专题3.3 二次函数(第03期)-2018年中考数学试题分项版解析汇编

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、单选题
1.抛物线y=(x﹣2)2﹣1可以由抛物线y=x2平移而得到,下列平移正确的是()
A.先向左平移2个单位长度,然后向上平移1个单位长度
B.先向左平移2个单位长度,然后向下平移1个单位长度
C.先向右平移2个单位长度,然后向上平移1个单位长度
D.先向右平移2个单位长度,然后向下平移1个单位长度
【来源】四川省广安市2018年中考数学试题
【答案】D
点睛:本题考查二次函数图象平移问题,解答时最简单方法是确定平移前后的抛物线顶点,从而确定平移方向.
2.已知抛物线y=x2+2x+k+1与x轴有两个不同的交点,则一次函数y=kx﹣k与反比例函数y=在同一坐标系内的大致图象是()
A.B.C.D.
【来源】内蒙古通辽市2018年中考数学试卷
【答案】D
【解析】【分析】依据抛物线y=x2+2x+k+1与x轴有两个不同的交点,即可得到k<0,进而得出一
次函数y=kx﹣k的图象经过第一二四象限,反比例函数y=的图象在第二四象限,据此即可作出判断.
【详解】∵抛物线y=x2+2x+k+1与x轴有两个不同的交点,
∴△=4﹣4(k+1)>0,
解得k<0,
∴一次函数y=kx﹣k的图象经过第一二四象限,
反比例函数y=的图象在第二四象限,
故选D.
【点睛】本题考查了二次函数的图象与x轴的交点问题、反比例函数图象、一次函数图象等,根据抛物线与x轴的交点情况确定出k的取值范围是解本题的关键.
3.二次函数y=x2+(a﹣2)x+3的图象与一次函数y=x(1≤x≤2)的图象有且仅有一个交点,则实数a的取值范围是()
A.a=3±2B.﹣1≤a<2
C.a=3或﹣≤a<2 D.a=3﹣2或﹣1≤a<﹣
【来源】四川省乐山市2018年中考数学试题
【答案】D
【解析】分析:根据二次函数的图象性质即可求出答案.
详解:由题意可知:方程x2+(a-2)x+3=x在1≤x≤2上只有一个解,
即x2+(a-3)x+3=0在1≤x≤2上只有一个解,
当△=0时,
即(a-3)2-12=0,
a=3±2,
当a=3+2时,
此时x=-,不满足题意,
当a=3-2时,
此时x=,满足题意,
当△>0时,
令y=x2+(a-3)x+3,
令x=1,y=a+1,
令x=2,y=2a+1
(a+1)(2a+1)≤0
解得:-1≤a≤−,
当a=-1时,此时x=1或3,满足题意;
当a=-时,此时x=2或x=,不满足题意,
综上所述,a=3-2或-1≤a<−.
故选:D.
点睛:本题考查二次函数的综合问题,解题的关键是将问题转化为x2+(a-3)x+3=0在1≤x≤2上只有一个解,根据二次函数的性质即可求出答案。

学@科网
4.已知二次函数y=﹣x2+x+6及一次函数y=﹣x+m,将该二次函数在x轴上方的图象沿x轴翻折到x轴下方,图象的其余部分不变,得到一个新函数(如图所示),请你在图中画出这个新图象,当直线y=﹣x+m与新图象有4个交点时,m的取值范围是()
A.﹣<m<3 B.﹣<m<2 C.﹣2<m<3 D.﹣6<m<﹣2
【来源】贵州省贵阳市2018年中考数学试卷
【答案】D
【解析】【分析】如图,解方程﹣x2+x+6=0得A(﹣2,0),B(3,0),再利用折叠的性质求出折叠部分的解析式为y=(x+2)(x﹣3),即y=x2﹣x﹣6(﹣2≤x≤3),然后求出直线•y=﹣x+m经过点A(﹣2,0)时m的值和当直线y=﹣x+m与抛物线y=x2﹣x﹣6(﹣2≤x≤3)有唯一公共点时m的值,从而得到当直线y=﹣x+m与新图象有4个交点时,m的取值范围.
【详解】如图,当y=0时,﹣x2+x+6=0,解得x1=﹣2,x2=3,则A(﹣2,0),B(3,0),
将该二次函数在x轴上方的图象沿x轴翻折到x轴下方的部分图象的解析式为y=(x+2)(x﹣3),
【点睛】本题考查了抛物线与几何变换,抛物线与x轴的交点等,把求二次函数y=ax2+bx+c(a,b,c 是常数,a≠0)与x轴的交点坐标问题转化为解关于x的一元二次方程是解决此类问题常用的方法. 5.已知二次函数y=ax2+bx+c的图象如图所示,OA=OC,则由抛物线的特征写出如下含有a、b、c
三个字母的等式或不等式:①=﹣1;②ac+b+1=0;③abc>0;④a﹣b+c>0.其中正确的个数是()
A.4个B.3个C.2个D.1个
【来源】四川省资阳市2018年中考数学试卷
【答案】A
【解析】【分析】此题可根据二次函数的性质,结合其图象可知:a>0,﹣1<c<0,b<0,再对各结论进行判断即可得答案.
