七年级上册江西师范大学附属中学数学期末试卷(基础篇)(Word版 含解析)

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

七年级上册江西师范大学附属中学数学期末试卷(基础篇)(Word
版含解析)
一、初一数学上学期期末试卷解答题压轴题精选(难)
1.如图AB∥CD,点H在CD上,点E、F在AB上,点G在AB、CD之间,连接FG、GH、HE,HG⊥HE,垂足为H,FG⊥HG,垂足为G.
(1)求证:∠EHC+∠GFE=180°.
(2)如图2,HM平分∠CHG,交AB于点M,GK平分∠FGH,交HM于点K,求证:∠GHD=2∠EHM.
(3)如图3,EP平分∠FEH,交HM于点N,交GK于点P,若∠BFG=50°,求∠NPK的度数. 【答案】(1)解:∵HG⊥HE,FG⊥HG
∴FG∥EH,
∴∠GFE+∠HEF=180°,
∵AB∥CD
∴∠BEH=∠CHE
∴∠EHC+∠GFE=180°
(2)解:设∠EHM=x,
∵HG⊥HE,
∴∠GHK=90°-x,
∵MH平分∠CHG,
∴∠EHC=90°-2x,
∵AB∥CD
∴∠HMB=90°-x,
∴∠HMB=∠MHG=90°-x,
∵AB∥CD,
∴∠BMH+∠DHM=180°,即∠BMH+∠GHM+∠GHD =180°,
∴90°-x+90°-x+∠GHD =180°,解得,∠GHD =2x,
∴∠GHD=2∠EHM;
(3)解:延长FG,GK,交CD于R,交HE于S,如图,
∵AB∥CD,∠BFG=50°
∴∠HRG=50°
∵FG⊥HG,
∴∠GHR=40°,
∵HG⊥HE,
∴∠EHG=90°,
∴∠CHE=180°-90°-40°=50°,
∵AB∥CD,
∴∠FEH=∠CHE=50°,
∵EP是∠HEF的平分线,
∴∠SEP= ∠FEH=25°,
∵GH平分∠HGF,
∴∠HGS= ∠HGF=45°,
∴∠HSG=45°,
∵∠SEP+∠SPE=∠HSP=45°,
∴∠EPS=20°,即∠NPK=20°.
【解析】【分析】(1)根据HG⊥HE,FG⊥HG可证明FG∥EH,从而得∠GFE+∠HEF=180°,再根据AB∥CD可得∠BEH=∠CHE,进而可得结论;(2)设∠EHM=x,根据MH是∠CHG的平分线可得∠MHG=90°-x,∠EHC=90°-2x,根据平行线的性质得∠HMB=90°-x,从而得∠HMB=∠MHG,再由平行线的性质得∠BMH+∠DHM=180°,从而可得结论;(3)分别延长FG,GK,交CD于R,交HE于S,由AB∥CD得∠HRG=50°,由FG⊥HG得∠GHR=40°,由MH平分∠CHG得∠CHE=50°,由AB∥CD得∠MEH=∠CHE=50°,可得∠SEP=25°,最后由三角形的外角可得结论.
2.如图
(1)如图1,找到长方形纸片的宽DC的中点E,将∠C过E点折起一个角,折痕为EF,再将∠D过点E折起,折痕为GE,且C、D均落在GF上的一点C′(D′),请说明∠CEF与∠DEG的关系,并说明理由;
(2)将(1)中的纸片沿GF剪下,得梯形纸片ABFG,再将GF沿GM折叠,F落在F′处,GF′与BF交于H,且ABHG为长方形(如图2);再将纸片展开,将AG沿GN折叠,使A 点落于GF上一点A,(如图3).在两次折叠的过程中,求两条折痕GM、GN所成角的度数?
【答案】(1)解:∵∠C过E点折起一个角,折痕为EF,再将∠D过点E折起,折痕为GE,且C、D均落在GF上的一点C′(D′)
∴GE平分∠DED′,FE平分∠CED′,
∴∠DED′=2∠DEG,∠CED′=2∠CEF
∴∠DED′+∠CED′=180°即2∠CEF+2∠DEG=180°
∴∠CEF+∠DEG=90°
答:∠CEF与∠DEG的关系是互余.
(2)解:如图,
由题意得:GM平分∠FGF, GN平分∠AGF
设∠FGM=∠F'GM=x,∠FGN=∠AGN=y
∴2y-2x=90°,即y-x=45°,
∴∠MGN=∠FGN-∠FGM=45°
答:两条折痕GM、GN所成角的度数为45°.
【解析】【分析】(1)根据折叠的性质,可知GE平分∠DED′,FE平分∠CED′,再利用角平分线的性质,可证得∠DED′=2∠DEG,∠CED′=2∠CEF,然后根据平角的定义,可解答。

