额尔古纳市四中2018-2019学年高二上学期第二次月考试卷数学
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
额尔古纳市四中2018-2019学年高二上学期第二次月考试卷数学 班级__________ 姓名__________ 分数__________
一、选择题
1. 函数y=f (x )在[1,3]上单调递减,且函数f (x+3)是偶函数,则下列结论成立的是( ) A .f (2)<f (π)<f (5) B .f (π)<f (2)<f (5)
C .f (2)<f (5)<f (π)
D .f (5)<
f (π)<f (2)
2. 如图是某几何体的三视图,则该几何体任意两个顶点间的距离的最大值为( )
A .4
B .5
C .32
D .33
3
. 已知向量=(﹣1,3),=(x ,2),且,则x=( )
A .
B .
C .
D .
4. 给出函数()f x ,()g x 如下表,则(())f g x 的值域为( )
A .{}4,2
B .{}1,3
C .{}1,2,3,4
D .以上情况都有可能
5. 若将函数y=tan (ωx+
)(ω>0)的图象向右平移
个单位长度后,与函数y=tan (ωx+
)的图象
重合,则ω的最小值为( )
A .
B .
C .
D .
6. 已知x ,y 满足约束条件,使z=ax+y 取得最小值的最优解有无数个,则a 的值为( )
A .﹣3
B .3
C .﹣1
D .1
7. 已知直线l ⊥平面α,直线m ⊂平面β,有下面四个命题: (1)α∥β⇒l ⊥m ,(2)α⊥β⇒l ∥m , (3)l ∥m ⇒α⊥β,(4)l ⊥m ⇒α∥β, 其中正确命题是( )
A .(1)与(2)
B .(1)与(3)
C .(2)与(4)
D .(3)与(4)
8. 过点(﹣1,3)且平行于直线x ﹣2y+3=0的直线方程为( )
A .x ﹣2y+7=0
B .2x+y ﹣1=0
C .x ﹣2y ﹣5=0
D .2x+y ﹣5=0
9. 若变量x ,y 满足:,且满足(t+1)x+(t+2)y+t=0,则参数t 的取值范围为( )
A .﹣2<t <﹣
B .﹣2<t ≤﹣
C .﹣2≤t ≤﹣
D .﹣2≤t <﹣
10.函数f (x )的定义域为[﹣1,1],图象如图1所示:函数g (x )的定义域为[﹣2,2],图象如图2所示,方程f (g (x ))=0有m 个实数根,方程g (f (x ))=0有n 个实数根,则m+n=( )
A .14
B .12
C .10
D .8
11.3名医生和6名护士被分配到3所学校为学生体检,每校分配1名医生和2名护士.不同的分配方法共有( ) A .90种 B .180种
C .270种
D .540种
12.设复数z 满足z (1+i )=2(i 为虚数单位),则z=( ) A .1﹣i B .1+i C .﹣1﹣i D .﹣1+i
二、填空题
13.已知n S 是数列1{}2n n -的前n 项和,若不等式1|12
n n n S λ-+<+|对一切n N *
∈恒成立,则λ的取值范围是___________.
【命题意图】本题考查数列求和与不等式恒成立问题,意在考查等价转化能力、逻辑推理能力、运算求解能力.
14.设x ∈(0,π),则f (x )=cos 2x+sinx 的最大值是 .
15.将一个半径为3和两个半径为1的球完全装入底面边长为6的正四棱柱容器中,则正四棱柱容器的高的最小值为 .
16.在ABC ∆中,已知sin :sin :sin 3:5:7A B C =,则此三角形的最大内角的度数等 于__________.
17.【南通中学2018届高三10月月考】已知函数()3
2f x x x =-,若曲线()f x 在点()()
1,1f 处的切线经过圆()2
2
:2C x y a +-=的圆心,则实数a 的值为__________.
18.已知,是空间二向量,若=3,||=2,|﹣|=,则与的夹角为 .
三、解答题
19.已知函数f (x )=2cosx (sinx+cosx )﹣1
(Ⅰ)求f (x )在区间[0,
]上的最大值;
(Ⅱ)在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,且f (B )=1,a+c=2,求b 的取值范围.