【点睛】本题考查了二次函数图象与系数的关系,读懂图象、掌握二次根式的顶点坐标公式、二次根式图象上一些特特殊点的坐标特征是解题的关键.
6.如图,在▱ABCD中,AB=6,BC=10,AB⊥AC,点P从点B出发沿着B→A→C的路径运动,同时点Q从点A出发沿着A→C→D的路径以相同的速度运动,当点P到达点C时,点Q随之停止运动,设点P运动的路程为x,y=PQ2,下列图象中大致反映y与x之间的函数关系的是()
A.B.
C.D.
【来源】辽宁省葫芦岛市2018年中考数学试卷
【答案】B
【解析】【分析】先利用勾股定理求出AC长,然后分三种情况分别求出y与x间的关系式即可进行判断. 三种情况是:①0≤x≤6 ,②6≤x≤8 ,③8≤x≤14.
【详解】在Rt△ABC中,∠BAC=90°,AB=6,BC=10,∴AC==8,
当0≤x≤6时,AP=6﹣x,AQ=x,∴y=PQ2=AP2+AQ2=2x2﹣12x+36;
当6≤x≤8时,AP=x﹣6,AQ=x,∴y=PQ2=(AQ﹣AP)2=36;
当8≤x≤14时,CP=14﹣x,CQ=x﹣8,∴y=PQ2=CP2+CQ2=2x2﹣44x+260,
故选B.
【点睛】本题考查了二次函数的应用,动点问题的函数图象,结合图形正确地分三种情况进行讨论是解题的关键.
7.如图,抛物线y=(x+2)(x﹣8)与x轴交于A,B两点,与y轴交于点C,顶点为M,以AB为直径作⊙D.下列结论:①抛物线的对称轴是直线x=3;②⊙D的面积为16π;③抛物线上存在点E,使四边形ACED为平行四边形;④直线CM与⊙D相切.其中正确结论的个数是()
A.1 B.2 C.3 D.4
【来源】广西壮族自治区贵港市2018年中考数学试卷
【答案】B
【解析】【分析】①根据抛物线的解析式得出抛物线与x轴的交点A、B坐标,由抛物线的对称性即可判定;②求得⊙D的直径AB的长,得出其半径,由圆的面积公式即可判定;③过点C作CE∥AB,交抛物线于E,如果CE=AD,则根据一组等边平行且相等的四边形是平行四边形即可判定;④求得直线CM、直线CD的解析式通过它们的斜率进行判定.
【详解】∵在y=(x+2)(x﹣8)中,当y=0时,x=﹣2或x=8,
∴点A(﹣2,0)、B(8,0),
∴抛物线的对称轴为x==3,故①正确;
∵⊙D的直径为8﹣(﹣2)=10,即半径为5,
∴⊙D的面积为25π,故②错误;
在y=(x+2)(x﹣8)=x2﹣x﹣4中,当x=0时y=﹣4,
∴点C(0,﹣4),
当y=﹣4时,x2﹣x﹣4=﹣4,
解得:x1=0、x2=6,
所以点E(6,﹣4),
则CE=6,
∵AD=3﹣(﹣2)=5,
∴AD≠CE,
∴四边形ACED不是平行四边形,故③错误;
∵y=x2﹣x﹣4=(x﹣3)2﹣,
∴点M(3,﹣),
∴DM=,
如图,连接CD,过点M作MN⊥y轴于点N,则有N(0,﹣),MN=3,
∵C(0,-4),∴CN=,∴CM2=CN2+MN2=,
【点睛】本题考查了二次函数与圆的综合题,涉及到抛物线的对称轴、圆的面积、平行四边形的判定、待定系数法、两直线垂直、切线的判定等,综合性较强,有一定的难度,运用数形结合的思想灵活应用相关知识是解题的关键.
8.如图,二次函数y=ax2+bx+c的图象经过点A(﹣1,0)、点B(3,0)、点C(4,y1),若点
D(x2,y2)是抛物线上任意一点,有下列结论:
①二次函数y=ax2+bx+c的最小值为﹣4a;
②若﹣1≤x2≤4,则0≤y2≤5a;
③若y2>y1,则x2>4;
④一元二次方程cx2+bx+a=0的两个根为﹣1和
其中正确结论的个数是()
A.1 B.2 C.3 D.4
【来源】黑龙江省大庆市2018年中考数学试卷
【答案】B
【解析】
【分析】利用交点式写出抛物线解析式为y=ax2﹣2ax﹣3a,配成顶点式得y=a(x﹣1)2﹣4a,则可对①进行判断;计算x=4时,y= a×5×1=5a,则根据二次函数的性质可对②进行判断;利用对称性和二次函数的性质可对③进行判断;由于b=﹣2a,c=﹣3a,则方程cx2+bx+a=0化为﹣3ax2﹣2ax+a=0,然后解方程可对④进行判断.