(2)根据折叠的性质,可证得GM平分∠FGF,GN平分∠AGF,因此∠FGM=∠F'GM=x,∠FGN=∠AGN=y,求出y-x的值,就可得出结论。

3.如图,已知直线AB与直线CD相交于点O,∠BOE=90°,FO平分∠BOD,∠BOC:∠AOC=1:3.
(1)求∠DOE、∠COF的度数.
(2)若射线OF、OE同时绕O点分别以2°/s、4°/s的速度,顺时针匀速旋转,当射线OE、OF的夹角为90°时,两射线同时停止旋转.设旋转时间为t,试求t值.
【答案】(1)解:∵∠BOC:∠AOC=1:3,
∴∠BOC=180°× =45°,
∴∠AOD=45°,
∵∠BOE=90°,
∴∠AOE=90°,
∴∠DOE=45°+90°=135°,
∠BOD=180°-45°=135°,
∵FO平分∠BOD,
∴∠DOF=∠BOF=67.5°,
∴∠COF=180°-67.5°=112.5°
(2)解:∠EOF=90°+67.5°=157.5°,
依题意有
4t-2t=157.5-90,
解得t=33.75.
故t值为33.75.
【解析】【分析】(1)根据∠BOC:∠AOC=1:3,∠BOC+∠AOC=180°,即可算出∠BOC 的度数,然后根据对顶角相等由∠AOD = ∠BOC得出∠AOD 的度数,根据平角的定义,由∠AOE=∠AOB-∠BOE算出∠AOE的度数,进而根据∠DOE=∠AOE+∠AOD算出∠DOE的度数,∠BOD=∠AOB-∠AOD算出∠BOD的度数,再根据角平分线的定义得出∠BO 的度数,最后根据∠COF=∠COB+∠BOF即可算出答案;
(2)根据角的和差,由∠EOF=∠EOB+∠BOF算出∠EOF的度数,根据题意OE转过的角度为4t°,OF转过的角度为2t°,根据题意列出方程 4t-2t=157.5-90,求解即可。

4.已知线段AB= ,点P从点A出发沿射线AB以每秒3个单位长度的速度运动,同时点Q 从点B出发沿射线AB以每秒2个单位长度的速度运动,M、N分别为AP、BQ的中点,运动的时间为
(1)若求的值,并写出此时P、Q之间的距离;
(2)点M、N能否重合为一点,若能,请直接写出此时线段PQ与线段AB之间的数量关系;若不能,说明理由。

【答案】(1)解:设A点表示的数为原点,则B点表示的数为12,P点表示的数为3t,则M点表示的数为 t,点Q表示的数为12+2t,点N表示的数为12+t,
M在N左侧,MN=12+t- t=12- t,
∵MN= =4,
∴12- t=4,解得t=16;此时PQ的距离为 =4
M在N右侧,MN= t-12-t-= t-12,
∵MN= =4,
∴ t-12=4,解得t=32;此时PQ的距离为 =20
(2)解:AB的距离为a,则B点表示的数为a,P点表示的数为3t,则M点表示的数为t,点Q表示的数为a+2t,点N表示的数为a+t,
∵M,N重合
∴ t=a+t,
得t=2a,
则P点表示的数为3t=6a, Q表示的数为a+2t=5a,
∴PQ的距离为a,
故PQ=AB
【解析】【分析】(1)设A点表示的数为原点,则B点表示的数为12,P点表示的数为3t,则M点表示的数为 t,点Q表示的数为12+2t,点N表示的数为12+t,再根据,分情况讨论即可.(2)AB的距离为a,则B点表示的数为a,P点表示的数为
3t,则M点表示的数为 t,点Q表示的数为a+2t,点N表示的数为a+t,根据MN重合可得出a,t之间的关系,即可解出PQ与AB之间的关系.
5.已知:平分,以为端点作射线,平分 .
(1)如图1,射线在内部,,求的度数.
(2)若射线绕点旋转,,(为大于的钝角),
,其他条件不变,在这个过程中,探究与之间的数量关系是否发生变
化,请补全图形并加以说明.
【答案】(1)解:∵射线平分、射线平分,
∴,,

