
13.已知方程x2+100x+10=0的两根分别为x1,x2,则x1x2﹣x1﹣x2的值等于110.
【考点】根与系数的关系.
【分析】由根与系数的关系找出x1+x2=﹣100、x1•x2=10,将代数式x1x2﹣x1﹣x2变形为只含x1+x2、x1•x2的代数式,代入数据即可得出结论.
【解答】解:∵方程x2+100x+10=0的两根分别为x1,x2,
∴x1+x2=﹣100,x1•x2=10,
∴x1x2﹣x1﹣x2=x1x2﹣(x1+x2)=10﹣(﹣100)=110.
故答案为:110.
14.将二次函数y=﹣x2+2x+4的图象向下平移1个单位后,所得图象对应函数的最大值为4.【考点】二次函数图象与几何变换;二次函数的最值.
【分析】根据“上加下减”的原则进行解答即可.
【解答】解:y=﹣x2+2x+4=﹣(x﹣1)2+5,将该函数的图象向下平移1个单位后,所得图象对应函数解析式为:y=﹣(x﹣1)2+4,
所以该抛物线顶点坐标是(1,4),
所以所得图象对应函数的最大值为4.
故答案是:4.
15.如图,将Rt△ABC(∠B=25°)绕点A顺时针方向旋转到△AB1C1的位置,使得点C,A,B1在同一条直线上,那么旋转角等于115°.
【考点】旋转的性质.
【分析】由三角形的外角性质得出∠BAB1=∠C+∠B=115°,即可得出结论.
【解答】解:∵C,A,B1在同一条直线上,∠C=90°,∠B=25°,
∴∠BAB1=∠C+∠B=115°,
即旋转角等于115°.
故答案为:115°.
16.某工厂实行技术改造,产量年均增长率为x,已知2009年产量为1万件,那么2011年的产量y与x间的关系式为y=(1+x)2(万件).
【考点】根据实际问题列二次函数关系式.
【分析】根据产量年均增长率为x,已知2009年产量为1万件,即可得出2011年的产量y与x间的关系式为y=(1+x)2.
【解答】解:∵某工厂实行技术改造,产量年均增长率为x,2009年产量为1万件,
∴2010年产量为:1×(1+x);
2011年的产量y与x间的关系式为:y=1×(1+x)×(1+x)=(1+x)2;
即:y=(1+x)2.
故答案为:y=(1+x)2.
17.如图,直线L1∥L2,圆O与L1和L2分别相切于点A和点B,点M和点N分别是L1和L2上的动点,MN沿L1和L2平移,圆O的半径为1,∠1=60°,当MN与圆相切时,AM的长度等
于或.
【考点】切线的性质;平行线的性质;平移的性质.
【分析】当MN在左侧与⊙O相切时,连接OM、OA,则OM平分∠1,在Rt△OAM中可求得AM;当MN在右侧与⊙O相切时,连接OM、OA,则OM平分∠AMN,在Rt△OAM中可求得MA的长,可求得答案.
【解答】解:
当MN在左侧与⊙O相切时,连接OM、OA,如图1,
∵MA、MN是⊙O的切线,
∴OM平分∠AMN,OA⊥MA,
∴∠AMO=30°,
∴OM=2OA=2,
在Rt△OAM中,MA==;
当MN在右侧与⊙O相切时,连接OM、OA,如图2,
∵∠1=60°,
∴∠AMN=120°,
同上可知∠AMO=∠AMN=60°,
∴OM=2AM,
在Rt△OAM中,MA2=OM2﹣OA2,即MA2=4MA2﹣1,解得MA=;
综上可知MA的长度为或,
故答案为:或.
18.如图,抛物线y=x2+bx+与y轴相交于点A,与过点A平行于x轴的直线相交于点B(点B 在第一象限).抛物线的顶点C在直线OB上,对称轴与x轴相交于点D.平移抛物线,使其经
过点A、D,则平移后的抛物线的解析式为y=x2﹣x+.
【考点】二次函数图象与几何变换.
【分析】先求出点A的坐标,再根据中位线定理可得顶点C的纵坐标,然后利用顶点坐标公式列式求出b的值,再求出点D的坐标,根据平移的性质设平移后的抛物线的解析式为y=x2+mx+n,把点A、D的坐标代入进行计算即可得解.
【解答】解:∵令x=0,则y=,
∴点A(0,),
根据题意,点A、B关于对称轴对称,
∴顶点C的纵坐标为×=,
即=,
解得b1=3,b2=﹣3,
由图可知,﹣>0,
∴b<0,
∴b=﹣3,
∴对称轴为直线x=﹣=,
∴点D的坐标为(,0),
设平移后的抛物线的解析式为y=x2+mx+n,
则,
解得,
所以,y=x2﹣x+.
故答案为:y=x2﹣x+.
