【完整版】吊梁的应力计算和优化设计

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

前言
在一个现代化的企业中,CAD/CAM已经减少了不少设计者的负担,原来被视为CAD/CAM中配角的CAE(计算机辅助工程)已经不再是以前的可有可无了,现在已经是高品质设计中不可缺少的重要一环。

CAE不仅可以减少CAM中制造实体模型的次数,还可以帮助设计者在CAD中合理建构几何实体模型。

因此合理运用CAE可以缩短产品的开发时间,减少产品制造的成本。

这也从一个侧面说明,在整体效益上看,CAD/CAE/CAM已经是不可分割的了,并且向集成化的方向发展是一个必然趋势。

CAE可以使企业达到现代化的水准,即可以[1]:
1、缩短设计所需的时间和降低设计成本。

2、在精确的分析结果下制造出品质优秀的产品。

3、对设计变更能快速做出反应。

4、能充分地与CAD集成并对不同类型的问题进行分析。

5、能准确地预测产品的性能。

目前在全球范围内的CAE软件产品是非常多的,如NASTRAN、PATRAN、COSMOS、ANSYS、ADINA、SAP、MARC、ASKA、RASNA、JIFEX(国产)等。

在本次设计中采用了PATRAN和NASTRAN 软件,通过本次设计充分了解了该两种软件,有助于以后的学习和工作,并在此设计阶段取得了可喜的成果。

吊梁作为常用的起重部件,在国民生产的各个行业被广泛应用,因此在其设计的好坏显得尤为重要。

以往的人工计算精度低,而且有时达不到应有的强度要求,在实际的生产中,不仅不能使轻巧灵便,而且常常发生不应有的事故。

设计中由于使用的是大型通用程序,在对实际的情况进行简化时,利用它提供的大型齐备的单元库和截面库,方便快捷的进行建模,利用ASSOCIATE代替焊接和受力传递,使之成为一个整体相互关联的组件,利用约束条件来代替梁的另一半对称部分。

在分析后期的数据处理阶段,又利用其方便的数据处理功能将数值大小转变成直观的变形图。

整个过程操作简便,结论可靠,体现出使用CAE计算机设计的绝对优势。

第一章有限元法简介
§1.1 有限元法的基本概念及发展
有限元法最初是在50年代作为处理固体力学问题的方法出现的,近三、四十年来随着计算机的发展而逐渐发展成为用于各种结构分析的数值计算方法。

有限元法是用来分析各种结构问题的强有力的工具,不论结构的几何形状和边界条件多么复杂,不论材料性质和外加载荷如何多变,使用有限元法均可获得满意的答案。

有限元法的基本思想是运用离散的概念,把弹性连续体划分为若干有限单元组成的集合体,通过单元分析和组合,得到一组联立代数方程组,最后求得数值解。

有限元法与其他数值方法相比,其突出优点,是可以用许多单元来逼近具有复杂边界和外载的大型连续域问题,并且能够获得较为精确的结果,影响有限元计算的关键是:
(1). 建立反映实际结构的计算模型。

(2). 确定结构载荷条件和边界条件。

(3). 选用合理的计算软件。

有限元法的发展借助于两个重要工具:在理论方面,采用了矩阵方法;在实际计算中,采用电子计算机。

经过三十年的发展,有限元已经成为了一门日益成熟的学科,它又是一门正在发展中的学科,有无限广阔的前景,有很广泛的实用价值。

有限元法最先应用于航空工程,现已迅速推广到机械与汽车、造船、建筑等各种工程技术领域,并从固体力学领域拓宽到流体、电磁学、振动等学科,几乎在所有工程问题上得到了发展与应用。

在工程技术领域研究的弹性连续体可以看作是由无限多个微元体组成,有限元离散化是假象把弹性连续体分隔成数目有限的单元,并认为相邻单元之间仅在节点处相连。

根据物体的几何形状特性、载荷特性、边界约束特性等,单元有各种类型。

节点一般都在单元边界上,节点的位移分量是作为结构的基本位置量,这样组成的有限单元体并引进等效节点力及节点约束条件,由于节点数目有限,就成为有限多自由度的连续体,在此基础上对每一单元根据分块相似的思想,假设每一个简单的函数来近似模拟其位移分量的分布规律,即选择位移模式,再通过虚功原理求得每个单元得平衡方程就是建立单元节点力与节点位移之间的关系。