【详解】由二次函数y=ax2+bx+c的图象经过点A(﹣1,0)、点B(3,0),
可得抛物线解析式为y=a(x+1)(x﹣3),
即y=ax2﹣2ax﹣3a,
∵y=a(x﹣1)2﹣4a,
∴当x=1时,二次函数有最小值﹣4a,所以①正确;
当x=4时,y=a×5×1=5a,
∴当﹣1≤x2≤4,则﹣4a≤y2≤5a,所以②错误;
∵点C(1,5a)关于直线x=1的对称点为(﹣2,﹣5a),
∴当y2>y1,则x2>4或x<﹣2,所以③错误;
∵b=﹣2a,c=﹣3a,
∴方程cx2+bx+a=0化为﹣3ax2﹣2ax+a=0,
整理得3x2+2x﹣1=0,解得x1=﹣1,x2=,所以④正确,
故选B.
【点睛】本题考查了二次函数的图象与性质,待定系数法、二次函数与一元二次方程等,综合性较强,熟练掌握待定系数法以及二次函数的相关知识是解题的关键.
9.如图,一段抛物线y=﹣x2+4(﹣2≤x≤2)为C1,与x轴交于A0,A1两点,顶点为D1;将C1绕点A1旋转180°得到C2,顶点为D2;C1与C2组成一个新的图象,垂直于y轴的直线l与新图象交于点P1(x1,y1),P2(x2,y2),与线段D1D2交于点P3(x3,y3),设x1,x2,x3均为正数,t=x1+x2+x3,则t的取值范围是()
A.6<t≤8B.6≤t≤8C.10<t≤12D.10≤t≤12
【来源】广西壮族自治区玉林市2018年中考数学试卷
【答案】D
【解析】【分析】首先证明x1+x2=8,由2≤x3≤4,推出10≤x1+x2+x3≤12即可解决问题.
【详解】翻折后的抛物线的解析式为y=(x﹣4)2﹣4=x2﹣8x+12,
∵设x1,x2,x3均为正数,
∴点P1(x1,y1),P2(x2,y2)在第四象限,
根据对称性可知:x1+x2=8,
∵2≤x3≤4,
∴10≤x1+x2+x3≤12,
即10≤t≤12,
故选D.
【点睛】本题考查二次函数与x轴的交点,二次函数的性质,抛物线的旋转等知识,熟练掌握和灵活应用二次函数的相关性质以及旋转的性质是解题的关键.学@科网
10.若满足<x≤1的任意实数x,都能使不等式2x3﹣x2﹣mx>2成立,则实数m的取值范围是()A.m<﹣1B.m≥﹣5C.m<﹣4D.m≤﹣4
【来源】内蒙古呼和浩特市2018年中考数学试卷
【答案】D
【解析】【分析】根据题意可以得到关于m的不等式,再根据二次函数和反比例函数的性质可以去的m的取值范围.
【详解】∵满足<x≤1的任意实数x,都能使不等式2x3﹣x2﹣mx>2成立,
∴m<2x2-x-,
∴m≤﹣4,
故选D.
【点睛】本题考查二次函数的性质、反比例函数的性质、不等式的性质,解答本题的关键是明确题意,求出相应的m的取值范围.
11.如图,抛物线y=ax2+bx+c交x轴于点(﹣1,0)和(4,0),那么下列说法正确的是()
A.ac>0 B.b2﹣4ac<0
C.对称轴是直线x=2.5 D.b>0
【来源】辽宁省阜新市2018年中考数学试题
【答案】D
C、∵抛物线y=ax2+bx+c交x轴于点(-1,0)和(4,0),
∴对称轴是直线x=1.5,故此选项错误;
D、∵a<0,抛物线对称轴在y轴右侧,
∴a,b异号,
∴b>0,故此选项正确.
点睛:此题主要考查了二次函数图象与系数的关系,正确掌握各项符号判断方法是解题关键.12.已知抛物线y=ax2+bx+c(0<2a≤b)与x轴最多有一个交点.以下四个结论:
①abc>0;
②该抛物线的对称轴在x=﹣1的右侧;
③关于x的方程ax2+bx+c+1=0无实数根;
④≥2.
其中,正确结论的个数为()
A.1个B.2个C.3个D.4个
【来源】辽宁省抚顺市2018年中考数学试卷
【答案】C
【解析】
【分析】
由a>0可知抛物线开口向上,再根据抛物线与x轴最多有一个交点可c>0,由此可判断①,根据抛
物线的对称轴公式x=﹣可判断②,由ax2+bx+c≥0可判断出ax2+bx+c+1≥1>0,从而可判断③,由题意可得a﹣b+c>0,继而可得a+b+c≥2b,从而可判断④.
