尧都区高级中学2018-2019学年上学期高三数学10月月考试题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
尧都区高级中学2018-2019学年上学期高三数学10月月考试题 班级__________ 座号_____ 姓名__________ 分数__________
一、选择题(本大题共12小题,每小题5分,共60分.每小题给出的四个选项中,只有一项是符合题目要求的.)
1. 设曲线2()1f x x =+在点(,())x f x 处的切线的斜率为()g x ,则函数()cos y g x x =的部分图象 可以为( )
A .
B . C. D .
2. 已知命题p :对任意()0x ∈+∞,,48log log x x <,命题:存在x ∈R ,使得tan 13x x =-,则下列命题为真命题的是( )
A .p q ∧
B .()()p q ⌝∧⌝
C .()p q ∧⌝
D .()p q ⌝∧ 3. 给出函数()f x ,()g x 如下表,则(())f g x 的值域为( )
A .{}4,2
B .{}1,3
C .{}1,2,3,4
D .以上情况都有可能
4. 以过椭圆+
=1(a >b >0)的右焦点的弦为直径的圆与其右准线的位置关系是( )
A .相交
B .相切
C .相离
D .不能确定
5. 执行如图所示程序框图,若使输出的结果不大于50,则输入的整数k 的最大值为( )
A .4
B .5
C .6
D .7
6. P 是双曲线
=1(a >0,b >0)右支上一点,F 1、F 2分别是左、右焦点,且焦距为2c ,则△PF 1F 2
的内切圆圆心的横坐标为( )
A .a
B .b
C .c
D .a+b ﹣c
7. 若某算法框图如图所示,则输出的结果为( )
A .7
B .15
C .31
D .63
8. 过点),2(a M -,)4,(a N 的直线的斜率为2
1
-
,则=||MN ( ) A .10 B .180 C .36 D .56
9. 若复数12,z z 在复平面内对应的点关于y 轴对称,且12i z =-,则复数
1
2
z z 在复平面内对应的点在( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限
【命题意图】本题考查复数的几何意义、代数运算等基础知识,意在考查转化思想与计算能力. 10.在ABC ∆中,2
2
2
sin sin sin sin sin A B C B C ≤+-,则A 的取值范围是( )1111] A .(0,
]6π
B .[,)6ππ C. (0,]3π D .[,)3
π
π 11.数列1,3,6,10,…的一个通项公式是( ) A .21n a n n =-+ B .(1)2n n n a -=
C .(1)
2
n n n a += D .21n a n =+ 12.设S n 为等比数列{a n }的前n 项和,若a 1=1,公比q=2,S k+2﹣S k =48,则k 等于( )
A .7
B .6
C .5
D .4
二、填空题(本大题共4小题,每小题5分,共20分.把答案填写在横线上)
13.函数()2log f x x =在点()1,2A 处切线的斜率为 ▲ . 14.已知函数5()sin (0)2
f x x a x π
=-≤≤的三个零点成等比数列,则2log a = . 15.设MP 和OM
分别是角
的正弦线和余弦线,则给出的以下不等式:
①MP <OM <0;②OM <0<MP ;③OM <MP <0;④MP <0<OM , 其中正确的是 (把所有正确的序号都填上).
16.长方体的一个顶点上的三条棱长分别是3,4,5,且它的8个顶点都在同一个球面上,则这个球的表面积
是 .
三、解答题(本大共6小题,共70分。
解答应写出文字说明、证明过程或演算步骤。
)
17.(本小题满分12分)
已知函数(
)23cos cos 2
f x x x x =++
. (1)当6
3x ππ⎡⎤
∈-⎢⎥⎣⎦,时,求函数()y f x =的值域;
(2)已知0ω>,函数()212x g x f ωπ⎛⎫=+
⎪⎝⎭,若函数()g x 在区间23
6π
π⎡⎤-⎢⎥⎣⎦,上是增函数,求ω的最大值.
18.如图,在三棱柱111ABC A B C -中,111,A A AB CB A ABB =⊥. (1)求证:1AB ⊥平面1A BC ;
(2)若15,3,60AC BC A AB ==∠=,求三棱锥1C AA B -的体积.
19.(本小题满分10分)选修4-1:几何证明选讲.
如图,AB 是⊙O 的直径,AC 是⊙O 的切线,BC 交⊙O 于E ,过E 的切线与AC 交于D .
(1)求证:CD =DA ;
(2)若CE =1,AB =2,求DE 的长.
20.(本小题满分10分)选修4-1:几何证明选讲
如图,四边形ABCD 外接于圆,AC 是圆周角BAD ∠的角平分线,过点C 的切线与AD 延长线交于点E ,AC 交BD 于点F . (1)求证:BD
CE ;
(2)若AB 是圆的直径,4AB =,1DE =,求AD 长
21.已知函数且f(1)=2.
