魏县第一高级中学2018-2019学年高二上学期数学期末模拟试卷含解析

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

魏县第一高级中学2018-2019学年高二上学期数学期末模拟试卷含解析
班级__________ 座号_____ 姓名__________ 分数__________
一、选择题
1.如图,程序框图的运算结果为()
A.6 B.24 C.20 D.120
2.双曲线的渐近线方程是()
A.B.C.D.
3.直线2x+y+7=0的倾斜角为()
A.锐角 B.直角 C.钝角 D.不存在
4.随机变量x1~N(2,1),x2~N(4,1),若P(x1<3)=P(x2≥a),则a=()
A.1 B.2 C.3 D.4
5.下面茎叶图表示的是甲、乙两个篮球队在3次不同比赛中的得分情况,其中有一个数字模糊不清,在图中以m表示.若甲队的平均得分不低于乙队的平均得分,那么m的可能取值集合为()
A. B. C. D.
6.抛物线x=﹣4y2的准线方程为()
A.y=1 B.y=C.x=1 D.x=
7.设命题p:,则p为()
A .
B .
C .
D .
8. 设函数f (x )=
则不等式f (x )>f (1)的解集是( )
A .(﹣3,1)∪(3,+∞)
B .(﹣3,1)∪(2,+∞)
C .(﹣1,1)∪(3,+∞)
D .(﹣∞,
﹣3)∪(1,3)
9. 若命题“p ∧q ”为假,且“¬q ”为假,则( ) A .“p ∨q ”为假
B .p 假
C .p 真
D .不能判断q 的真假
10.函数f (x )=3x +x ﹣3的零点所在的区间是( ) A .(0,1) B .(1,2) C .(2.3) D .(3,4) 11.圆锥的高扩大到原来的 倍,底面半径缩短到原来的
1
2
,则圆锥的体积( ) A.缩小到原来的一半 B.扩大到原来的倍 C.不变 D.缩小到原来的16
12.△ABC 中,A (﹣5,0),B (5,0),点C 在双曲线上,则
=( )
A .
B .
C .
D .±
二、填空题
13.如图所示2×2方格,在每一个方格中填入一个数字,数字可以是1、2、3中的任何一个,允许重复.若填B 方格的数字,则不同的填法共有 种(用数字作答).
14.【2017-2018第一学期东台安丰中学高三第一次月考】在平面直角坐标系xOy 中,直线l 与函数
()()2220f x x a x =+>和()()3220g x x a x =+>均相切(其中a 为常数),切点分别为()11,A x y 和()22,B x y ,则12x x +的值为__________.
15.二面角α﹣l ﹣β内一点P 到平面α,β和棱l 的距离之比为1::2,则这个二面角的平面角是
度.
16.已知向量(1,),(1,1),a x b x ==-若(2)a b a -⊥,则|2|a b -=( )
A .2
B .3
C .2
D 【命题意图】本题考查平面向量的坐标运算、数量积与模等基础知识,意在考查转化思想、方程思想、逻辑思
维能力与计算能力.
17.若x ,y 满足约束条件⎩⎪⎨⎪
⎧x +y -5≤02x -y -1≥0x -2y +1≤0,若z =2x +by (b >0)的最小值为3,则b =________.
18.不等式
的解集为 .
三、解答题
19.请你设计一个包装盒,如图所示,ABCD 是边长为60cm 的正方形硬纸片,切去阴影部分所示的四个全等的等腰直角三角形,再沿虚线折起,使得A ,B ,C ,D 四个点重合于图中的点P ,正好形成一个正四棱柱形状的包装盒,E 、F 在AB 上,是被切去的等腰直角三角形斜边的两个端点,设AE=FB=x (cm ).
(1)若广告商要求包装盒侧面积S (cm 2
)最大,试问x 应取何值?
(2)若广告商要求包装盒容积V (cm 3
)最大,试问x 应取何值?并求出此时包装盒的高与底面边长的比值.
20.在△ABC 中,内角A ,B ,C 所对的边分别是a ,b ,c ,已知
tanA=,
c=