【详解】
①∵抛物线y=ax2+bx+c(0<2a≤b)与x轴最多有一个交点,
∴抛物线与y轴交于正半轴,
∴c>0,
∴abc>0,故①正确;
②∵0<2a≤b,
∴>1,
∴﹣<﹣1,
∴该抛物线的对称轴在x=﹣1的左侧,故②错误;
③由题意可知:对于任意的x,都有y=ax2+bx+c≥0,
∴ax2+bx+c+1≥1>0,即该方程无解,故③正确;
④∵抛物线y=ax2+bx+c(0<2a≤b)与x轴最多有一个交点,
∴当x=﹣1时,y>0,
∴a﹣b+c>0,
∵b>0,
∴≥2,故④正确,
综上所述,正确的结论有3个,
故选C.
【点睛】
本题考查了二次函数的图象与性质,解题的关键是熟练运用二次函数的图象与系数的关系.
13.如图所示,已知△ABC中,BC=12,BC边上的高h=6,D为BC上一点,EF∥BC,交AB于点E,交AC于点F,设点E到边BC的距离为x.则△DEF的面积y关于x的函数图象大致为()
A.B.C.D.
【来源】山东省东营市2018年中考数学试题
【答案】D
【解析】分析:可过点A向BC作AH⊥BC于点H,所以根据相似三角形的性质可求出EF,进而求出函数关系式,由此即可求出答案.
详解:过点A向BC作AH⊥BC于点H,
所以根据相似比可知:,即EF=2(6-x)
所以y=×2(6-x)x=-x2+6x.(0<x<6)
该函数图象是抛物线的一部分,
故选:D.
点睛:此题考查根据几何图形的性质确定函数的图象和函数图象的读图能力.要能根据几何图形和
图形上的数据分析得出所对应的函数的类型和所需要的条件,结合实际意义画出正确的图象.14.对于题目“一段抛物线L:y=﹣x(x﹣3)+c(0≤x≤3)与直线l:y=x+2有唯一公共点,若c为整数,确定所有c的值,”甲的结果是c=1,乙的结果是c=3或4,则()
A.甲的结果正确
B.乙的结果正确
C.甲、乙的结果合在一起才正确
D.甲、乙的结果合在一起也不正确
【来源】河北省2018年中考数学试卷
【答案】D
当直线经过(0,c)时,c=2此时,恰有两个交点
当直线经过(3,c)时,c=5,此时有一个交点.
综上所述,恰有一个交点时,或c=1.
又∵c为整数,∴c=1,3,4,5
故选D.
【点睛】
本题考查了一段二次函数与一次函数的交点问题,除考虑相切问题外,还要考虑边界点的问题.二、填空题
15.将二次函数y=x2﹣1的图象向上平移3个单位长度,得到的图象所对应的函数表达式是_____.【来源】江苏省淮安市2018年中考数学试题
【答案】y=x2+2
【解析】分析:先确定二次函数y=x2﹣1的顶点坐标为(0,﹣1),再根据点平移的规律得到点(0,﹣1)平移后所得对应点的坐标为(0,2),然后根据顶点式写出平移后的抛物线解析式.
详解:二次函数y=x2﹣1的顶点坐标为(0,﹣1),把点(0,﹣1)向上平移3个单位长度所得对应点的坐标为(0,2),所以平移后的抛物线解析式为y=x2+2.
故答案为:y=x2+2.
点睛:本题考查了二次函数图象与几何变换:由于抛物线平移后的形状不变,故a不变,所以求平移后的抛物线解析式通常可利用两种方法:一是求出原抛物线上任意两点平移后的坐标,利用待定系数法求出解析式;二是只考虑平移后的顶点坐标,即可求出解析式.
16.已知:二次函数y=ax2+bx+c图象上部分点的横坐标x与纵坐标y的对应值如表格所示,那么它的图象与x轴的另一个交点坐标是_____.
x…﹣1012…y…0343…
【来源】贵州省(黔东南,黔南,黔西南)2018年中考数学试题
【答案】(3,0).
【解析】分析:根据(0,3)、(2,3)两点求得对称轴,再利用对称性解答即可.
详解:∵抛物线y=ax2+bx+c经过(0,3)、(2,3)两点,
∴对称轴x==1;
点(﹣1,0)关于对称轴对称点为(3,0),
因此它的图象与x轴的另一个交点坐标是(3,0).
故答案为:(3,0).
点睛:本题考查了抛物线与x轴的交点,关键是熟练掌握二次函数的对称性.
17.飞机着陆后滑行的距离y(单位:m)关于滑行时间t(单位:s)的函数解析式是y=60t﹣.在飞机着陆滑行中,最后4s滑行的距离是_____m.
【来源】湖北省武汉市2018年中考数学试卷
【答案】216
【解析】
【分析】先利用二次函数的性质求出飞机滑行20s停止,此时滑行距离为600m,然后再将t=20-4=16代入求得16s时滑行的距离,即可求出最后4s滑行的距离.
【详解】y=60t﹣=(t-20)2+600,即飞机着陆后滑行20s时停止,滑行距离为600m,
当t=20-4=16时,y=576,
600-576=24,
即最后4s滑行的距离是24m,
故答案为:24.
