课件《数据结构》二叉树的构造及遍历
中序遍历二叉树辅助数据结构

中序遍历二叉树辅助数据结构你有没有听说过中序遍历?别急,咱们今天就来聊聊它。
想象一下你在一座大森林里走,四周树木成林,想找到每棵树的顺序。
好啦,我们的任务就是找出这些树的一个特定顺序,中序遍历就是让我们从森林的左边开始,依次走过每棵树,记住每棵树的样子,最后走到森林的右边。
这个过程其实就是中序遍历的基本思想,左根右,明白了吗?就这么简单,走左边,看看根,再走右边。
可是,问题来了,万一这座森林里的树太多了,光靠一个人去走是不是太累了?你得想想办法,找到一种工具来帮忙。
比如说,咱们来点小道具,借个篮子把已经看过的树装起来,免得忘了。
这个篮子就是我们在做中序遍历时的“辅助数据结构”。
说白了,它就是帮助你记住哪些树已经看过,哪些还没看过的东西。
要说这篮子怎么用,就得回到咱们走这座森林的套路了。
你走到一棵树前,首先得往左边看一看,看看有没有比这棵树还小的。
可是,左边是不是还有其他树呢?有的,咱就得继续往左走,直到走不动为止。
这时候呢,所有更小的树都被你放进篮子里了。
到了最底下,没得走了,你就开始回头看看这一路走过的树。
每当你看到一棵树,就记下来,装进篮子里,这就是“根”的作用。
别高兴得太早,回头看看,右边的树可不能放过。
看到没?树上有果实等着你采呢。
就这样,顺着右边继续走,一直走到森林的尽头。
等走完全程,所有的树都记录下来了,心满意足,任凭风吹雨打,也不怕忘了哪里有树。
这就完成了中序遍历。
但如果你只是单纯地走一遍这座森林,光靠记性,可不行啊。
想想看,树太多了,你得找个地方放这些已经看过的树才能不让它们占用太多地方。
其实这篮子是个非常巧妙的设计,它能让你记录下你走过的路径,防止走丢,还能保持整洁,让你不会走冤枉路。
现在你是不是想问,这篮子是什么?哈哈,其实这篮子就是栈(Stack)这种数据结构啦。
栈这个东西,咱们大家都知道,它就像是一个装东西的箱子,东西装进去之后,你只能从箱子的上面拿出来。
那就好比你每次走到一棵树,都把它放进去,直到你回头的时候才能把它拿出来。
二叉树的遍历ppt课件

后序遍历顺序:
A
B
C
DE
F
中 序遍历 : 资金是运动的价值,资金的价值是随 时间变 化而变 化的, 是时间 的函数 ,随时 间的推 移而增 值,其 增值的 这部分 资金就 是原有 资金的 时间价 值
DBEAF
C
前序遍历: A B D E C F
后序遍历
A
B
C
D EF
二叉树
资金是运动的价值,资金的价值是随 时间变 化而变 化的, 是时间 的函数 ,随时 间的推 移而增 值,其 增值的 这部分 资金就 是原有 资金的 时间价 值
总结:
我们这节课主要采用“案例驱动式”教 学方法讲解了二叉树的遍历,以案例方式讲 解通过其中两种遍历顺序推断出第三种遍历 顺序的分析方法。主要培养大家灵活运用知 识的能力和举一反三的分析能力。
一棵二叉树的中序遍历结果为 DBEAFC,前序遍历结果为ABDECF, 则后序遍历结果为 【 】 。
资金是运动的价值,资金的价值是随 时间变 化而变 化的, 是时间 的函数 ,随时 间的推 移而增 值,其 增值的 这部分 资金就 是原有 资金的 时间价 值
前序遍历:若二叉树非空,则先访问根节点,再 遍历左子树,最后遍历右子树。
资金是运动的价值,资金的价值是随 时间变 化而变 化的, 是时间 的函数 ,随时 间的推 移而增 值,其 增值的 这部分 资金就 是原有 资金的 时间价 值
拓展:
已知二叉树的 后序遍历:D A B E C 中序遍历:D E B A C
请问前序遍历结果为?
资金是运动的价值,资金的价值是随 时间变 化而变 化的, 是时间 的函数 ,随时 间的推 移而增 值,其 增值的 这部分 资金就 是原有 资金的 时间价 值
《二叉树的概念》课件