(1)求实数k的值及函数的定义域;
(2)判断函数在(1,+∞)上的单调性,并用定义加以证明.22.已知矩阵A=,向量=.求向量,使得A2=.
尧都区高级中学2018-2019学年上学期高三数学10月月考试题(参考答案)
一、选择题(本大题共12小题,每小题5分,共60分.每小题给出的四个选项中,只有一项是符合题目要求的.)
1. 【答案】A
【解析】
试题分析:()()()()()2,cos 2cos ,,cos cos g x x g x x x x g x g x x x ==-=--=,()cos y g x x ∴=为奇函数,排除B ,D ,令0.1x =时0y >,故选A. 1 考点:1、函数的图象及性质;2、选择题“特殊值”法. 2. 【答案】D 【
解
析
】
考
点:命题的真假. 3. 【答案】A 【解析】
试题分析:()()()()((1))14,((2))14,((3))32,((4))34,f g f f g f f g f f g f ========故值域为
{}4,2.
考点:复合函数求值. 4. 【答案】C
【解析】解:设过右焦点F 的弦为AB ,右准线为l ,A 、B 在l 上的射影分别为C 、D
连接AC 、BD ,设AB 的中点为M ,作MN ⊥l 于N
根据圆锥曲线的统一定义,可得
=
=e ,可得
∴|AF|+|BF|<|AC|+|BD|,即|AB|<|AC|+|BD|,
∵以AB 为直径的圆半径为r=|AB|,|MN|=(|AC|+|BD|) ∴圆M 到l 的距离|MN|>r ,可得直线l 与以AB 为直径的圆相离
故选:C
【点评】本题给出椭圆的右焦点F,求以经过F的弦AB为直径的圆与右准线的位置关系,着重考查了椭圆的简单几何性质、圆锥曲线的统一定义和直线与圆的位置关系等知识,属于中档题.
5.【答案】A
解析:模拟执行程序框图,可得
S=0,n=0
满足条,0≤k,S=3,n=1
满足条件1≤k,S=7,n=2
满足条件2≤k,S=13,n=3
满足条件3≤k,S=23,n=4
满足条件4≤k,S=41,n=5
满足条件5≤k,S=75,n=6
…
若使输出的结果S不大于50,则输入的整数k不满足条件5≤k,即k<5,
则输入的整数k的最大值为4.
故选:
6.【答案】A
【解析】解:如图设切点分别为M,N,Q,
则△PF1F2的内切圆的圆心的横坐标与Q横坐标相同.
由双曲线的定义,PF1﹣PF2=2a.
由圆的切线性质PF1﹣PF2=F I M﹣F2N=F1Q﹣F2Q=2a,
∵F1Q+F2Q=F1F2=2c,
∴F2Q=c﹣a,OQ=a,Q横坐标为a.
故选A.
【点评】本题巧妙地借助于圆的切线的性质,强调了双曲线的定义.
7.【答案】D
【解析】解:模拟执行算法框图,可得
A=1,B=1
满足条件A≤5,B=3,A=2
满足条件A≤5,B=7,A=3
满足条件A≤5,B=15,A=4
满足条件A≤5,B=31,A=5
满足条件A≤5,B=63,A=6
不满足条件A≤5,退出循环,输出B的值为63.
故选:D.
【点评】本题主要考查了程序框图和算法,正确得到每次循环A,B的值是解题的关键,属于基础题.
8.【答案】D
【解析】
考点:1.斜率;2.两点间距离.
9.【答案】B
【解析】
10.【答案】C 【
解
析
】
考点:三角形中正余弦定理的运用. 11.【答案】C 【解析】
试题分析:可采用排除法,令1n =和2n =,验证选项,只有(1)
2
n n n a +=,使得121,3a a ==,故选C . 考点:数列的通项公式. 12.【答案】D
【解析】解:由题意,S k+2﹣S k =
,
即3×2k =48,2k
=16,
∴k=4. 故选:D .
【点评】本题考查等比数列的通项公式,考查了等比数列的前n 项和,是基础题.
二、填空题(本大题共4小题,每小题5分,共20分.把答案填写在横线上)
13.【答案】1ln 2
【解析】 试题分析:
()()111ln 2ln 2
f x k f x ''=
∴== 考点:导数几何意义
【思路点睛】(1)求曲线的切线要注意“过点P 的切线”与“在点P 处的切线”的差异,过点P 的切线中,
点P不一定是切点,点P也不一定在已知曲线上,而在点P处的切线,必以点P为切点.
(2)利用导数的几何意义解题,主要是利用导数、切点坐标、切线斜率之间的关系来进行转化.以平行、垂直直线斜率间的关系为载体求参数的值,则要求掌握平行、垂直与斜率之间的关系,进而和导数联系起来求解.
14.【答案】
1 2
考点:三角函数的图象与性质,等比数列的性质,对数运算.