【点睛】本题考查二次函数的应用,解题的关键是理解题意,熟练应用二次函数的性质解决问题. 18.如图,已知抛物线y1=﹣x2+4x和直线y2=2x.我们规定:当x取任意一个值时,x对应的函数值分别为y1和y2,若y1≠y2,取y1和y2中较小值为M;若y1=y2,记M=y1=y2.①当x>2时,M=y2;②当x<0时,M随x的增大而增大;③使得M大于4的x的值不存在;④若M=2,则x=1.上述结论正确的是_____(填写所有正确结论的序号).
【来源】新疆自治区2018年中考数学试题
【答案】②③
详解:①当x>2时,抛物线y1=-x2+4x在直线y2=2x的下方,
∴当x>2时,M=y1,结论①错误;
②当x<0时,抛物线y1=-x2+4x在直线y2=2x的下方,
∴当x<0时,M=y1,
∴M随x的增大而增大,结论②正确;
③∵y1=-x2+4x=-(x-2)2+4,
∴M的最大值为4,
∴使得M大于4的x的值不存在,结论③正确;
④当M=y1=2时,有-x2+4x=2,
解得:x1=2-(舍去),x2=2+;
当M=y2=2时,有2x=2,
解得:x=1.
∴若M=2,则x=1或2+,结论④错误.
综上所述:正确的结论有②③.
故答案为:②③.
点睛:本题考查了一次函数的性质、二次函数的性质、一次函数图象上点的坐标特征以及二次函数图象上点的坐标特征,逐一分析四条结论的正误是解题的关键.
19.如图,在平面直角坐标系xOy中,已知抛物线y=ax2+bx(a>0)的顶点为C,与x轴的正半轴交于点A,它的对称轴与抛物线y=ax2(a>0)交于点B.若四边形ABOC是正方形,则b的值是_____.
【来源】浙江省湖州市2018年中考数学试题
【答案】﹣2
【解析】分析:根据正方形的性质结合题意,可得出点B的坐标为(-,-),再利用二次函数图象上点的坐标特征即可得出关于b的方程,解之即可得出结论.
详解:∵四边形ABOC是正方形,
∴点B的坐标为(-,-).
∵抛物线y=ax2过点B,
∴-=a(-)2,
解得:b1=0(舍去),b2=-2.
故答案为:-2.
点睛:本题考查了抛物线与x轴的交点、二次函数图象上点的坐特征以及正方形的性质,利用正方
形的性质结合二次函数图象上点的坐标特征,找出关于b的方程是解题的关键.学@科网
20.如图,在中,,,,点是边上的动点(不与点重合),过作
,垂足为,点是的中点,连接,设,的面积为,则与之间的函数关系式为__________.
【来源】山东省泰安市2018年中考数学试题
【答案】
【解析】分析:由=,CD=x,得到DE=,CE=,则BE=10-,由ΔDEB的面积S 等于△BDE面积的一半,即可得出结论.
详解:∵DE⊥BC,垂足为E,∴tan∠C==,CD=x,∴DE=,CE=,则BE=10-,∴S=S△BED=(10-)•
化简得:.
故答案为:.
点睛:本题考查了动点问题的函数解析式,解题的关键是设法将BE与DE都用含有x的代数式表示.
三、解答题
21.某商场将每件进价为80元的A商品按每件100元出售,一天可售出128件.经过市场调查,发现这种商品的销售单价每降低1元,其日销量可增加8件.设该商品每件降价x元,商场一天可通过A商品获利润y元.
(1)求y与x之间的函数解析式(不必写出自变量x的取值范围)
(2)A商品销售单价为多少时,该商场每天通过A商品所获的利润最大?
【来源】四川省甘孜州2018年中考数学试卷
【答案】(1);(2)A商品销售单价为98元时,该商场每天通过A商品所获的利润最大.
【解析】
【分析】
(1)根据“利润=降价后的单件利润×降价后销售的商品的件数”即可得y与x之间的函数解析式;(2)根据二次函数的性质进行求解即可得.
【点睛】
本题考查了二次函数的应用,弄清题意,找准各数量间的关系列出函数关系式是解题的关键. 22.如图,二次函数y=x2﹣3x的图象经过O(0,0),A(4,4),B(3,0)三点,以点O为位似中心,在y轴的右侧将△OAB按相似比2:1放大,得到△OA′B′,二次函数y=ax2+bx+c(a≠0)的图象经过O,A′,B′三点.
(1)画出△OA′B′,试求二次函数y=ax2+bx+c(a≠0)的表达式;
(2)点P(m,n)在二次函数y=x2﹣3x的图象上,m≠0,直线OP与二次函数y=ax2+bx+c(a≠0)的图象交于点Q(异于点O).
①连接AP,若2AP>OQ,求m的取值范围;
②当点Q在第一象限内,过点Q作QQ′平行于x轴,与二次函数y=ax2+bx+c(a≠0)的图象交于另一点Q′,与二次函数y=x2﹣3x的图象交于点M,N(M在N的左侧),直线OQ′与二次函数y=x2﹣3x的图象交于点P′.△Q′P′M∽△QB′N,则线段NQ的长度等于.