三、解答题(共7小题,满分66分)
19.用适当的方法解下列方程:
(1)x(x﹣1)=3﹣3x
(2)2x2﹣4x﹣1=0(配方法)
【考点】解一元二次方程-因式分解法;解一元二次方程-配方法.
【分析】(1)将原方程移项、合并同类项即可得出(x﹣1)(x+3)﹣0,解之即可得出结论;(2)利用完全平方公式将原方程边形为2(x﹣1)2﹣3=0,开方后即可得出结论.
【解答】解:(1)x(x﹣1)=3﹣3x=3(1﹣x),
移项、合并同类项,得:(x﹣1)(x+3)﹣0,
解得:x1=﹣3,x2=1;
(2)2x2﹣4x﹣1=2(x2﹣2x)﹣1=2(x﹣1)2﹣3=0,
∴(x﹣1)2=,
解得:x﹣1=±,
∴x1=1+,x2=1﹣.
20.如图所示,BC为⊙O的直径,弦AD⊥BC于E,∠C=60°.
求证:△ABD为等边三角形.
【考点】圆周角定理;等边三角形的判定.
【分析】根据垂径定理求出AE=DE,根据线段垂直平分线性质得出BA=BD,根据圆周角定理求出∠D=60°,根据等边三角形判定推出即可.
【解答】证明:∵BC为⊙O的直径,AD⊥BC,
∴AE=DE,
∴BD=BA,
∵∠D=∠C=60°,
∴△ABD为等边三角形.
21.如图,已知抛物线y=ax2+bx﹣3的对称轴为直线x=1,交x轴于A、B两点,交y轴于C点,其中B点的坐标为(3,0).
(1)直接写出A点的坐标;
(2)求二次函数y=ax2+bx﹣3的解析式.
【考点】抛物线与x轴的交点;待定系数法求二次函数解析式.
【分析】(1)根据抛物线的对称性直接写出点A的坐标;
(2)把点A、B的坐标分别代入函数解析式列出关于a、b的方程组,通过解方程组来求它们的值.
【解答】解:(1)∵抛物线y=ax2+bx﹣3的对称轴为直线x=1,交x轴于A、B两点,其中B点的坐标为(3,0),
∴A点横坐标为:=﹣1,
∴A点的坐标为:(﹣1,0);
(2)将A(﹣1,0),B(3,0)代入y=ax2+bx﹣3得:

解得:.
故抛物线解析式为:y=x2﹣2x﹣3.
22.已知关于x的方程x2﹣(2k+1)x+4(k﹣)=0
(1)求证:无论k取何值,这个方程总有实数根;
(2)若等腰三角形ABC的一边长a=4,另两边b、c恰好是这个方程的两个根,求△ABC的周长.
【考点】根的判别式;等腰三角形的性质.
【分析】(1)先计算判别式的值得到△=4k2﹣12k+9,配方得到△=(2k﹣3)2,根据非负数的性质易得△≥0,则根据判别式的意义即可得到结论;
(2)分类讨论:当b=c时,则△=(2k﹣3)2=0,解得k=,然后解方程得到b=c=2,根据三
角形三边关系可判断这种情况不符号条件;当a=b=4或a=c=4时,把x=4代入方程可解得k=,则方程化为x2﹣6x+8=0,解得x1=4,x2=2,所以a=b=4,c=2或a=c=4,b=2,然后计算△ABC 的周长.
【解答】(1)证明:△=(2k+1)2﹣4×4(k﹣)
=4k2+4k+1﹣16k+8,
=4k2﹣12k+9
=(2k﹣3)2,
∵(2k﹣3)2≥0,即△≥0,
∴无论k取何值,这个方程总有实数根;
(2)解:当b=c时,△=(2k﹣3)2=0,解得k=,方程化为x2﹣4x+4=0,解得b=c=2,而2+2=4,故舍去;
当a=b=4或a=c=4时,把x=4代入方程得16﹣4(2k+1)+4(k﹣)=0,解得k=,方程化为x2﹣6x+8=0,解得x1=4,x2=2,即a=b=4,c=2或a=c=4,b=2,
所以△ABC的周长=4+4+2=10.
23.如图,某市近郊有一块长为60米,宽为50米的矩形荒地,地方政府准备在此建一个综合性休闲广场,其中阴影部分为通道,通道的宽度均相等,中间的三个矩形(其中三个矩形的一边长均为a米)区域将铺设塑胶地面作为运动场地.
(1)设通道的宽度为x米,则a=(用含x的代数式表示);
(2)若塑胶运动场地总占地面积为2430平方米.请问通道的宽度为多少米?
【考点】一元二次方程的应用.
【分析】(1)根据通道宽度为x米,表示出a即可;
(2)根据矩形面积减去通道面积为塑胶运动场地面积,列出关于x的方程,求出方程的解即可得到结果.
【解答】解:(1)设通道的宽度为x米,则a=;
故答案为:
(2)根据题意得,(50﹣2x)(60﹣3x)﹣x•=2430,
解得x1=2,x2=38(不合题意,舍去).