20.已知函数f (x )=2x ﹣,且f (2)=. (1)求实数a 的值; (2)判断该函数的奇偶性;
(3)判断函数f (x )在(1,+∞)上的单调性,并证明.
21.已知圆的极坐标方程为ρ2﹣4ρcos(θ﹣)+6=0.
(1)将极坐标方程化为普通方程;
(2)若点P在该圆上,求线段OP的最大值和最小值.
22.已知圆C经过点A(﹣2,0),B(0,2),且圆心在直线y=x上,且,又直线l:y=kx+1与圆C相交于P、Q两点.
(Ⅰ)求圆C的方程;
(Ⅱ)若,求实数k的值;
(Ⅲ)过点(0,1)作直线l1与l垂直,且直线l1与圆C交于M、N两点,求四边形PMQN面积的最大值.23.已知数列{a n}的前n项和为S n,首项为b,若存在非零常数a,使得(1﹣a)S n=b﹣a n+1对一切n∈N*都成
立.
(Ⅰ)求数列{a n}的通项公式;
(Ⅱ)问是否存在一组非零常数a,b,使得{S n}成等比数列?若存在,求出常数a,b的值,若不存在,请说明理由.
24.已知函数f(x)=ax3+2x﹣a,
(Ⅰ)求函数f(x)的单调递增区间;
(Ⅱ)若a=n且n∈N*,设x n是函数f n(x)=nx3+2x﹣n的零点.
(i)证明:n≥2时存在唯一x n且;
(i i)若b n=(1﹣x n)(1﹣x n+1),记S n=b1+b2+…+b n,证明:S n<1.
额尔古纳市四中2018-2019学年高二上学期第二次月考试卷数学(参考答案)
一、选择题
1. 【答案】B
【解析】解:∵函数y=f (x )在[1,3]上单调递减,且函数f (x+3)是偶函数, ∴f (π)=f (6﹣π),f (5)=f (1), ∵f (6﹣π)<f (2)<f (1), ∴f (π)<f (2)<f (5) 故选:B
【点评】本题考查的知识点是抽象函数的应用,函数的单调性和函数的奇偶性,是函数图象和性质的综合应用,难度中档.
2. 【答案】D 【解析】
试题分析:因为根据几何体的三视图可得,几何体为下图,,AD AB AG 相互垂直,面AEFG ⊥面
,//,3,1ABCDE BC AE AB AD AG DE ====,根据几何体的性质得:2232,3(32)AC GC ==+
222733,345GE ===+=,32,4,10,10BG AD EF CE ====,所以最长为33GC =.
考点:几何体的三视图及几何体的结构特征. 3. 【答案】C
【解析】解:∵,
∴3x+2=0,
解得x=﹣. 故选:C .
【点评】本题考查了向量共线定理、方程的解法,考查了推理能力与计算能力,属于中档题.
4. 【答案】A 【解析】
试题分析:()()()()((1))14,((2))14,((3))32,((4))34,f g f f g f f g f f g f ========故值域为
{}4,2.
考点:复合函数求值.
5.【答案】D
【解析】解:y=tan(ωx+),向右平移个单位可得:y=tan[ω(x﹣)+]=tan(ωx+)
∴﹣ω+kπ=
∴ω=k+(k∈Z),
又∵ω>0
∴ωmin=.
故选D.
6.【答案】D
【解析】解:作出不等式组对应的平面区域如图:(阴影部分).
由z=ax+y,得y=﹣ax+z,
若a=0,此时y=z,此时函数y=z只在B处取得最小值,不满足条件.
若a>0,则目标函数的斜率k=﹣a<0.
平移直线y=﹣ax+z,
由图象可知当直线y=﹣ax+z和直线x+y=1平行时,此时目标函数取得最小值时最优解有无数多个,此时﹣a=﹣1,即a=1.
若a<0,则目标函数的斜率k=﹣a>0.
平移直线y=﹣ax+z,
由图象可知当直线y=﹣ax+z,此时目标函数只在C处取得最小值,不满足条件.