【来源】江苏省镇江市2018年中考数学试卷
【答案】(1)二次函数的解析式为y=x2﹣3x;(2)①1﹣<m<1+,且m≠0;②6
【解析】
【分析】
(1)根据位似的性质得出A′(8,8),B′(6,0),将O(0,0),A′(8,8),B′(6,0)代入y=ax2+bx+c,利用待定系数法进行求解即可得;
(2)①如图1,由P(m,n)在二次函数y=x2﹣3x的图象上,可得P(m,m2﹣3m),根据待定系数法易求得OP的解析是为y=(m﹣3)x,继而可求得Q(2m,2m2﹣6m),过点P作PC⊥x轴于点C,过点Q作QD⊥x轴于点D,证明△OCP∽△ODQ,可得OQ=2OP,然后根据2AP>OQ,可得AP>OP,从而可得关于m的不等式,解不等式即可得;
②如图2,P(m,m2﹣3m),Q(2m,2m2﹣6m),根据点Q在第一象限,可得m>3,QQ′的表
达式是y=2m2﹣6m,解方程组,可得点Q′(6﹣2m,2m2﹣6m),继而可得OQ′的解析式为y=﹣mx,从而求得点P′(3﹣m,m2﹣3m),由QQ′与y=x2﹣3x交于点M、N,求出点M、N的坐标,再根据△Q′P′M∽△QB′N,根据相似三角形的性质可得关于的方程,解方程求出m 的值即可得答案.
【详解】
(1)如图1,由以点O为位似中心,在y轴的右侧将△OAB按相似比2:1放大,
得,
∵A(4,4),B(3,0),
∴A′(8,8),B′(6,0),
将O(0,0),A′(8,8),B′(6,0)代入y=ax2+bx+c,
得,解得,
∴二次函数的解析式为y=x2﹣3x;
(2)①如图1,∵P(m,n)在二次函数y=x2﹣3x的图象上,
∴n=m2﹣3m,
∴P(m,m2﹣3m),
设直线OP的解析式为y=kx,将点P(m,m2﹣3m)代入函数解析式,得mk=m2﹣3m,
∴k=m﹣3,
∴OP的解析是为y=(m﹣3)x,
∵OP与y═x2﹣3x交于Q点,
∴,解得(不符合题意舍去),,∴Q(2m,2m2﹣6m),
过点P作PC⊥x轴于点C,过点Q作QD⊥x轴于点D,
则OC=|m|,PC=|m2﹣3m|,OD=|2m|,QD=|2m2﹣6m|,
∵,
∴△OCP∽△ODQ,
∴OQ=2OP,
∵2AP>OQ,
∴2AP>2OP,即AP>OP,
∴,
化简,得m2﹣2m﹣4<0,解得1﹣<m<1+,且m≠0;
②如图2,P(m,m2﹣3m),Q(2m,2m2﹣6m)
∵点Q在第一象限,
∴,解得m>3,
由Q(2m,2m2﹣6m),得QQ′的表达式是y=2m2﹣6m,
∵QQ′′交y=x2﹣3x交于点Q′,
,解得(不符合题意,舍),,
∴Q′(6﹣2m,2m2﹣6m),
∵M在N左侧,
∴M(,2m2﹣6m),N(,2m2﹣6m),∵△Q′P′M∽△QB′N,
∴,
∵,
即,
化简得:m2﹣12m+27=0,
解得:m1=3(舍),m2=9,
∴N(12,108),Q(18,108),
∴QN=6,
故答案为:6.
【点睛】
本题考查了几何与代数综合题,涉及了待定系数法、位似图形、相似三角形的判定与性质、解一元二次方程、解不等式等,综合性较强,有一定难度,熟练掌握相关知识,正确画出图形是解题的关键.
23.如图,抛物线y=ax2+bx+c经过A(﹣1,0),B(4,0),C(0,3)三点,D为直线BC上方抛物线上一动点,DE⊥BC于E.
(1)求抛物线的函数表达式;
(2)如图1,求线段DE长度的最大值;
(3)如图2,设AB的中点为F,连接CD,CF,是否存在点D,使得△CDE中有一个角与∠CFO 相等?若存在,求点D的横坐标;若不存在,请说明理由.
【来源】山东省莱芜市2018年中考数学试题
【答案】(1)y=﹣x2+x+3;(2) 当a=2时,DE取最大值,最大值是;(3)存在点D,使得△CDE
中有一个角与∠CFO相等,点D的横坐标为或.
【解析】
【分析】
(1)根据待定系数法,可得函数解析式;
(2)根据平行于y轴直线上两点间的距离是较大的纵坐标减较小的纵坐标,可得DM,根据相似
三角形的判定与性质,可得DE的长,根据二次函数的性质,可得答案;
(3)根据正切函数,可得∠CFO,根据相似三角形的性质,可得GH,BH,根据待定系数法,可得CG的解析式,根据解方程组,可得答案.