05
二叉树的应用
Chapter
在数据结构中的应用
二叉搜索树
二叉搜索树是一种特殊的二叉树,它的每个节点的左子树上的所有元素都小于 该节点,右子树上的所有元素都大于该节点。这种数据结构可以用于快速查找 、插入和删除操作。
AVL树和红黑树
这两种二叉树都是自平衡二叉搜索树,它们通过调整节点的左右子树的高度来 保持树的平衡,从而在插入、删除等操作时具有较好的性能。
VS
详细描述
平衡二叉树的特点是,它的左右子树的高 度差不会超过1,且左右子树都是平衡二 叉树。平衡二叉树的性质还包括,它的所 有叶节点的层数相等,且所有非叶节点的 左右子树的高度差不超过1。平衡二叉树 的查找、插入和删除操作的时间复杂度为 O(log n),其中n为节点数。
04
二叉树的遍历
Chapter
决策树
在机器学习和人工智能领域,决策树 是一种重要的分类和回归方法。其基 础结构就是二叉树,通过构建决策树 ,可以解决分类和回归问题。
THANKS
感谢观看
代码表示法
总结词:严谨规范
详细描述:使用编程语言的语法结构来表示二叉树,每个节点用对象或结构体表示,节点间的关系通 过指针或引用表示,严谨规范,易于编写和调试。
03
二叉树的性质
Chapter
深度最大的二叉树
总结词
深度最大的二叉树是指具有最大 可能深度的二叉树。
详细描述
在二叉树中,深度最大的二叉树 是满二叉树,即每个层级都完全 填满,没有空缺的节点。满二叉 树的深度等于其节点总数减一。
02
二叉树的表示方法
Chapter
图形表示法
总结词:直观明了
详细描述:通过图形的方式展示二叉树的结构,每个节点用圆圈或方框表示,节 点间的关系用线段表示,直观易懂,易于理解。
数据结构-二叉树的存储结构和遍历

return(p); }
建立二叉树
以字符串的形式“根左子树右子树”定义 一棵二叉树
1)空树 2)只含一个根 结点的二叉树 A 3)
B C
A
以空白字符“ ”表示
以字符串“A ”表示
D
以下列字符串表示 AB C D
建立二叉树 A B C C
T
A ^ B ^ C^ ^ D^
D
建立二叉树
Status CreateBiTree(BiTree &T) {
1 if (!T) return;
2 Inorder(T->lchild, visit); // 遍历左子树 3 visit(T->data); } // 访问结点 4 Inorder(T->rchild, visit); // 遍历右子树
后序(根)遍历
若二叉树为空树,则空操
根
左 子树
右 子树
作;否则, (1)后序遍历左子树; (2)后序遍历右子树; (3)访问根结点。
统计二叉树中结点的个数
遍历访问了每个结点一次且仅一次
设置一个全局变量count=0
将visit改为:count++
统计二叉树中结点的个数
void PreOrder (BiTree T){ if (! T ) return; count++; Preorder( T->lchild); Preorder( T->rchild); } void Preorder (BiTree T,void( *visit)(TElemType& e)) { // 先序遍历二叉树 1 if (!T) return; 2 visit(T->data); // 访问结点 3 Preorder(T->lchild, visit); // 遍历左子树 4 Preorder(T->rchild, visit);// 遍历右子树 }
数据结构入门-树的遍历以及二叉树的创建