综上a=1.
故选:D.
【点评】本题主要考查线性规划的应用,利用数形结合是解决此类问题的基本方法,利用z的几何意义是解决本题的关键.注意要对a进行分类讨论.
7.【答案】B
【解析】解:∵直线l⊥平面α,α∥β,∴l⊥平面β,又∵直线m⊂平面β,∴l⊥m,故(1)正确;
∵直线l⊥平面α,α⊥β,∴l∥平面β,或l⊂平面β,又∵直线m⊂平面β,∴l与m可能平行也可能相交,还可以异面,故(2)错误;
∵直线l⊥平面α,l∥m,∴m⊥α,∵直线m⊂平面β,∴α⊥β,故(3)正确;
∵直线l⊥平面α,l⊥m,∴m∥α或m⊂α,又∵直线m⊂平面β,则α与β可能平行也可能相交,故(4)错误;
故选B.
【点评】本题考查的知识点是空间中直线与平面之间的位置关系,其中熟练掌握空间中直线与平面位置关系的判定及性质定理,建立良好的空间想像能力是解答本题的关键.
8.【答案】A
【解析】解:由题意可设所求的直线方程为x﹣2y+c=0
∵过点(﹣1,3)
代入可得﹣1﹣6+c=0 则c=7
∴x﹣2y+7=0
故选A.
【点评】本题主要考查了直线方程的求解,解决本题的关键根据直线平行的条件设出所求的直线方程x﹣
2y+c=0.
9.【答案】C
【解析】解:作出不等式组对应的平面区域如图:(阴影部分).
由(t+1)x+(t+2)y+t=0得t(x+y+1)+x+2y=0,
由,得,即(t+1)x+(t+2)y+t=0过定点M(﹣2,1),
则由图象知A,B两点在直线两侧和在直线上即可,
即[2(t+2)+t][﹣2(t+1)+3(t+2)+t]≤0,
即(3t+4)(2t+4)≤0,
解得﹣2≤t≤﹣,
即实数t的取值范围为是[﹣2,﹣],
故选:C.
【点评】本题主要考查线性规划的应用,利用数形结合是解决本题的关键.综合性较强,属于中档题.10.【答案】A
【解析】解:由图象可知,
若f(g(x))=0,
则g(x)=﹣1或g(x)=0或g(x)=1;
由图2知,g(x)=﹣1时,x=﹣1或x=1;
g(x)=0时,x的值有3个;
g(x)=1时,x=2或x=﹣2;
故m=7;
若g(f(x))=0,
则f(x)=﹣1.5或f(x)=1.5或f(x)=0;
由图1知,
f(x)=1.5与f(x)=﹣1.5各有2个;
f(x)=0时,x=﹣1,x=1或x=0;
故n=7;
故m+n=14;
故选:A.
11.【答案】D
【解析】解:三所学校依次选医生、护士,不同的分配方法共有:C31C62C21C42=540种.
故选D.
12.【答案】A
【解析】解:∵z (1+i )=2,∴z==
=1﹣i .
故选:A .
【点评】本题考查了复数的运算法则、共轭复数的定义,属于基础题.
二、填空题
13.【答案】31λ-<<
【解析】由221111
1123(1)22
22n n n S n n
--=+⨯
+⨯++-⋅
+,2
111
12222n
S =⨯+⨯+…111(1)22n n n n -+-⋅+⋅,两式相减,得2111111212222222n n n n n S n -+=++++-⋅=-,所以12
42
n n n S -+=-,
于是由不等式12
|1
42
n λ-+<-|对一切N n *∈恒成立,得|12λ+<|,解得31λ-<<.
14.【答案】 .
【解析】解:∵f (x )=cos 2x+sinx=1﹣sin 2
x+sinx=﹣
+,
故当sinx=时,函数f (x )取得最大值为,
故答案为:.
【点评】本题主要考查三角函数的最值,二次函数的性质,属于基础题.
15.【答案】 4+ .
