八年级数学下册第3章中考重热点突破课件新版北师大版

合集下载

新北师大版八年级数学下册第3章教案

新北师大版八年级数学下册第3章教案

第三章图形的平移与旋转单元教学目标1、知识与技能:通过具体实例认识平移与旋转,探索它们的基本性质,会进行简单的平移、旋转、画图;在直角坐标系中,探索并了解将一个多边形沿两个坐标轴平移后所得到的图形与原图形平移关系,体会图形顶点的变化;了解中心对称、图形的概念,探索其基本性质。

2、过程与方法:经历有关平移与旋转的观察、操作,欣赏和设计的过程,进一步积累数学活动经验,增强动手实践能力,发展空间观念;经历借助图形思考问题的过程,初步建立几何直观。

3、情感态度与价值观:敢于发表自己的想法,提出质疑,养成独立思考、合作交流等习惯。

单元教学重点:通过具体实例认识平移与旋转,探索平移、旋转的基本性质。

单元教学难点:按照要求作出简单的平面图形经过平移或旋转后的图形。

单元课时安排:1、图形的平移 3 课时2、图形的旋转 2 课时3、中心对称 1 课时4、简单的图案设计 1 课时回顾与思考 1 课时§ 3.1.1图形的平移第一课时知识与技能目标认识平移、理解平移的基本内涵;理解平移前后两个图形对应点连线平行且相等,对应线段平行且相等,对应角相等的性质。

过程与方法目标通过探究式的学习,养成归纳总结与猜想的数学能力,逆向思维能力。

情感态度与价值观目标通过收集身边的“平移”实例,感受生活处处有数学,激发学生的学习兴趣。

教学重点掌握平移的概念。

教学难点理解平移的性质。

教法与学法自主探究与合作交流相结合。

教学过程一、学习准备1、全等三角形的对应边______,对应____相等。

2、阅读教材:P65—P67第1节《图形的平移》二、教材精读3、平移的定义:在平面内,将一个图形沿着移动的距离,这样的图形运动叫平移。

平移不改变图形的和,改变的是位置。

实践练习:下列现象中,属于平移的是:(1)火车在笔直的铁轨上行驶(2)冷水受热过程中小气泡上升变成大气泡(3)人随电梯上升(4)钟摆的摆动(5)飞机起飞前在直线跑道上滑动4、如图所示,△ABE沿射线XY方向平移一定距离后成为△CDF。

八年级数学北师大版初二下册--第三单元 3.2《图形的旋转》(第一课时)课件

八年级数学北师大版初二下册--第三单元 3.2《图形的旋转》(第一课时)课件
的一点,也可以是图形上的一点,还可以是图形 内的一点.这一定点即为旋转中心. (2)旋转的决定因素: ①旋转中心;②旋转角;③旋转方向.
2. 旋转的性质: 一个图形和它经过旋转所得的图形中,对应
点到旋转中心的距离相等.任意一组对应点与旋 转中心的连线所成的角都等于旋转角;对应线段 相等,对应角相等.
知1-练
4 如图,△ABC和△ADE均为等边三角形,则图中 可以看成是旋转关系的三角形是( C ) A.△ABC和△ADE B.△ABC和△ABD C.△ABD和△ACE D.△ACE和△ADE
知1-练
5 在俄罗斯方块游戏中,已拼好的图案如图所示,现 又出现一小方格体正向下运动,为了使所有图案消 失,你必须进行以下哪项操作,才能拼成一个完整 图案,使其自动消失( A ) A.顺时针旋转90°,向右平移 B.逆时针旋转90°,向右平移 C.顺时针旋转90°,向下平移 D.逆时针旋转90°,向下平移
(来自《教材》)
知2-练
2 如图,你能绕点O旋转,使得线段AB与线段CD 重合吗?为什么?
解:不能,不符合旋转的概 念和特征.
(来自《教材》)
知2-练
3 【2017·青岛】如图,若将△ABC绕点O逆时针旋 转90°,则顶点B的对应点B1的坐标为( B ) A.(-4,2) B.(-2,4) C.(4,-2) D.(2,-4)
知1-导
知1-导
这个定点称为旋转中心,转动的角称为旋转角.
A
B
旋转角
o 旋转中心
例1 下列运动属于旋转的是( B ) A.篮球的滚动 B.钟摆的摆动 C.气球升空的运动 D.一个图形沿某条直线对折的过程
导引:按旋转的定义判断.知1-讲 Nhomakorabea总结