数据结构⼊门-树的遍历以及⼆叉树的创建树定义:1. 有且只有⼀个称为根的节点2. 有若⼲个互不相交的⼦树,这些⼦树本⾝也是⼀个树通俗的讲:1. 树是有结点和边组成,2. 每个结点只有⼀个⽗结点,但可以有多个⼦节点3. 但有⼀个节点例外,该节点没有⽗结点,称为根节点⼀、专业术语结点、⽗结点、⼦结点、根结点深度:从根节点到最底层结点的层数称为深度,根节点第⼀层叶⼦结点:没有⼦结点的结点⾮终端节点:实际上是⾮叶⼦结点度:⼦结点的个数成为度⼆、树的分类⼀般树:任意⼀个结点的⼦结点的个数都不受限制⼆叉树:任意⼀个结点的⼦结点个数最多是两个,且⼦结点的位置不可更改⼆叉数分类:1. ⼀般⼆叉数2. 满⼆叉树:在不增加树层数的前提下,⽆法再多添加⼀个结点的⼆叉树3. 完全⼆叉树:如果只是删除了满⼆叉树最底层最右边的连续若⼲个结点,这样形成的⼆叉树就是完全⼆叉树森林:n个互不相交的树的集合三、树的存储⼆叉树存储连续存储(完全⼆叉树)优点:查找某个结点的⽗结点和⼦结点(也包括判断有没有⼦结点)速度很快缺点:耗⽤内存空间过⼤链式存储⼀般树存储1. 双亲表⽰法:求⽗结点⽅便2. 孩⼦表⽰法:求⼦结点⽅便3. 双亲孩⼦表⽰法:求⽗结点和⼦结点都很⽅便4. ⼆叉树表⽰法:把⼀个⼀般树转化成⼀个⼆叉树来存储,具体转换⽅法:设法保证任意⼀个结点的左指针域指向它的第⼀个孩⼦,右指针域指向它的兄弟,只要能满⾜此条件,就可以把⼀个⼀般树转化为⼆叉树⼀个普通树转换成的⼆叉树⼀定没有右⼦树森林的存储先把森林转化为⼆叉树,再存储⼆叉树四、树的遍历先序遍历:根左右先访问根结点,再先序访问左⼦树,再先序访问右⼦树中序遍历:左根右中序遍历左⼦树,再访问根结点,再中序遍历右⼦树后续遍历:左右根后续遍历左⼦树,后续遍历右⼦树,再访问根节点五、已知两种遍历求原始⼆叉树给定了⼆叉树的任何⼀种遍历序列,都⽆法唯⼀确定相应的⼆叉树,但是如果知道了⼆叉树的中序遍历序列和任意的另⼀种遍历序列,就可以唯⼀地确定⼆叉树已知先序和中序求后序先序:ABCDEFGH中序:BDCEAFHG求后序:这个⾃⼰画个图体会⼀下就可以了,⾮常简单,这⾥简单记录⼀下1. ⾸先根据先序确定根,上⾯的A就是根2. 中序确定左右,A左边就是左树(BDCE),A右边就是右树(FHG)3. 再根据先序,A左下⾯就是B,然后根据中序,B左边没有,右边是DCE4. 再根据先序,B右下是C,根据中序,c左下边是D,右下边是E,所以整个左树就确定了5. 右树,根据先序,A右下是F,然后根据中序,F的左下没有,右下是HG,6. 根据先序,F右下为G,然后根据中序,H在G的左边,所以G的左下边是H再来⼀个例⼦,和上⾯的思路是⼀样的,这⾥就不详细的写了先序:ABDGHCEFI中序:GDHBAECIF已知中序和后序求先序中序:BDCEAFHG后序:DECBHGFA这个和上⾯的思路是⼀样的,只不过是反过来找,后序找根,中序找左右树简单应⽤树是数据库中数据组织⼀种重要形式操作系统⼦⽗进程的关系本⾝就是⼀棵树⾯向对象语⾔中类的继承关系哈夫曼树六、⼆叉树的创建#include <stdio.h>#include <stdlib.h>typedef struct Node{char data;struct Node * lchild;struct Node * rchild;}BTNode;/*⼆叉树建⽴*/void BuildBT(BTNode ** tree){char ch;scanf("%c" , &ch); // 输⼊数据if(ch == '#') // 如果这个节点的数据是#说明这个结点为空*tree = NULL;else{*tree = (BTNode*)malloc(sizeof(BTNode));//申请⼀个结点的内存 (*tree)->data = ch; // 将数据写⼊到结点⾥⾯BuildBT(&(*tree)->lchild); // 递归建⽴左⼦树BuildBT(&(*tree)->rchild); // 递归建⽴右⼦树}}/*⼆叉树销毁*/void DestroyBT(BTNode *tree) // 传⼊根结点{if(tree != NULL){DestroyBT(tree->lchild);DestroyBT(tree->rchild);free(tree); // 释放内存空间}}/*⼆叉树的先序遍历*/void Preorder(BTNode * node){if(node == NULL)return;else{printf("%c ",node->data );Preorder(node->lchild);Preorder(node->rchild);}}/*⼆叉树的中序遍历*/void Inorder(BTNode * node){if(node == NULL)return;else{Inorder(node->lchild);printf("%c ",node->data );Inorder(node->rchild);}}/*⼆叉树的后序遍历*/void Postorder(BTNode * node){if(node == NULL)return;else{Postorder(node->lchild);Postorder(node->rchild);printf("%c ",node->data );}}/*⼆叉树的⾼度树的⾼度 = max(左⼦树⾼度,右⼦树⾼度) +1*/int getHeight(BTNode *node){int Height = 0;if (node == NULL)return 0;else{int L_height = getHeight(node->lchild);int R_height = getHeight(node->rchild);Height = L_height >= R_height ? L_height +1 : R_height +1; }return Height;}int main(int argc, char const *argv[]){BTNode * BTree; // 定义⼀个⼆叉树printf("请输⼊⼀颗⼆叉树先序序列以#表⽰空结点:");BuildBT(&BTree);printf("先序序列:");Preorder(BTree);printf("\n中序序列:");Inorder(BTree);printf("\n后序序列:");Postorder(BTree);printf("\n树的⾼度为:%d" , getHeight(BTree));return 0;}// ABC##DE##F##G##。
数据结构ppt课件完整版