【解析】解:作出正四棱柱的对角面如图,
∵底面边长为6,∴BC=,
球O 的半径为3,球O 1 的半径为1,
则,
在Rt △OMO 1中,OO 1=4,
,
∴
=
,
∴正四棱柱容器的高的最小值为4+.
故答案为:4+
.
【点评】本题考查球的体积和表面积,考查空间想象能力和思维能力,是中档题.
16.【答案】120 【解析】
考
点:解三角形.
【方法点晴】本题主要考查了解三角形问题,其中解答中涉及到三角形的正弦定理、余弦定理的综合应用,着重考查了学生分析问题和解答问题的能力,以及推理与运算能力,属于基础题,本题的解答中根据
sin :sin :sin 3:5:7A B C =,根据正弦定理,可设3,5,7a b ===,即可利用余弦定理求解最大角的余弦,
熟记正弦、余弦定理的公式是解答的关键. 17.【答案】2-
【解析】结合函数的解析式可得:()3
11211f =-⨯=-,
对函数求导可得:()2
'32f x x =-,故切线的斜率为()2
'13121k f ==⨯-=,
则切线方程为:()111y x +=⨯-,即2y x =-,
圆C :()2
2
2x y a +-=的圆心为()0,a ,则:022a =-=-.
18.【答案】 60° .
【解析】解:∵|﹣|=,
∴
∴
=3,
∴cos <>=
=
∵
∴与的夹角为60°. 故答案为:60°
【点评】本题考查平面向量数量积表示夹角和模长,本题解题的关键是整理出两个向量的数量积,再用夹角的表示式.
三、解答题
19.【答案】
【解析】(本题满分为12分)
解:(Ⅰ)f(x)=2cosx(sinx+cosx)﹣1=2sinxcosx+2cos2x﹣1
=sin2x+2×﹣1
=sin2x+cos2x
=sin(2x+),
∵x∈[0,],
∴2x+∈[,],
∴当2x+=,即x=时,f(x)min=…6分
(Ⅱ)由(Ⅰ)可知f(B)=sin(+)=1,
∴sin(+)=,
∴+=,
∴B=,
由正弦定理可得:b==∈[1,2)…12分
【点评】本题主要考查了三角函数恒等变换的应用,正弦函数的图象和性质,正弦定理在解三角形中的综合应用,考查了计算能力和转化思想,属于中档题.
20.【答案】
【解析】解:(1)∵f(x)=2x﹣,且f(2)=,
∴4﹣=,
∴a=﹣1;(2分)
(2)由(1)得函数,定义域为{x|x≠0}关于原点对称…(3分)
∵=,
∴函数为奇函数.…(6分)
(3)函数f(x)在(1,+∞)上是增函数,…(7分)
任取x1,x2∈(1,+∞),不妨设x1<x2,则
=
…(10分)
∵x1,x2∈(1,+∞)且x1<x2∴x2﹣x1>0,2x1x2﹣1>0,x1x2>0
∴f(x2)﹣f(x1)>0,即f(x2)>f(x1),
∴f(x)在(1,+∞)上是增函数…(12分)
【点评】本题考查函数的单调性与奇偶性,考查学生分析解决问题的能力,属于中档题.
21.【答案】
【解析】解:(1)ρ2﹣4ρcos(θ﹣)+6=0,展开为:ρ2﹣4×ρ(cosθ+sinθ)+6=0.
化为:x2+y2﹣4x﹣4y+6=0.
(2)由x2+y2﹣4x﹣4y+6=0可得:(x﹣2)2+(y﹣2)2=2.
圆心C(2,2),半径r=.
|OP|==2.
∴线段OP的最大值为2+=3.
最小值为2﹣=.