(Ⅰ
)求;
(Ⅱ)若三角形△ABC
的面积为,求角C .
21.【南师附中2017届高三模拟二】如下图扇形AOB 是一个观光区的平面示意图,其中AOB ∠为
23
π
,半径OA 为1km ,为了便于游客观光休闲,拟在观光区内铺设一条从入口A 到出口B 的观光道路,道路由圆弧
AC 、线段CD 及线段BD 组成.其中D 在线段OB 上,且//CD AO ,设AOC θ∠=.
(1)用θ表示CD 的长度,并写出θ的取值范围; (2)当θ为何值时,观光道路最长?
22.等差数列{a n }的前n 项和为S n .a 3=2,S 8=22. (1)求{a n }的通项公式;
(2)设b n =,求数列{b n }的前n 项和T n .
23.如图的三个图中,上面的是一个长方体截去一个角所得多面体的直观图,它的正视图和侧视图在下面画出(单位:cm ).
(1)在正视图下面,按照画三视图的要求画出该多面体的俯视图;(2)按照给出的尺寸,求该多面体的体积;
(3)在所给直观图中连结BC′,证明:BC′∥面EFG.
24.已知集合A={x|x2+2x<0},B={x|y=}
(1)求(∁R A)∩B;
(2)若集合C={x|a<x<2a+1}且C⊆A,求a的取值范围.
魏县第一高级中学2018-2019学年高二上学期数学期末模拟试卷含解析(参考答案)一、选择题
1.【答案】B
【解析】解:∵循环体中S=S×n可知程序的功能是:
计算并输出循环变量n的累乘值,
∵循环变量n的初值为1,终值为4,累乘器S的初值为1,
故输出S=1×2×3×4=24,
故选:B.
【点评】本题考查的知识点是程序框图,其中根据已知分析出程序的功能是解答的关键.
2.【答案】B
【解析】解:∵双曲线标准方程为,
其渐近线方程是=0,
整理得y=±x.
故选:B.
【点评】本题考查双曲线的简单性质的应用,令标准方程中的“1”为“0”即可求出渐近线方程.属于基础题.
3.【答案】C
【解析】【分析】设直线2x+y+7=0的倾斜角为θ,则tanθ=﹣2,即可判断出结论.
【解答】解:设直线2x+y+7=0的倾斜角为θ,
则tanθ=﹣2,
则θ为钝角.
故选:C.
4.【答案】C
【解析】解:随机变量x1~N(2,1),图象关于x=2对称,x2~N(4,1),图象关于x=4对称,
因为P(x1<3)=P(x2≥a),
所以3﹣2=4﹣a,
所以a=3,
故选:C.
【点评】本题主要考查正态分布的图象,结合正态曲线,加深对正态密度函数的理解.
5.【答案】C
【解析】【知识点】样本的数据特征茎叶图
【试题解析】由题知:
所以m可以取:0,1,2.
故答案为:C
6.【答案】D
【解析】解:抛物线x=﹣4y2即为
y2=﹣x,
可得准线方程为x=.
故选:D.
7.【答案】A
【解析】【知识点】全称量词与存在性量词
【试题解析】因为特称命题的否定是全称命题,p为:。

故答案为:A
8.【答案】A
【解析】解:f(1)=3,当不等式f(x)>f(1)即:f(x)>3
如果x<0 则x+6>3可得x>﹣3,可得﹣3<x<0.
如果x≥0 有x2﹣4x+6>3可得x>3或0≤x<1
综上不等式的解集:(﹣3,1)∪(3,+∞)
故选A.
9.【答案】B
【解析】解:∵命题“p∧q”为假,且“¬q”为假,
∴q为真,p为假;
则p∨q为真,
故选B.
【点评】本题考查了复合命题的真假性的判断,属于基础题.
10.【答案】A
【解析】解:∵f(0)=﹣2<0,f(1)=1>0,
∴由零点存在性定理可知函数f(x)=3x+x﹣3的零点所在的区间是(0,1).故选A
【点评】本题主要考查了函数的零点的判定定理,这种问题只要代入所给的区间的端点的值进行检验即可,属于基础题.
11.【答案】A 【解析】
试题分析:由题意得,设原圆锥的高为,底面半径为,则圆锥的体积为2
113
V r h π=,将圆锥的高扩大到原来的倍,底面半径缩短到原来的12,则体积为2
22111(2)326V r h r h ππ=⨯=,所以12
2V V =,故选A.
考点:圆锥的体积公式.1 12.【答案】D
【解析】解:△ABC 中,A (﹣5,0),B (5,0),点C 在双曲线上,
∴A 与B 为双曲线的两焦点,
根据双曲线的定义得:|AC ﹣BC|=2a=8,|AB|=2c=10,
则=