最后,把所有的这些特性关系按照保持节点位移连续和节点力连续平衡的方式集合起来,就可以得到整个物体的平衡方程组,引入边界约束条件后,解此方程就求得节点位移,并计算出各单元应力。

有限单元法的实质就是把具有无限多自由度的弹性连续体理想化为只有有限个自由度的单元几何体,使问题简化为适合于数值解法的结构型问题。

§1.2有限元求解问题的步骤
利用有限元法求解结构分析问题时,一般要经过以下几个步骤:
第一步,建立结构几何模型。

几何模型应能准确描述结构的空间形状,并便于以后单元及节点的划分。

第二步,对结构进行离散,即单元划分。

第三步,计算单元刚度矩阵和质量矩阵,并形成整体刚度矩阵和质量矩阵。

第四步,处理结构荷载及边界条件。

第五步,求解线形方程组,求得各节点的位移。

第六步,由节点位移求得应变和应力。

第七步,输出计算结果,绘制变形图,应力图,应变图及振型图等。

在本次设计中的主要工作集中在第一、二、四步中,其余的则是由有限元前处理PATRAN及分析软件NASTRAN自动完成的。

§1.3 有限元基本原理及公式
有限元法的实质是把具体有无限多个自由度的弹性连续提理想化成为只有有限个自由度的单元集合体,使问题简化为合适于数值解法的结构型问题[2]。

其计算步骤包括起来分成以下七步:
1.3.1 弹性连续体的离散化
这是有限单元法的基础。

所谓离散化就是将弹性体的区域分割成为有限个单元离散而成的有限单元结合体将代替原来的弹性连续体,所有的计算分析都将在这个计算模型上进行。

因此,网格划分将关系到有限元分析的速度和精度,甚至计算的成败。

有限元离散化过程中的一个重要环结是单元类型的选择,这应根据被分析结构的几何形状特点,结合载荷、约束、计算精度的要求以及描述该问题所需的独立空间坐标的数目等全面考虑。

除了杆单元外,平面问题常用的有简单三角形单元、轴对称三角形环单元、八节点任意四边形单元以及曲边形单元。

空间问题常用的单元有四边形单元、长方体单元、任意六面体单元以及曲面六面体单元等。

选择确定单元类型后,接着要考虑单元的大小(即网格的疏密)。

这根据精度的要求、计算的速度和容量来确定,通常在应力集中的部位以及应力变化比较剧烈处增加单元的密度,同时还要注意同意结构上的网格疏密、单元大小要有过度,避免大小悬殊的单元相邻。

1.3.2 选择单元位移模式
这是单元特性分析的第一步。

在结构的离散化完成以后,为了能用节点位移表示单元的位移、应力和应变,在分析连续体问题时,必须对单元中的位移的分布做出一定的
假设,也就是假设位移是坐标的某种简单的函数,这种函数称为位移模式或位移函数。

在有限元中,普遍地选择多项式作为位移模式,至于多项式的项数和阶数则要考虑到单元的自由度和有关解的收敛性的要求。

一般多项式的项数应等于单元的自由度数,它的阶次应包括常数项和线性项。

根据所选定的单元位移模式就可以导出用节点位移表示单元内任一点位移的关系式,因此它也决定了相应的位移插值函数,其矩阵形式为
{f}e =[N]{δ}e
(1.1) 式中{f}e 为单元内任一点的位移矩阵;{δ}e 为单元的节点位移矩阵;[N]为形成
函数矩阵,它的元素是位移的函数。