22.【答案】
【解析】
【分析】(I)设圆心C(a,a),半径为r,利用|AC|=|BC|=r,建立方程,从而可求圆C的方程;
(II)方法一:利用向量的数量积公式,求得∠POQ=120°,计算圆心到直线l:kx﹣y+1=0的距离,即可求得实数k的值;
方法二:设P(x1,y1),Q(x2,y2),直线方程代入圆的方程,利用韦达定理及=x1•x2+y1•y2=,即可求得k的值;
(III)方法一:设圆心O到直线l,l1的距离分别为d,d1,求得,根据垂径定理和勾股定理得到,
,再利用基本不等式,可求四边形PMQN面积的最大值;
方法二:当直线l的斜率k=0时,则l1的斜率不存在,可求面积S;当直线l的斜率k≠0时,设,
则,代入消元得(1+k2)x2+2kx﹣3=0,求得|PQ|,|MN|,再利用基本不等式,可求四边形PMQN
面积的最大值.
【解答】解:(I)设圆心C(a,a),半径为r.
因为圆经过点A(﹣2,0),B(0,2),所以|AC|=|BC|=r,
所以
解得a=0,r=2,…(2分)
所以圆C的方程是x2+y2=4.…(4分)
(II)方法一:因为,…(6分)
所以,∠POQ=120°,…(7分)
所以圆心到直线l:kx﹣y+1=0的距离d=1,…(8分)
又,所以k=0.…(9分)
方法二:设P(x1,y1),Q(x2,y2),
因为,代入消元得(1+k2)x2+2kx﹣3=0.…(6分)
由题意得:…(7分)
因为=x1•x2+y1•y2=﹣2,
又,
所以x1•x2+y1•y2=,…(8分)
化简得:﹣5k2﹣3+3(k2+1)=0,
所以k2=0,即k=0.…(9分)
(III)方法一:设圆心O到直线l,l1的距离分别为d,d1,四边形PMQN的面积为S.
因为直线l,l1都经过点(0,1),且l⊥l1,根据勾股定理,有,…(10分)
又根据垂径定理和勾股定理得到,,…(11分)
而,即
…(13分)当且仅当d1=d时,等号成立,所以S的最大值为7.…(14分)
方法二:设四边形PMQN的面积为S.
当直线l的斜率k=0时,则l1的斜率不存在,此时.…(10分)当直线l的斜率k≠0时,设
则,代入消元得(1+k2)x2+2kx﹣3=0
所以
同理得到.…(11分)
=…(12分)
因为,
所以,…(13分)
当且仅当k=±1时,等号成立,所以S的最大值为7.…(14分)
23.【答案】
【解析】解:(Ⅰ)∵数列{a n}的前n项和为S n,首项为b,
存在非零常数a,使得(1﹣a)S n=b﹣a n+1对一切n∈N*都成立,
由题意得当n=1时,(1﹣a)b=b﹣a2,∴a2=ab=aa1,
当n≥2时,(1﹣a)S n=b﹣a n+1,(1﹣a)S n+1=b﹣a n+1,
两式作差,得:a n+2=a•a n+1,n≥2,
∴{a n}是首项为b,公比为a的等比数列,
∴.
(Ⅱ)当a=1时,S n=na1=nb,不合题意,
当a≠1时,,
若,即,
化简,得a=0,与题设矛盾,
故不存在非零常数a,b,使得{S n}成等比数列.
【点评】本题考查数列的通项公式的求法,考查使得数列成等比数列的非零常数是否存在的判断与求法,是中档题,解题时要认真审题,注意等比数列的性质的合理运用.
24.【答案】
【解析】解:(Ⅰ)f'(x)=3ax2+2,
若a≥0,则f'(x)>0,函数f(x)在R上单调递增;
若a<0,令f'(x)>0,∴或,
函数f(x)的单调递增区间为和;
(Ⅱ)(i)由(Ⅰ)得,f n(x)=nx3+2x﹣n在R上单调递增,
又f n(1)=n+2﹣n=2>0,
f n()==
==﹣
当n≥2时,g(n)=n2﹣n﹣1>0,,
n≥2时存在唯一x n且
(i i)当n≥2时,,∴(零点的区间判定)
∴,(数列裂项求和)
∴,
又f1(x)=x3+2x﹣1,,(函数法定界)
,又,
∴,
∴,(不等式放缩技巧)
命题得证.
【点评】本题主要考查了导数的求单调区间的方法和利用数列的裂项求和和不等式的放缩求和技巧解题,属于难题.。