【名师点睛】本题考查三角函数的图象与性质、等比数列的性质、对数运算法则,属中档题.把等比数列与三角函数的零点有机地结合在一起,命题立意新,同时考查数形结合基本思想以及学生的运算能力、应用新知识解决问题的能力,是一道优质题.
15.【答案】
②
【解析】解:由MP,OM分别为角的正弦线、余弦线,如图,
∵,
∴OM<0<MP.
故答案为:②.
【点评】本题的考点是三角函数线,考查用作图的方法比较三角函数的大小,本题是直接比较三角函数线的大小,在大多数此种类型的题中都是用三角函数线比较三个函数值的大小.
16.【答案】 50π .
【解析】解:长方体的一个顶点上的三条棱长分别是3,4,5,且它的8个顶点都在同一个球面上,
所以长方体的对角线就是球的直径,长方体的对角线为:,
所以球的半径为:
;则这个球的表面积是: =50π.
故答案为:50π.
【点评】本题是基础题,考查球的内接多面体的有关知识,球的表面积的求法,注意球的直径与长方体的对角线的转化是本题的解答的关键,考查计算能力,空间想象能力.
三、解答题(本大共6小题,共70分。
解答应写出文字说明、证明过程或演算步骤。
)
17.【答案】(1)332⎡⎤
⎢⎥⎣⎦
,;(2).
【解析】
试题分析:(1)化简()sin 226f x x π⎛
⎫=++ ⎪⎝⎭,结合取值范围可得1sin 2126x π⎛⎫-≤+≤ ⎪⎝⎭⇒值域为332⎡⎤⎢⎥⎣⎦,;(2)
易得()sin 22123x g x f x ωππω⎛⎫⎛⎫=+=++ ⎪ ⎪⎝⎭⎝⎭和233363x πωππωππω⎡⎤+∈-++⎢⎥⎣⎦,,由()g x 在23
6π
π⎡⎤-
⎢⎥⎣⎦,上是增函数⇒222Z 336322k k k ωππωππππππ⎡⎤⎡⎤
-
++⊆-++∈⎢⎥⎢⎥⎣⎦⎣⎦,,,⇒ 22332
26
32k k ωππ
ππωππππ⎧-+≥-+⎪⎪⎨
⎪+≤+⎪⎩⇒534112k k ωω⎧≤-⎪⎨⎪≤+⎩⇒151212k -<<,Z k ∈⇒0k =⇒1ω≤⇒ω的最大值为.
考
点:三角函数的图象与性质.
18.【答案】(1)证明见解析;(2)【解析】
试题分析:(1)有线面垂直的性质可得1BC AB ⊥,再由菱形的性质可得11AB A B ⊥,进而有线面垂直的判定定理可得结论;(2)先证三角形1A AB 为正三角形,再由于勾股定理求得AB 的值,进而的三角形1A AB 的面积,又知三棱锥的高为3BC =,利用棱锥的体积公式可得结果.
考点:1、线面垂直的判定定理;2、勾股定理及棱锥的体积公式.
19.【答案】
【解析】解:(1)证明:
如图,连接AE,
∵AB是⊙O的直径,
AC,DE均为⊙O的切线,
∴∠AEC=∠AEB=90°,
∠DAE=∠DEA=∠B,
∴DA=DE.
∠C=90°-∠B=90°-∠DEA=∠DEC,
∴DC=DE,
∴CD=DA.
(2)∵CA是⊙O的切线,AB是直径,
∴∠CAB=90°,
由勾股定理得CA2=CB2-AB2,
又CA2=CE×CB,CE=1,AB=2,
∴1·CB=CB2-2,
即CB2-CB-2=0,解得CB=2,
∴CA2=1×2=2,∴CA= 2.
由(1)知DE =12CA =2
2,
所以DE 的长为2
2.
20.【答案】
【解析】【命题意图】本题主要考查圆周角定理、弦切角定理、三角形相似的判断与性质等基础知识,意在考查逻辑推证能力、转化能力、识图能力.
∴
DE DC BC BA =BC AB
=,则2
4BC AB DE =⋅=,∴2BC =. ∴在Rt ABC ∆中,1
2
BC AB =,∴30BAC ∠=︒,∴60BAD ∠=︒,
∴在Rt ABD ∆中,30ABD ∠=︒,所以1
22
AD AB ==.
21.【答案】
【解析】解:(1)f (1)=1+k=2;
∴k=1,
,定义域为{x ∈R|x ≠0};
(2)为增函数; 证明:设x 1>x 2>1,则:
=
=
;
∵x 1>x 2>1;
∴x 1﹣x 2>0,
,
;
∴f(x1)>f(x2);
∴f(x)在(1,+∞)上为增函数.
22.【答案】=
【解析】A2=.
设=.由A2=,得,从而解得x=-1,y=2,所以=。