从这里可以看出,选择合适的位移函数是有限元分析的关键,它将决定有限元解答的性质与近似程度,所以它的选择应遵循一定的准则。

1.3.3 单元力学特性分析
在选择了单元类型和相应的位移模式后,就可以进行单元特性的分析,它包括下面三部分内容:
(1)用几何方程,由表达式(1.1)导出用节点位移表示应变的关系
{ε}=[B] {δ}e (1.2)
式中{ε}是单元内任一点的应变列阵;[B]成为应变矩阵。

(2)利用物理方程,由应变的表达式(1.2)导出用节点位移表示单元应力的关系
{ζ}=[D][B] {δ}e =[S] {δ}e (1.3)
式中{ζ}是单元内任一点的应力列阵;[D]适于材料相关的弹性矩阵;
[S]称为应力矩阵。

(3)用虚功原理或变分法或其他方法建立各单元的刚度矩阵,既单元节点力与
节点位移之间的关系;其刚度方程为
{R}e =[K]e {δ}e (1.4)
式中{R}e 是单元的节点力矩阵;[K]e 成为单元刚度矩阵,是单元节点位
移和单元节点之间的转化矩阵。

可以导出
[K]=[][][]T
B D B dxdydz (1.5) 实际上,式(1.4)是一个线性代数方程组,它由若干个方程组组成,每个方程代表了在该单元范围内某一个节点在某个自由度上的平衡。

在以上三项中,导出单元刚度矩阵是单元特性分析的核心内容。

1.3.4 非节点载荷的位移
弹性体经过离散化之后,假定力是通过节点从一个单元传递到另一个单元,但是作为实际的连续体,力是从单元的公共边界传递到另一个单元的。

因此,这种作用在单元
边界上的表面力以及作用在单元上的体积力、集中力等都需要等效移置到节点载荷矩阵,也就是用等效的节点力来代替所有作用在单元上的力。

移置的方法是按照静力等效的原则,既原来作用在单元上的载荷与移置到节点上的等效载荷,在单元的任何需位移上所做的需功应相等[3]。

载荷作这样的变换会引起误差,但根据圣维南原理,这种误差是局部性的,对整体结构影响不大,而且随着单元的逐渐加密,这一影响会逐步减小。

非节点载荷的位置的一般计算公式为: {}⎰⎰++=A A T v V T T
C e dA P N dV P N Q N P }{][}{][][}{ (1.6)
式中[N]C 是集中力{Q}作用点处的函数;{P V }和{P A }分别为作用在单元上的体积力和表面力。

1.3.5 整体分析,组集结构总刚度方程
整体分析的基础是依据所有相邻单元在公共点上的位移相同和在每个节点上的节点力和节点在和保持平衡这两个原则。

它包括两个方面的内容:一是有各单元的刚度矩阵集合成整体结构的总刚度矩阵[K];二是将作用于各单元的等效节点力集合成总的载荷矩阵{R}。

这两项就组成了整体结构的总刚度矩阵方程,又称为结构平衡方程组
{R}=[K]{δ} (1.7)
式中{R I }={Q i }+∑{e i P },其中{Q i }为节点i 上的集中力;∑{e
i P }为各元在节点i 处的等效节点载荷的和。

1.3.6 约束处理并求总刚度方程
引进边界约束条件,修正总刚度方程后,消除总刚度矩阵的奇异性,就可求得节点位移。

在线性平衡问题中,可以根据方程组的具体特点选择合适的计算方法。

对于非线性的问题,则要通过一系列的步骤,逐步修正刚度矩阵和载荷矩阵,才能获得解答。

1.3.7 计算单元应力并整理计算结果
利用公式(1.3)和已经求出的节点位移计算结构上所有感兴趣部件上的应力,并绘出结构变形图及各种应力分量、应力组合的等值图。

第二章有限元分析软件NASTRAN
§2.1 MSC/NASTRAN
NASTRAN是美国MSC.Software Corporation公司的产品,1966年,美国国家宇航局(NASA)为了满足当地航空航天工业对结构分析的强迫要求主持开发大型应用有限元程序的招标,MSC公司因一举中标而参与了整个NASTRAN的开发过程。