=
=
=
= 82°
=41°
(2)解:与之间的数量关系发生变化,
如图,当在内部,
∵射线平分、射线平分,∴,

=
=
=
如图,当在外部,
∵射线平分、射线平分,∴,

=
=
=
=
=
∴与之间的数量关系发生变化.
【解析】【分析】(1)根据角平分线的定义可得,,进而可得∠COE= ,即可得答案;(2)分别讨论OA在∠BOD内部和外部的情况,根据求得结果进行判断即可.
6.如图,已知OE平分,OF平分
(1)若是直角,,求的度数.
(2)若,,,请用x 的代数式来表示直接写出结果就行 .
【答案】(1)解:∵∠AOB是直角,∠BOC=60°,
∴∠AOC=∠AOB+∠BOC=90°+60°=150°,
∵OE平分∠AOC,
∴∠EOC=∠AOC=75°,
∵OF平分∠BOC,
∴∠COF=∠BOC=30°,
∴∠EOF=∠EOC−∠COF=75°−30°=45°;
(2)解:∵∠AOC=x°,OE平分∠AOC,
∴∠EOC=∠AOC= x°,
∵OF平分∠BOC,∠BOC=60°,
∴∠COF=∠BOC=30°,
∴∠EOF=∠EOC−∠COF=x°−30°,即y=x−30.
【解析】【分析】(1)由∠AOB是直角、∠BOC=60°知∠AOC=∠AOB+∠BOC=150°,根据OE平分∠AOC、OF平分∠BOC求得∠EOC、∠COF度数,由∠EOF=∠EOC−∠COF可
得答案;(2)由∠AOC=x°,、OE平分∠AOC 知∠EOC=∠AOC= x°,由OF平分∠BOC、∠BOC=60°知∠COF=∠BOC=30°,根据∠EOF=∠EOC−∠COF可得答案.
7.如图1,射线OC在的内部,图中共有3个角:、和,若其中有一个角的度数是另一个角度数的两倍,则称射线OC是的“定分线”
(1)一个角的平分线________这个角的“定分线”;填“是”或“不是”
(2)如图2,若,且射线PQ是的“定分线”,则 ________ 用含a的代数式表示出所有可能的结果
(3)如图2,若,且射线PQ绕点P从PN位置开始,以每秒的速度逆时针旋转,当PQ与PN成时停止旋转,旋转的时间为t秒同时射线PM绕点P以每秒的速度逆时针旋转,并与PQ同时停止当PQ是的“定分线”时,求t的值. 【答案】(1)是
(2)或或
(3)解:依题意有三种情况:
①10t= (5t+45),
解得t=1.8(秒);
②10t= (5t+45),
解得t=3(秒);
③10t= (5t+45),
解得:t=4.5(秒),
故t为1.8秒或3秒或4.5秒时,PQ是∠MPN的“定分线”
【解析】【解答】解:(1)当OC是角∠AOB的平分线时,
∵∠AOB=2∠AOC,
∴一个角的平分线是这个角的“定分线”;
故答案为:是
( 2 )∵∠MPN=
∴∠MPQ= 或或;
故答案为:或或.
【分析】(1)根据新定义运算及角平分线的定义即可解决问题;
(2)根据新定义及三个角之间的两两的倍数关系即可解决问题;
(3)根据新定义及旋转中角的倍数关系,分三种情况分别列出方程,求解即可.
8.问题情境:如图1,AB∥CD,∠A=30°,∠C=40°,求∠AEC的度数.
小明的思路是:
(1)初步尝试:按小明的思路,求得∠AEC的度数;
(2)问题迁移:如图2,AB∥CD,点E、F为AB、CD内部两点,问∠A、∠E、∠F和∠D 之间有何数量关系?请说明理由;
(3)应用拓展:如图3,AB∥CD,点E、F为AB、CD内部两点,如果∠E+∠EFG=160°,请直接写出∠B与∠D之问的数量关系.
【答案】(1)解:如图,过E作EM∥AB,
∵AB∥CD,∴AB∥ME∥CD,
∴∠A =∠AEM,∠C=∠CEM,
∴∠AEC=∠A+∠C=70°;
(2)解:∠A+∠EFD =∠AEF+∠D
理由如下:过点E作EM∥AB, 过点F作FN∥AB
∵AB∥CD,∴AB∥ME∥FN∥CD,
∴∠A =∠AEM,∠MEF=∠EFN,∠D=∠DFN,
∴∠A+∠EFD =∠AEF+∠D;
(3)∠B+∠D=160°
【解析】【解答】解:(3)过点E作EH∥AB,过点F作FM∥AB ,
∵AB∥CD,
∴AB∥CD∥FM∥EH,
∴∠B=∠BEH,∠EFM=∠HEF,∠MFD+∠D=180°,
∴∠B+∠EFM+∠MFD+∠D=180°+∠BEH+∠HEF,
∴∠B+∠D+∠EFD=180°+∠BEF,
∴∠B+∠D=180°+∠BEF-∠EFD。