【详解】
(1)由题意,得,
解得,
抛物线的函数表达式为y=-x2+x+3;
(2)设直线BC的解析是为y=kx+b,

解得,
∴y=-x+3,
设D(a,-a2+a+3),(0<a<4),过点D作DM⊥x轴交BC于M点,如图1

(3)假设存在这样的点D,△CDE使得中有一个角与∠CFO相等,
∵点F为AB的中点,
∴OF=,tan∠CFO==2,
过点B作BG⊥BC,交CD的延长线于G点,过点G作GH⊥x轴,垂足为H,如图2

①若∠DCE=∠CFO,
∴tan∠DCE==2,
∴BG=10,
∵△GBH∽BCO,

∴GH=8,BH=6,
∴G(10,8),
设直线CG的解析式为y=kx+b,
∴,
解得,
∴直线CG的解析式为y=x+3,
∴,
解得x=,或x=0(舍).
②若∠CDE=∠CFO,
同理可得BG=,GH=2,BH=,
∴G(,2),
同理可得,直线CG的解析是为y=-x+3,
∴,
解得x=或x=0(舍),
综上所述,存在点D,使得△CDE中有一个角与∠CFO相等,点D的横坐标为或.
【点睛】
本题考查了二次函数综合题,解(1)的关键是待定系数法,解(2)的关键是利用相似三角形的性质得出DE的长,又利用了二次函数的性质;解(3)的关键是利用相似三角形的性质得出G点的坐标,利用了待定系数法求函数解析式,解方程组求得横坐标.
24.综合与探究
如图,抛物线y=与x轴交于A,B两点(点A在点B的左侧),与y轴交于点C,连接AC,BC.点P是第四象限内抛物线上的一个动点,点P的横坐标为m,过点P作PM⊥x轴,垂
足为点M,PM交BC于点Q,过点P作PE∥AC交x轴于点E,交BC于点F.
(1)求A,B,C三点的坐标;
(2)试探究在点P运动的过程中,是否存在这样的点Q,使得以A,C,Q为顶点的三角形是等腰三角形.若存在,请直接写出此时点Q的坐标;若不存在,请说明理由;
(3)请用含m的代数式表示线段QF的长,并求出m为何值时QF有最大值.
【来源】山西省2018年中考数学试题
【答案】(1)C(0,﹣4);(2)Q点坐标为(,﹣4)或(1,﹣3);(3)当m=2时,QF有最大值.
【解析】
(3)过点F作FG⊥PQ于点G,如图,由△OBC为等腰直角三角形.可判断△FQG为等腰直角三角形,则FG=QG=FQ,再证明△FGP~△AOC得到,则PG=FQ,所以PQ=FQ,
于是得到FQ=PQ,设P(m,m2-m-4)(0<m<4),则Q(m,m-4),利用PQ=-m2+m得
到FQ=(-m2+m),然后利用二次函数的性质解决问题.
【详解】
(1)当y=0,x2−x-4=0,解得x1=-3,x2=4,
∴A(-3,0),B(4,0),
当x=0,y=x2−x-4=-4,
∴C(0,-4);
(2)AC=,
易得直线BC的解析式为y=x-4,
设Q(m,m-4)(0<m<4),
当CQ=CA时,m2+(m-4+4)2=52,解得m1=,m2=-(舍去),此时Q点坐标为
(,-4);
当AQ=AC时,(m+3)2+(m-4)2=52,解得m1=1,m2=0(舍去),此时Q点坐标为(1,-3);当QA=QC时,(m+3)2+(m-4)2=52,解得m=(舍去),
综上所述,满足条件的Q点坐标为(,-4)或(1,-3);
(3)解:过点F作FG⊥PQ于点G,如图,
则FG∥x轴.由B(4,0),C(0,-4)得△OBC为等腰直角三角形
∴∠OBC=∠QFG=45
∴△FQG为等腰直角三角形,
∴FG=QG=FQ,
∵PE∥AC,PG∥CO,
∴∠FPG=∠ACO,
∵∠FGP=∠AOC=90°,
∴△FGP~△AOC.
∴,即,
∴PG=FG=•FQ=FQ,
∴PQ=PG+GQ=FQ+FQ=FQ,
∴FQ=PQ,
设P(m,m2-m-4)(0<m<4),则Q(m,m-4),
∴PQ=m-4-(m2-m-4)=-m2+m,
∴FQ=(-m2+m)=-(m-2)2+
∵-<0,
∴QF有最大值.
∴当m=2时,QF有最大值.
【点睛】
本题考查了二次函数的综合题:熟练掌握二次函数图象上点的坐标特征、二次函数的性质和等腰三角形的性质;会利用待定系数法求函数解析式;理解坐标与图形性质,会利用相似比表示线段之间的关系;会运用分类讨论的思想解决数学问题.学@科网
25.如图,在平面直角坐标系中,抛物线y=ax2+bx﹣2与x轴交于点A、B(点A在点B的左侧),与y轴交于点C(0,﹣2),OB=4OA,tan∠BCO=2.