到今天,NASTRAN 已成为各工业领域一直认可和推崇的世界CAE工业最全面、应用最广泛的大型通用结构有限元分析软件,也是国际合作和国际招标中工业工程分析和校验的有限元分析标准。

NASTRAN的分析功能概括了绝大多数工程应用领域,并为用户提供了方便的模块化功能悬想,它的主要分析功能如下所述:
1静力分析,包括据有惯性释放的静力分析和非线性静力分析。

2屈曲分析,包括线性屈曲分析和非线性屈曲分析。

3动力学分析,包括正则模态分析、复特性分析、瞬态响应分析(时间—历程分析)、随机震动分析、响应谱分析、频率响应分析。

4非线性分析,包括几何非线性分析、材料非线性分析及边界条件非线性分析(接触问题)。

5热传导分析,包括线性/非线性稳态热传导分析、线性/非线性瞬态热传导分析、相变分析和热控分析。

6空气动力弹性及颤振分析,包括静动气弹性响应分析、启动颤振分析和气弹性优化分析。

7流体—固体耦合分析,包括流—固耦合法、水弹性流体单元法虚质量法三种求解方法。

8高级对称分析,包括对称分析、轴对称和高级循环对称分析。

9多级超单元分析,主要是把整体结构分化成许多小的子部件来进行分析。

10设计灵敏度及优化分析
11复合材料分析
12P单元及H、P、H—P自适应。

NASTRAN 除了其分析功能强大的优点外,还有开放式的结构,如图2.1所示[4]。

这主要表现了它为用户提供了其他同类程序所无法比拟的二次开发工具DMAP语言,这是它可以对特定的问题进行定制绑定,从而减少不必要的重复性劳动,降低对使用人员的技术水平要求,这也使它能得到广泛应用的原因之一。

NASTRAN采用全模块式结构,用户可以更就自己需要才过不同的模块来最经济而有效的应用系统。

图2-1 NASTRAN的开放式结构
§2.2 MSC/PATRAN
MSC/PATRAN最早也是由美国国家宇航局(NASA)倡导开发的,使工业领域最著名的基于并行工程的框架式有限元前后处理及集成分析系统,它的开放式、多功能的体系结构可将工程设计、工程分析、结构分析、用户化身和交互图形界面集与一身的构成一个完整的CAE集成环境,帮助产品开发商实现从设计到制造全过程的产品的性能仿真,它的主要特点包括以下几点[5]:
2.2.1 实用性
MSC/PATRAN的用户界面即容易使用又方便记忆,那些新用户也可以很快成为熟练的使用者。

2.2.2 CAD模型的直接访问和集合建摸
MSC/PATRAN使用了直接集合访问技术(DGA)直接从一些世界先导的CAD/CAM系统中
抓取几何模型,甚至参数和特征。

此外它还提供了完善的几何建摸和编辑工具。

2.2.3 智能地模型处理
MSC/PATRAN容许用户直接在几何模型上设定载荷、边界条件、材料和单元特性,并地将这些信息自动转换成相关的有限元信息。

2.2.4 自动有限元建摸
MSC/PATRAN提供了自动网格及工业界最先进的映射网格划分功能,使用户能够快速地完成他们想做的工作。

2.2.5 完全的分析集成
将世界先导的不同类型的分析软件和技术与MSC/PATRAN集成在一个公共的环境中,使用户能够在最短的实际内根据多种类型的仿真结果对产品的整体设计给出正确的判断,提出相应的改进建议。

2.2.6 高级文档帮助
MSC/PATRAN提供了交互式的全文在线帮助系统,可使用户随时得到相关的电子文档帮助。

2.2.7 用户化技术
MSC/PATRAN命令语言(PCL)是MSC/PATRAN一个高级、模块化结构的编程语言和用户自定义工具,用户使用PCL语言和编程数据,可以吧自行开发的应用程序和针对特殊功能开发的内容直接嵌入MSC/PATRAN的框架系统,或单独使用或与其他系统联合使用,来提高市场竞争力。