答:中间通道的宽度为2米.
24.如图,抛物线y=x2+bx﹣2与x轴交于A、B两点,与y轴交于C点,且A(﹣1,0).(1)求抛物线的解析式及顶点D的坐标;
(2)判断△ABC的形状,证明你的结论;
(3)点M是x轴上的一个动点,当△DCM的周长最小时,求点M的坐标.
【考点】二次函数综合题.
【分析】(1)把点A的坐标代入抛物线解析式,列出关于系数b的方程,通过解方程求得b 的值;利用配方法把抛物线解析式转化为顶点式方程,根据该解析式直接写出顶点D的坐标;(2)利用点A、B、C的坐标来求线段AB、AC、BC的长度,得到AC2+BC2=AB2,则由勾股定理的逆定理推知△ABC是直角三角形;
(3)作出点C关于x轴的对称点C′,则C'(0,2).连接C′D交x轴于点M,根据轴对称性及两点之间线段最短可知,CD一定,当MC+MD的值最小时,△CDM的周长最小.利用待定系
数法求得直线C′D的解析式,然后把y=0代入直线方程,求得.
【解答】解:(1)∵点A(﹣1,0)在抛物线上,
∴,
解得,
∴抛物线的解析式为.
∵,
∴顶点D的坐标为;
(2)△ABC是直角三角形.理由如下:
当x=0时,y=﹣2,
∴C(0,﹣2),则OC=2.
当y=0时,,
∴x1=﹣1,x2=4,则B(4,0),
∴OA=1,OB=4,
∴AB=5.
∵AB2=25,AC2=OA2+OC2=5,BC2=OC2+OB2=20,
∴AC2+BC2=AB2,
∴△ABC是直角三角形;
(3)作出点C关于x轴的对称点C′,则C'(0,2).
连接C′D交x轴于点M,根据轴对称性及两点之间线段最短可知,CD一定,当MC+MD的值最小时,△CDM的周长最小.
设直线C′D的解析式为y=ax+b(a≠0),则

解得,
∴.
当y=0时,,则,
∴.
25.在平面直角坐标系中,边长为2的正方形OABC的两顶点A、C分别在y轴、x轴的正半轴上,点O在原点,现将正方形OABC绕O点顺时针旋转,当A点第一次落在直线y=x上时停止旋转,旋转过程中,AB边交直线y=x于点M,BC边交x轴于点N(如图).
(1)旋转过程中,当MN和AC平行时,求正方形OABC旋转的角度;
(2)试证明旋转过程中,△MNO的边MN上的高为定值;
(3)折△MBN的周长为p,在旋转过程中,p值是否发生变化?若发生变化,说明理由;若不发生变化,请给予证明,并求出p的值.
【考点】一次函数综合题.
【分析】(1)只要证明△AOM≌△CON,推出∠AOM=∠CON=22.5°即可解决问题.
(2)如图2中,过点O作OF⊥MN于F,延长BA交y轴与E点,则∠AOE=45°﹣∠AOM,∠CON=45°﹣∠AOM.先证明△OAE≌△OCN(ASA),再证明△OME≌△OMN(SAS),推出∠OME=∠OMN,利用角平分线性质定理即可解决问题.
(3)由(2)可知,MN=AM+CN,可以推出△BMN的周长为BA+BC是定值.
【解答】解:(1)如图1中,
∵四边形OABC是正方形,
∴∠BAC=∠BCA=45°,BA=BC,OA=OC,∠OAB=∠OCB=90°
∵MN∥AC,
∴∠BMN=∠BAC=45°,∠BNM=∠BCA=45°,
∴∠BMN=∠BNM.
∴BM=BN,
∴AM=CN.
在△OAM与△OCN中,
∴△OAM≌△OCN(SAS),
∴∠AOM=∠CON,
∴∠AOM=∠CON=22.50,
∴MN∥AC时,旋转角为22.50.
(2)证明:如图2中,
过点O作OF⊥MN于F,延长BA交y轴与E点,则∠AOE=45°﹣∠AOM,∠CON=45°﹣∠AOM.∴∠AOE=∠CON.
在△OAE与△OCN中,
∴△OAE≌△OCN(ASA),
∴OE=ON,AE=CN.
在△OME与△OMN中,
∴△OME≌△OMN(SAS),
∴∠OME=∠OMN.
∵MA⊥OA,MF⊥OF.
∴OA=OF=2,
∴在旋转过程中,高为定值.
\
(3)旋转过程中,p值不变化.
理由:∵△OME≌△OMN,
∴ME=MN,
∵AE=CN,
∴MN=ME﹣AM+AE=AM+CN.
∴p=MN+BN+BM=AM+CN+BN+BM=AB+AC=4.∴△MBN的周长p为定值.
2017年1月19日。

相关文档
最新文档