八年级数学北师大版初二下册--第三单元 3.3《中心对称》(第二课时)课件

八年级数学北师大版初二下册--第三单元 3.3《中心对称》(第二课时)课件

知1-讲
例2 如图,在下列图形中,中心对称图形有( C ) A.1个 B.2个 C.3个 D.4个
导引:这些图形绕某一点旋转一定角度都能与原图形完 全重合,但旋转180°后能与原图形重合的有3个, 只有最后一个图形不重合.
总结
知1-讲
正多边形图案是否为中心对称图形的识别方法: 边数为偶数的正多边形图案是中心对称图形,
知识点 1 中心对称图形的定义
知1-导
问题
(1)如图,将线段AB绕它的中点旋转180°,你 有什么发现?
A
B
可以发现:线段AB绕它的中点旋转180°后与 它BCD 绕它的两条对角线的交点O旋
转180°,你有什么发现?
A
D
O
B
C
Y 可以发现: ABCD 绕它的两条对角线的交点O旋
第三章 图形的平移与旋转
3.3 中心对称
第2课时 中心对称图形
1 课堂讲解 2 课时流程
中心对称图形的定义 中心对称图形的性质 中心对称图形的作图
逐点 导讲练
课堂 小结
作业 提升
我们上节课学习了中心对称的相关知识,中心对 称是指两个图形的关系,而把这两个图形看作一个整 体是什么图形呢?是我们这节课所要学习的中心对称 图形.
相应地,与边数为偶数的正多边形具有类似的特 征的图形是中心对称图形;边数为奇数的正多边 形或具有类似的特征的图形一定不是中心对称图 形.
1 下列哪些图形是中心对称图形?
知1-练
解:中心对称图形有(1)(2)(3).
(来自《教材》)
知1-练
2 下面扑克牌中,哪些牌的牌面是中心对称图形?
解:第一张和第三张牌的牌面是中心对称图形.
(2)本题还有其他分割方法,请分割试一试.

北师大版八年级数学下册全册复习课件(共206张PPT)精选全文

北师大版八年级数学下册全册复习课件(共206张PPT)精选全文

第一章 | 复习
针对第8题训练
1.在直角三角形中,一条直角边长为a,另一条边长为2a,那么
它的三个内角之比为( D ) A.1∶2∶3 B.2∶2∶1 C.1∶1∶2 D.以上都不对
2.如图1-10,△ABC中,∠ACB=90°,BA的垂直平分线交
CB边于点D,若AB=10,AC=5,则图中等于60°的角的个数为
第一章 | 复习
6.直角三角形的性质及判定 性质(1):在直角三角形中,如果一个锐角等于30°,那么它 所对的直角边等于斜边的___一__半____; 性质(2):直角三角形的两个锐角互余. 判定:有两个角互余的三角形是直角三角形. 7.勾股定理及其逆定理 勾股定理:直角三角形两条直角边的平方和等于斜边的 __平__方___. 逆定理:如果三角形两边的平方和等于第三边的平方,那么 这个三角形是_直__角______三角形.
第二章 | 复习
考点攻略
►考点一 不等式的性质 例1 >

< <
[易错地带] 不等式两边都乘(或除以)同一个复数时,不等号的 方向要改变。
第二章 | 复习
►考点二 一元一次不等式(组)的解法 例2
第二章 | 复习 [技巧总结]
第二章 | 复习
难易度

1,2,3,4,5,6,7,8,11,12,13,14, 15,17,18,19,20

9,10,21,22

16,23,24
第一章 | 复习
知识与 技能
全等三角形
等腰三角形 及直角三角

直角三角形 和勾股定理
及逆定理
线段的垂直 平分线及角
平分线
逆命题
反证法
2,16,17,22,24 1,4,10,14,20,21,23,24

八年级数学北师大版初二下册--第三单元 3.4《简单的图案设计》课件

八年级数学北师大版初二下册--第三单元 3.4《简单的图案设计》课件

总结
知1-讲
分析图案形成过程的一般步骤: (1)确定设计图案的表达意图; (2)分析图案所给定的基本图形; (3)确定基本图形所进行的变换:平移变换、旋转
变换、对称变换.
知1-练
1 如图是一个镶边的模板,分析它的图案是由哪个 基本图形通过一次平移得到的( B )
知1-练
2 如图,若要使这个图案与自身重合,则它至少 绕它的中心旋转( A ) A.45° B.90° C.135° D.180°
知2-练
1 知识小结
图案设计的一般步骤: (1)选择基本图案(基本图案可以是一个图案,也可
以是几个图案的结合). (2)对基本图案进行变换(变换可以是单纯的平移,
旋转或轴对称,也可以是多种变换). (3)对图案进行修饰.
2 易错小结
如图所示的图案是由一个梯形经过旋转和对称形成 的,则该梯形应该满足什么条件?
导引:解答本例需要利用给定的六个元素,充分展开想 象的翅膀,组合成各种有意义的图形.此外,还 要有一定的生活经验和一定的文学修养.
知2-讲
解:所设计图形如图所示(答案不唯一,可供参考):
总结
Байду номын сангаас
知2-讲
本题考查了利用轴对称设计图案的知识,属于 开放型题,解答时注意三点: ①所作的图是轴对称图形, ②六个元素必须要用到,而且每个元素只用一次, ③解说词要和所设计的图形匹配,同学们要充分发
且组成的图形既是轴对称图形,又是中心对称图形,则
这个格点正方形的作法共有( C )
A.2种
B.3种
C.4种
D.5种
知1-练
5 【2017·绍兴】一块竹条编织物,先将其按如图 所示绕直线MN翻转180°,再将它按逆时针方 向旋转90°,所得的竹 条编织物是( B )
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档