2.2.8 结果可视化处理
MSC/PATRAN丰富的结果后处理功能可使用户直观的显示所有的分析结果,可以在产品投放市场前对产品性能进行认定,并可通过图形文件等方式进行文整理。

虽然NASTRAN和MSC/PATRAN正式进入中国工程界的时间不长,但由于其强大的功能与良好的兼容性,在CAD/CAE/CAM行业中以崭露头角。

§2.3 MSC/NASTRAN的优化功能
MSC/NASTRAN 的结构优化功能十分强大,包括内容很广,有尺寸参数优化、形状优化、拓扑优化等等[6]。

MSC/ANSTRAN软件的优化求解过程如下[7]:
1. 对初始设计进行依次详细的有限元分析;
2. 计算所有的约束,屏蔽掉当前无效的约束;
3. 求有约束和目标函数的灵敏度;
4. 生成响应函数的显示近似,形成近似模型;
5. 对近似模型有改进的可行方向法寻优(内循环);
6. 用内循环的优化结果更新设计变量;
7. 对更新后的设计执行详细的有限元分析(外循环);
8. 计算所有的约束;
9. 根据收敛准则判断是否收敛;
10.若不收敛则重复以上步骤,直到得到最优结果。

整个优化流程如图所示:
§2.4 几种有限元软件比较[8]
美国加洲理工学院Paul M. McElroy博士对一些CAE软件进行了测试,仅供供参考。

值得一提的是Paul M. McElroy博士是完全站在公正的、中立的立场上进行这项工作的,并且这些结果已经得了其它有关专家的进一步证实,目前已经成为国际公认的结论。

测试这些结果的前提是:各种分析题目相对于每一种软件都具有相同数目的结点数、元素数和DOF,并从目前流行的有限元分析软件的测试结果中可以看出,COSMOS和NASTRAN 的分析结果是很接近的,而ANSYS的误差要大一些,NASTRAN是通过牺牲速度来达到精度的,而ANSYS是通过放弃精确度和加大解题占用的磁盘时间来提高速度的。

分析技术指标的平均值(当然某个领域的分析可能与这个平均值比会有一些出入),COSMOS、
NASTRAN、ANSYS解题速度比为1:16:9,解题占用的磁盘空间比为1:14:22。

也就是说COSMOS解题的平均速度分别要比NASTRAN和ANSYS快16倍和9倍,而解题占用的磁盘空间分别减少14倍和22倍。

从这些数字也可以看出COSMOS软件在有限元分析软件中是技高一筹的。

CAE软件是现代化企业比较高层技术的操作,它与CAD/CAM是密不可分的,如果只抓CAD,不抓CAE,企业的产品就摆脱不了傻大黑粗的阴影。

CAD也发挥不出它的真正作用。

所以,CAE必将越来越受到世人的重视,必将成为企业竞争的有力帮手。

这次与NASTRAN与PATRAN的亲密接触体验到了它们强大的功能,并省时省力准确的进行了吊梁的强度计算和优化。

第三章建模过程与分析
吊梁的主体是由各个板件组成,其中有带孔的板件,其厚度一般比长和高小的多。

根据这一特点及其受力情况,视为线弹性空间应力问题,采用三结点三角形单元进行分析。

利用吊梁左右对称的特点,只需分析其一半的应力分布,以简化结构和缩短计算时间。

根据受力特点可知前后吊孔边为集中部位。

为保证分析精度,在这些区域的单元划分应致密些。

在其他非应力集中区,整体划分可以稀疏些,以提高求解速度。

§3.1 建模过程
3.1.1 利用PATRAN建立几何模型
实际中任何构件或零部件都是三维的,但是当其某一个方向或某两个方向的尺寸远大于其他方向的尺寸时,就可以简化为杆或板,这种简化称为减维。

吊梁各部件的长和宽比起厚度大的多,故此在本次设计中选择了二维的面单元进行建模分析。

几何模型是有限元的载体,复杂一些的模型都是先建立从实体简化过来的几何模型后再在几何模型上划分单元构成有限元模型,几何模型是利用点、线、面构成的,他的复杂程度主要取决于有限元模型选择的单元类型。