=±.
故选:D .
【点评】本题考查了正弦定理的应用问题,也考查了双曲线的定义与简单性质的应用问题,是基础题目.
二、填空题
13.【答案】 27
【解析】解:若A 方格填3,则排法有2×32
=18种,
若A 方格填2,则排法有1×32
=9种,
根据分类计数原理,所以不同的填法有18+9=27种. 故答案为:27.
【点评】本题考查了分类计数原理,如何分类是关键,属于基础题.
14.【答案】
5627
【解析】
15.【答案】75度.
【解析】解:点P可能在二面角α﹣l﹣β内部,也可能在外部,应区别处理.当点P在二面角α﹣l﹣β的内部
时,如图,A、C、B、P四点共面,∠ACB为二面角的平面角,
由题设条件,点P到α,β和棱l的距离之比为1::2可求∠ACP=30°,∠BCP=45°,∴∠ACB=75°.
故答案为:75.
【点评】本题考查与二面角有关的立体几何综合题,考查分类讨论的数学思想,正确找出二面角的平面角是关键.
16.【答案】A
【解析】
17.【答案】
【解析】
约束条件表示的区域如图,
当直线l:z=2x+by(b>0)经过直线2x-y-1=0与x-2y+1=0的交点A(1,1)时,z min=2+b,∴2+b =3,∴b=1.
答案:1
18.【答案】(0,1].
【解析】解:不等式,即,求得0<x≤1,
故答案为:(0,1].
【点评】本题主要考查分式不等式、一元二次不等式的解法,属于基础题.
三、解答题
19.【答案】
【解析】解:设包装盒的高为h(cm),底面边长为a(cm),则a=x,h=(30﹣x),0<x<30.
(1)S=4ah=8x(30﹣x)=﹣8(x﹣15)2+1800,
∴当x=15时,S取最大值.
(2)V=a2
h=2(﹣x3+30x2),V′=6x(20﹣x),
由V′=0得x=20,
当x∈(0,20)时,V′>0;当x∈(20,30)时,V′<0;
∴当x=20时,包装盒容积V(cm3)最大,
此时,.
即此时包装盒的高与底面边长的比值是.
20.【答案】
【解析】解:(Ⅰ)由题意知,tanA=,

=
,即有sinA ﹣sinAcosC=cosAsinC ,
所以sinA=sinAcosC+cosAsinC=sin (A+C )=sinB ,
由正弦定理,a=b ,则=1;…
(Ⅱ)因为三角形△ABC 的面积为
,a=b 、c=,
所以S=absinC=a 2
sinC=
,则
,①
由余弦定理得, =
,②
由①②得,cosC+sinC=1,则2sin (C+)=1,sin (C+)=,
又0<C <π,则C+

,即C+
=

解得C= ….
【点评】本题考查正弦定理,三角形的面积公式,以及商的关系、两角和的正弦公式等,注意内角的范围,属
于中档题.
21.【答案】(1)cos ,0,3CD πθθθ⎛⎫
=+∈ ⎪⎝⎭
;(2)设∴当6πθ=时,()L θ取得最大值,即当6πθ=
时,观光道路最长.
【解析】试题分析:(1)在OCD ∆中,由正弦定理得:sin sin sin CD OD CO COD DCO CDO
==∠∠∠
2cos 3CD πθθθ⎛⎫
∴=-= ⎪⎝⎭
,OD θ=
1sin 03OD OB π
θθθ<<∴<<<
cos ,0,3CD πθθθ⎛⎫
∴=∈ ⎪⎝⎭
(2)设观光道路长度为()L θ, 则()L BD CD AC θ=++弧的长
= 1cos θθθθ+++
= cos 1θθθ++,0,3πθ⎛⎫
∈ ⎪⎝⎭
∴(
)sin 13
L θθθ=--
+' 由()0L θ'=
得:sin 62πθ⎛⎫
+= ⎪⎝
⎭,又0,3πθ⎛⎫∈ ⎪⎝⎭
6πθ∴=
∴当6
π
θ=
时,()L θ取得最大值,即当6
π
θ=
时,观光道路最长.
考点:本题考查了三角函数的实际运用
点评:对三角函数的考试问题通常有:其一是考查三角函数的性质及图象变换,尤其是三角函数的最大值与最小值、周期。

多数题型为选择题或填空题;其次是三角函数式的恒等变形。

如运用三角公式进行化简、求值解决简单的综合题等。

除在填空题和选择题出现外,解答题的中档题也经常出现这方面内容。

另外,还要注意利用三角函数解决一些应用问题 22.【答案】
【解析】解:(1)设等差数列{a n }的公差为d ,∵a 3=2,S 8=22. ∴

解得,
∴{a n }的通项公式为a n =1+(n ﹣1)=.
(2)∵b n ==
=﹣,
∴T n =2
+…+
=2
=.
23.【答案】
【解析】解:(1)如图
(2)它可以看成一个长方体截去一个小三棱锥,
设长方体体积为V1,小三棱锥的体积为V2,则根据图中所给条件得:V1=6×4×4=96cm3,
V2=••2•2•2=cm3,
∴V=v1﹣v2=cm3
(3)证明:如图,
在长方体ABCD﹣A′B′C′D′中,连接AD′,则AD′∥BC′
因为E,G分别为AA′,A′D′中点,所以AD′∥EG,从而EG∥BC′,
又EG⊂平面EFG,所以BC′∥平面EFG;
2016年4月26日
24.【答案】
【解析】解:(1)A={x|x2+2x<0}={x|﹣2<x<0},
B={x|y=}={x|x+1≥0}={x|x≥﹣1},
∴∁R A={x|x≤﹣2或x≥0},
∴(∁R A)∩B={x|x≥0};…
(2)当a≥2a+1时,C=∅,此时a≤﹣1满足题意;当a<2a+1时,C≠∅,
应满足,
解得﹣1<a≤﹣;
综上,a的取值范围是.…。

相关文档
最新文档