∵∠BEF+∠EFG=160°,
∴∠BEF+180°-∠EFD=160°,
∴∠BEF-∠EFD=-20°,
∴∠B+∠D=180°-20°=160°。

【分析】(1)添加辅助线,转化基本图形。

过E作EM∥AB,利用平行线的性质可证得∠A =∠AEM,∠C=∠CEM,再证明∠AEC=∠A+∠C,继而可解答问题。

(2)添加辅助线,转化两直线平行的基本图形。

过点E作EM∥AB, 过点F作FN∥AB ,利用平行线的性质可证AB∥ME∥FN∥CD,再根据两直线平行,内错角相等,可证得∠A =∠AEM,∠MEF=∠EFN,∠D=∠DFN,然后将三式相加,可证得结论。

(3)过点E作EH∥AB,过点F作FM∥AB ,结合已知可证得AB∥CD∥FM∥EH,利用两直线平行,同位角相等,同旁内角互补,可证∠B=∠BEH,∠EFM=∠HEF,∠MFD+∠D=180°,再将三个等式相加,整理可得到∠B+∠D=180°+∠BEF-∠EFD,然后由∠BEF+∠EFG=160°,可推出∠BEF-∠EFD=-20°,整体代入求出∠B+∠D的值。

9.如图为一台灯示意图,其中灯头连接杆DE始终和桌面FG平行,灯脚AB始终和桌面FG垂直,
(1)当∠EDC=∠DCB=120°时,求∠CBA;
(2)连杆BC、CD可以绕着B、C和D进行旋转,灯头E始终在D左侧,设∠EDC,∠DCB,∠CBA的度数分别为α,β,γ,请画出示意图,并直接写出示意图中α,β,γ之间的数量关系.
【答案】(1)解:如图,过C作CP∥DE,延长CB交FG于H,
∵DE∥FG,
∴PC∥FG,
∴∠PCD=180°﹣∠D=60°,∠PCH=120°﹣∠PCD=60°,
∴∠CHA=∠PCH=60°,
又∵∠CBA是△ABH的外角,AB⊥FG,
∴∠CBA=60°+90°=150°,
(2)解:如图,过C作CP∥DE,延长CB交FG于H,
∵DE∥FG,
∴PC∥FG,
∴∠D+∠PCD=180°,∠FHC+∠PCH=180°,
∴∠D+∠DCH+∠FHC=360°,
又∵∠CBA是△ABH的外角,AB⊥FG,
∴∠AHB=∠ABC﹣90°,
∴∠FHC=180°﹣(∠ABC﹣90°)=270°﹣∠ABC,
∴∠D+∠DCH+270°﹣∠ABC=360°,即∠D+∠DCB﹣∠ABC=90°.
即α+β﹣γ=90°.
【解析】【分析】(1)过C作CP∥DE,延长CB交FG于H,可证得ED∥PC∥FG,利用平行线的性质求出∠DCP,从而可求出∠PCH的度数;再利用两直线平行,内错角相等,可证得∠PCH=∠CHG,就可求出∠CHG的度数,然后利用垂直的定义及三角形的外角的性质,就可求出∠CBA的度数。

(2)过C作CP∥DE,延长CB交FG于H,可证得ED∥PC∥FG,利用平行线的性质可证
得∠D+∠DCH+∠FHC=360°,再利用垂直的定义及三角形三角形外角的性质,∠AHB=∠ABC﹣90°,即可推出∠FHC=270°﹣∠ABC,然后代入整理可得到α,β,γ之间的数量关系。