(1)求A、B两点的坐标;
(2)求抛物线的解析式;
(3)点M、N分别是线段BC、AB上的动点,点M从点B出发以每秒个单位的速度向点C运动,同时点N从点A出发以每秒2个单位的速度向点B运动,当点M、N中的一点到达终点时,两点同时停止运动.过点M作MP⊥x轴于点E,交抛物线于点P.设点M、点N的运动时间为t(s),当t为多少时,△PNE是等腰三角形?
【来源】四川省巴中市2018年中考数学试卷
【答案】(1)A(﹣1,0);(2)y=x2﹣x﹣2;(3)当t=1时,△PNE是等腰三角形.
【解析】
【详解】
(1)∵C(0,﹣2),
∴OC=2,
由tan∠BCO==2得OB=4,
则点B(4,0),
∵OB=4OA,
∴OA=1,
则A(﹣1,0);
(2)将点A(﹣1,0)、B(4,0)代入y=ax2+bx﹣2,得:,
解得:,
∴抛物线解析式为y=x2﹣x﹣2;
(3)设点M、点N的运动时间为t(s),则AN=2t、BM=t,∵PE⊥x轴,
∴PE∥OC,
∴∠BME=∠BCO,
则tan∠BME=tan∠BCO,即=2,
∴=,即=,
则BE=t,
∴OE=OB﹣BE=4﹣t,
∴PE=﹣[(4﹣t)2﹣(4﹣t)﹣2]=﹣(4﹣t)2+(4﹣t)+2,
①点N在点E左侧时,即﹣1+2t<4﹣t,解得t<,
此时NE=AO+OE﹣AN=1+4﹣t﹣2t=5﹣3t,
∵△PNE是等腰三角形,
∴PE=NE,
即﹣(4﹣t)2+(4﹣t)+2=5﹣3t,
整理,得:t2﹣11t+10=0,
解得:t=1或t=10>(舍);
②当点N在点E右侧时,即﹣1+2t>4﹣t,解得t>,
又且2t≤5,
∴<t≤,
此时NE=AN﹣AO﹣OE=2t﹣1﹣(4﹣t)=3t﹣5,
由PE=NE得﹣(4﹣t)2+(4﹣t)+2=3t﹣5,
整理,得:t2+t﹣10=0,
解得:t=<0,舍去;或t=>,舍去;
综上,当t=1时,△PNE是等腰三角形.
【点睛】
本题主要考查二次函数的综合问题,解题的关键是掌握待定系数法求函数解析式及三角函数的应用、等腰三角形的性质等知识点.
26.如图,已知抛物线(>0)与轴交于A,B两点(A点在B点的左边),与轴交于点C。

(1)如图1,若△ABC为直角三角形,求的值;
(2)如图1,在(1)的条件下,点P在抛物线上,点Q在抛物线的对称轴上,若以BC为边,以点B,C,P,Q为顶点的四边形是平行四边形,求P点的坐标;
(3)如图2,过点A作直线BC的平行线交抛物线于另一点D,交轴交于点E,若AE:ED=1:4,求的值.
【来源】湖南省益阳市2018年中考数学试题
【答案】(1);(2)点P的坐标为;(3).
【解析】
【详解】
(1)若△ABC为直角三角形
∴△AOC∽△COB
∴OC2=AO•OB
当y=0时,0=x2-x-n
由一元二次方程根与系数关系
-OA•OB=OC2
n2==−2n
解得n=0(舍去)或n=2
∴抛物线解析式为y=;
(2)由(1)当=0时
解得x1=-1,x2=4
∴OA=1,OB=4
∴B(4,0),C(0,-2)
∵抛物线对称轴为直线x=-=−
∴设点Q坐标为(,b)
由平行四边形性质可知
当BQ、CP为平行四边形对角线时,点P坐标为(,b+2)
代入y=x2-x-2
解得b=,则P点坐标为(,)
当CQ、PB为为平行四边形对角线时,点P坐标为(-,b-2)
代入y=x2-x-2
解得b=,则P坐标为(-,)
综上点P坐标为(,),(-,);
(3)设点D坐标为(a,b)
∵AE:ED=1:4
则OE=b,OA=a
∵AD∥AB
∴△AEO∽△BCO
∵OC=n

∴OB=
由一元二次方程根与系数关系得,
∴b=a2
将点A(-a,0),D(a,a2)代入y=x2-x-n
解得a=6或a=0(舍去)
则n= .
【点睛】
本题是代数几何综合题,考查了二次函数图象性质、一元二次方程根与系数关系、三角形相似以及平行四边形的性质,解答关键是综合运用数形结合分类讨论思想.学@科网
27.已知直线分别交x轴、y轴于A、B两点,抛物线经过点A,和x轴的另一个交点为C.
求抛物线的解析式;
如图1,点D是抛物线上的动点,且在第三象限,求面积的最大值;
如图2,经过点的直线交抛物线于点P、Q,连接CP、CQ分别交y轴于点E、F,求的值.
备注:抛物线顶点坐标公式
【来源】黑龙江省绥化市2018年中考数学试卷
【答案】抛物线的解析式为;;.。

相关文档
最新文档