本次设计的对象是吊梁,利用GEOMETRY栏下的CREAT命令建构点线面,每个面是该位置处板的中心截面,面与面相交构成简化后的吊梁的几何模型。

但是,如果只按照图纸来建造几何模型是不行的。

在某些三面相交处应合理打断某一平面成几个,在本次设计中有如下部位。

如图3-1所示(其中一侧立板已隐去):
由于建造几何模型之初是利用点线这些元素来绘制中心面,因此各个面之间是相互独立的,这就需要使用GEOMETRY栏下的ASSOCIATE(相关)命令来处理相交面之间的关系。

如果两个中心面所代表的板材在实际情况中有力的作用,那么就必须使用ASSOCIATE命令使两个面结合成一个整体。

如图3-2所示:
图3-1 打断的底版和筋板图3-2 几何模型与面面相关3.1.2 定义材料和特性
吊梁材料由巨力集团提供,参照机械工程手册之物料搬运设备卷选择安全系1.5。

在PATRAN的MATERIALS栏中定义各向同性(ISOTROPIC),须输入的参数为:
[9]
在特性(PROPERTIES)中只定义板的厚度,由于后续优化步骤中要以厚度作为设计变量,所以此处将板厚相同和受力作用相似的面定义为同一名称。

3.1.3 划分单元
单元的选择单元的划分是将连续的结构,人为地分成有限段,是有限元分析的初步工作,可以根据需要控制单元的大小,粗略计算时,单元划分大些,主要目的是看变化的趋势;精确计算时,单元可以划的小一些,主要目的是,读取精确数据;一个模型在应力分布不同的部分,单元的大小也可不一致,应力梯度大的部位,单元大小可适当减小,以便观察变化趋势,相反,应力梯度小的部位,划分的单元可大些。

在PATRAN中应用了MESH和MESH SEED 对数学模型进行了单元的划分。

MESH命令是直接在数学模型上划分单元,MESH SEED则是先在数学模型边界上撒种,然后由MESH
以这些种子为准划分单元,见图3-3。

图3-3a 数学模型 图3-3b 用mesh 划分的单元
图3-3c 用mesh seed 撒种后划分的单元
两种方法各有便利之处,普通的单元划分,应用MESH 比较方便,对于占据同一位置的两个几何形状,为了在划分单元后,单元相互对应,用MESH SEED 较方便,还有在两曲面不完全相交时,没有MESH SEED 根本就不能进行划分单元,例图3-4所示部位:
图3-4 底板与筋板相交 图3-5 自由边界
由于吊梁中有形状不规则的实体因此在FINITE ELEMENTS 中用GLOBAL LENGTH30,TRIA3(三角形三结点)单元,PAVER 对吊梁进行有限元网格划分,共生成5997个结点,11810个单元,之所以选三角形单元是因为它是NASTRAN 最基本的二维单元,而且对边界拟合的能力很强。

图3-6为划分单元后的1/2
模型。

划分单元后还要保持其协调性,
1面
2面
故进行单元的模型检查(EQUIVALANCE),检查是否有重复的结点和单元。

最后可在PATRAN 中的VERIFY 看到模型的自由边界。

所谓非自由边界是指,有面面相交的线,并不属于其中某一个面的边,故称为非自由边界。

当有合理的自由边界时,吊梁的模型就成了一个有机的整体。

图3-5为自由边界的结果。

图3-6 划分单元后的½模型
3.1.4 添加边界条件和等效结点载荷
当不考虑自重影响时下吊孔的下接触边缘的几个结点作用由外载荷,其载荷分量为非零元素。

下面就是等效结点载荷的形成过程。

通常情况下圆形截面封闭环与吊孔在下半圆接触,且接触分布力向两边按余弦函数分布,设其数学式
[10]
为:
α=αcos q )(q m ax (3.1)
转化成直角坐标为
max ()cos
2F x P x R
π
=
(3.2)
式中:()F x :沿y 方向的力
max P :y 方向最大的力。

相关文档
最新文档