10.如图,数轴上线段AB=2(单位长度),CD=4(单位长度),点A在数轴上表示的数是﹣10,点C在数轴上表示的数是16.若线段AB以6个单位长度/秒的速度向右匀速运动,同时线段CD以2个单位长度/秒的速度向左匀速运动.
(1)问运动多少时BC=8(单位长度)?
(2)当运动到BC=8(单位长度)时,点B在数轴上表示的数是________;
(3)P是线段AB上一点,当B点运动到线段CD上时,是否存在关系式 =3,若存
在,求线段PD的长;若不存在,请说明理由.
【答案】(1)解:设运动t秒时,BC=8单位长度,
①当点B在点C的左边时,
由题意得:6t+8+2t=24
解得:t=2(秒);
②当点B在点C的右边时,
由题意得:6t﹣8+2t=24
解得:t=4(秒)
(2)解:4或16
(3)解:存在关系式 =3.
设运动时间为t秒,
1)当t=3时,点B和点C重合,点P在线段AB上,0<PC≤2,且BD=CD=4,AP+3PC=AB+2PC=2+2PC,
当PC=1时,BD=AP+3PC,即 =3;
2)当3<t<时,点C在点A和点B之间,0<PC<2,
①点P在线段AC上时,BD=CD﹣BC=4﹣BC,AP+3PC=AC+2PC=AB﹣BC+2PC=2﹣BC+2PC,当PC=1时,有BD=AP+3PC,即 =3;
点P在线段BC上时,BD=CD﹣BC=4﹣BC,AP+3PC=AC+4PC=AB﹣BC+4PC=2﹣BC+4PC,
当PC= 时,有BD=AP+3PC,即 =3;
3°当t= 时,点A与点C重合,0<PC≤2,BD=CD﹣AB=2,AP+3PC=4PC,
当PC= 时,有BD=AP+3PC,即 =3;
4°当<t 时,0<PC<4,BD=CD﹣BC=4﹣BC,AP+3PC=AB﹣BC+4PC=2﹣BC+4PC,PC= 时,有BD=AP+3PC,即 =3.
∵P在C点左侧或右侧,
∴PD的长有3种可能,即5或3.5
【解析】【解答】解:(2)当运动2秒时,点B在数轴上表示的数是4;当运动4秒时,点B在数轴上表示的数是16.
【分析】(1)设运动t秒时,BC=8(单位长度),然后分点B在点C的左边和右边两种情况,根据题意列出方程求解即可;(2)由(1)中求出的运动时间即可求出点B在数轴上表示的数;(3)随着点B的运动,分别讨论当点B和点C重合、点C在点A和B之间及点A与点C重合时的情况.
11.如图,已知AB∥CD,∠A=40°,点P是射线B上一动点(与点A不重合),CM,CN 分别平分∠ACP和∠PCD,分别交射线AB于点M,N.
(1)求∠MCN的度数.
(2)当点P运动到某处时,∠AMC=∠ACN,求此时∠ACM的度数.
(3)在点P运动的过程中,∠APC与∠ANC的比值是否随之变化?若不变,请求出这个比值:若变化,请找出变化规律.
【答案】(1)解:∵A B∥CD,
∴∠ACD=180°﹣∠A=140°,
又∵CM,CN分别平分∠ACP和∠PCD,
∴∠MCN=∠MCP+∠NCP= (∠ACP+∠PCD)= ∠ACD=70°,
故答案为:70°.
(2)解:∵AB∥CD,
∴∠AMC=∠MCD,
又∵∠AMC=∠ACN,
∴∠MCD=∠ACN,
∴∠ACM=∠ACN﹣∠MCN=∠MCD﹣∠MCN=∠NCD,
∴∠ACM=∠MCP=∠NCP=∠NCD,
∴∠ACM= ∠ACD=35°,
故答案为:35°.
(3)解:不变.理由如下:
∵AB∥CD,
∴∠APC=∠PCD,∠ANC=∠NCD,
又∵CN平分∠PCD,
∴∠ANC=∠NCD= ∠PCD= ∠APC,即∠APC:∠ANC=2:1.
【解析】【分析】(1)由AB∥CD可得∠ACD=180°-∠A,再由CM、CN均为角平分线可求解;(2)由AB∥CD可得∠AMC=∠MCD,再由∠AMC=∠ACN可得∠ACM =∠NCD(3)由AB∥CD可得∠APC=∠PCD,再由CN为角平分线即可解答.
12.
(1)思考探究:如图①,的内角的平分线与外角的平分线相交于点,请探究与的关系是________.
(2)类比探究:如图②,四边形中,设,,,四边形的内角与外角的平分线相交于点 .求的度数.(用,的代数式表示)
(3)拓展迁移:如图③,将(2)中改为,其它条件不变,请在图③中画出,并直接写出 ________.(用,的代数式表示)
【答案】(1)
(2)解:延长、,交于点 .

由(1)知:
∴ .
(3)
【解析】【解答】解:(1)
∵平分,平分,
∴,
∵是的外角

∵是的外角

( 3 )延长,交于点 . 作与外角的平分线相交于点 . 如图:

【分析】(1)利用角平分线求出∠PCD= ∠ACD,∠PBD= ∠ABC,再利用三角形的一个外角定理即可求出.(2)延长BA、CD交于点F,然后根据(1)的结题可得到∠P的表达式.(3)延长AB、DC交于F,然后根据(1)的结题可得到∠P的表达式.
13.如图,四边形ABCD的内角∠DCB与外角∠ABE的平分线相交于点F.
(1)若BF∥CD,∠ABC=80°,求∠DCB的度数;
(2)已知四边形ABCD中,∠A=105º,∠D=125º,求∠F的度数;
(3)猜想∠F、∠A、∠D之间的数量关系,并说明理由.
【答案】(1)解:∵∠ABC=80°,
∴∠ABE=180°-∠ABC=100°,
∵BF平分∠ABE,
∴∠EBF= ∠ABE=50°,
∵BF∥CD
∴∠BCD=∠EBF=50°
(2)解:∵∠FBE是△EBC的外角,
∴∠F=∠EBF-∠ECF
∵BF平分∠ABE、CF平分∠BCD,
∴∠EBF= ∠ABE=,∠ECF= ∠BCD,
∵∠ABE=180°-∠ABC,
∴∠F= (180°-∠ABC)- ∠BCD= [180°-(∠ABC+∠BCD)],
∵在四边形ABCD中,∠ABC+∠BCD=360°-∠A-∠D,
∴∠F= [180°-(360°-∠A-∠D)],
∴∠F= (∠A+∠D-180°),
∵∠A=105º,∠D=125º,
∴∠F= (105º +125º -180°)=25°
(3)解:结论:∠F= (∠A+∠D-180°)
理由如下:∵∠FBE是△EBC的外角,
∴∠F=∠EBF-∠ECF
∵BF平分∠ABE、CF平分∠BCD,
∴∠EBF= ∠ABE=,∠ECF= ∠BCD,
∵∠ABE=180°-∠ABC,
∴∠F= (180°-∠ABC)- ∠BCD= [180°-(∠ABC+∠BCD)],
∵在四边形ABCD中,∠ABC+∠BCD=360°-∠A-∠D,
∴∠F= [180°-(360°-∠A-∠D)],
∴∠F= (∠A+∠D-180°)
【解析】【分析】(1)由角平分线的性质和邻补角的定义可得:∠FBE=∠FBA= ∠ABE=(180°-∠ABC);由平行线的性质可得∠BCD=∠FBE可求解;
(2)由平行线的性质可得:∠ABC+∠A=180°;∠BCD+∠D=180°;由已知条件可得:∠ABC=180°-∠A;∠BCD=180°-∠D;由角平分线的性质和邻补角的定义可得:
∠FBE=∠FBA= ∠ABE=(180°-∠ABC);∠BCF=∠BCD,由三角形外角的性质可得∠FBE=∠F+∠BCF,于是∠F=∠FBE-∠BCF,把求得的∠FBE和∠BCF的度数代入计算即可求解;
(3)结合(1)和(2)的结论可求解:∠F=(∠A+∠D-180°)。

14.如图
(1)图中,∠ABC的两边和∠DEF的两边分别互相平行,既AB∥DE,BC∥EF,试说明∠ABC=∠DEF.
(2)一个角的两边分别平行于另一个角的两边,除了图1中相等情形外,是否存在其他不相等情形,探究此情形下两个角的关系(画出图形,写出结论并说明理由).
(3)如果一个角的两边分别垂直于另一个角的两边,则这两个角是什么关系?(画出图形,直接写出结论)
(4)如果一个角的两边和另一个角的两边,其中一边互相平行,另一边互相垂直,则这两个角是什么关系?(画出图形,直接写出结论)
【答案】(1)∵ AB∥DE,∴∠E=∠EOB,∵BC∥EF ,∴∠EOB=∠B,∴∠ABC=∠DEF;
(2)如图,
∵ AB∥DC,∴∠1=∠DMB,∵BE∥FD ,∴∠BMD+∠2=180°,∴∠2+∠1=180°;
(3)此题分两种情况,
如图①∵PE⊥OA,PF⊥OB,∴∠PEO=∠PFO=90°,∴∠P+∠O=360°-∠PEO-∠PFO=180°;
如图② ∵PE⊥OA,PF⊥OB,∴∠PEO=∠PFO=90°,∴∠P=∠O;综上所述:一个角的两边分别垂直于另一个角的两边,则这两个角相等或互补;
(4)如图所示,
①∵AB∥EH,∴∠ABC=∠BDE,∵BC⊥EG,∴∠CFE=90°,∴∠BDE+∠E=90°,∴∠E+∠ABC=90°;②∵BC⊥EG,∴∠CFE=90°,∵AB∥EH∴∠MBC=∠HDB,∵∠HDB=∠E+∠CFE=∠E +90°,∴∠MBC=∠E+90°,即∠MBC-∠E=90°,综上所述,如果一个角的两边和另一个角的两边,其中一边互相平行,另一边互相垂直,则这两个角是和为90°,或差为90°。

【解析】【分析】(1)根据二直线平行内错角相等得出∠E=∠EOB,∠EOB=∠B,故∠ABC=∠DEF;
(2)根据二直线平行内错角相等得出∠1=∠DMB,根据二直线平行,同旁内角互补得出∠BMD+∠2=180°,故∠2+∠1=180°;
(3)①根据垂直的定义得出∠PEO=∠PFO=90°,根据四边形的内角和得出∠P+∠O=360°-∠PEO-∠PFO=180°;②根据垂直的定义得出,∠PEO=∠PFO=90°,根据等角的余角相等得出∠P=∠O,综上所述:一个角的两边分别垂直于另一个角的两边,则这两个角相等或互补;
(4)①根据二直线平行,内错角相等得出∠ABC=∠BDE,根据垂直的定义得出∠CFE=90°,根据直角三角形的两锐角互余得出∠BDE+∠E=90°,故∠E+∠ABC=90°;②根据垂直的定义得出∠CFE=90°,根据二直线平行,内错角相等得出∠MBC=∠HDB,根据三角形外角定理得出∠HDB=∠E+∠CFE=∠E+90°,故∠MBC=∠E+90°,即∠MBC-∠E=90°,综上所述,如果一个角的两边和另一个角的两边,其中一边互相平行,另一边互相垂直,则这两个角是和为90°,或差为90°。

15.学习千万条,思考第一条。

请你用本学期所学知识探究以下问题:
(1)已知点为直线上一点,将直角三角板的直角顶点放在点处,并在
内部作射线.
①如图1,三角板的一边与射线重合,且,若以点为观察中心,射线表示正北方向,求射线表示的方向;
②如图2,将三角板放置到如图位置,使恰好平分,且
,求的度数.
(2)已知点不在同一条直线上,,平分,平分,用含的式子表示的大小.
【答案】(1)解:①∵∠MOC=∠AOC﹣∠AOM=150°﹣90°=60°,
∴射线OC表示的方向为北偏东60°
②∵∠BON=2∠NOC,OC平分∠MOB,
∴∠MOC=∠BOC=3∠NOC,
∵∠MOC+∠NOC=∠MON=90°,
∴3∠NOC+∠NOC=90°,
∴4∠NOC=90°,
∴∠BON=2∠NOC=45°,
∴∠AOM=180°﹣∠MON﹣∠BON
=180°﹣90°﹣45°
=45°
(2)解:①如图1:
∵∠AOB=α,∠BOC=β
∴∠AOC=∠AOB+∠BOC=90°+30°=120°
∵OM平分∠AOB,ON平分∠BOC,
∴∠AOM=∠BOM=∠AOB=α,∠CON=∠BON=∠COB=β,
∴∠MON=∠BOM+∠CON=;
②如图2,
∠MON=∠BOM﹣∠BON=;
③如图3,
∠MON=∠BON﹣∠BOM=.…
∴∠MON为或或.
【解析】【分析】(1)①根据∠MOC=∠AOC-∠AOM代入数据计算,即得出射线OC表示的方向;②根据角的倍分关系以及角平分线的定义即可求解;(2)分射线OC在∠AOB 内部和外部两种情况讨论即可.。

相关文档
最新文档