针对有序数据集合,每次通过中间元素将 待查找区间缩小为之前的一半,直到找到 元素或区间为空。
哈希查找
树形查找
通过哈希函数将数据映射到哈希表中,实 现快速查找。
如二叉搜索树、平衡树等,通过树形结构实 现高效查找。
排序算法分类及实现原理
插入排序
将待排序元素逐个插入到已排序序列中,直到所有元素均插入完毕。
由n(n>=0)个具有相同类型 的数据元素(结点)a1,a2,
...,an组成的有序序列。
同一性
每个元素必须是同一类型的数 据。
有序性
元素之间具有一对一的前驱和 后继关系,即除首尾元素外, 每个元素都有一个前驱和一个 后继。
可变性
线性表的长度可变,即可以插 入或删除元素。
顺序存储结构与链式存储结构比较
定义
用一段连续的存储单元依次存储线性 表的数据元素。
优点
可以随机存取表中任一元素,且存取 时间复杂度为O(1)。
顺序存储结构与链式存储结构比较
• 缺点:插入和删除操作需要移动大量元素,时间 复杂度高;需要预先分配存储空间,容易造成空 间浪费。
顺序存储结构与链式存储结构比较
定义
用一组任意的存储单元存储线性 表的数据元素(这组存储单元可 以是连续的,也可以是不连续的
查找操作
查找指定元素的位置。
遍历操作
访问线性表中的每个元素。
销毁操作
释放线性表占用的存储空间。
03
栈和队列
栈定义及特点
栈(Stack)是一种特殊的线性数据结构,其数据的存 取遵循后进先出(LIFO, Last In First Out)的原则。 栈的特点
具有记忆功能,能保存数据的状态。
栈的基本操作包括入栈(push)、出栈(pop)、查 看栈顶元素(top)等。 只能在栈顶进行数据的插入和删除操作。
非递归中序遍历二叉树课件

04 非递归中序遍历 二叉树的复杂度 分析
时间复杂度
最好情况:O(n) 最坏情况:O(n)
平均情况:O(n)
空间复杂度
最好情况:O(1) 最坏情况:O(n)
平均情况:O(n)
05 非递归中序遍历 二叉树的优缺点
优点
01
02
03
空间效率高
非递归算法通常只需要常 数级别的额外空间,相比 之下,递归算法可能需要 更多的堆栈空间。
代码简洁
非递归算法的代码通常更 简洁,更易于理解和维护。
适合处理大型数据
由于非递归算法不需要大 量的堆栈空间,因此更适 合处理大型数据集。
缺点
编程技巧要求高
非递归算法需要更多的编程技巧, 特别是对于那些不熟悉这种技术 的人来说,理解和实现可能会比 较困难。
遍历过程
01
02
03
04
弹出栈顶元素,访问该 节点。
如果该节点右子节点存 在,将右子节点入栈。
如果该节点左子节点存 在,将左子节点入栈。
重复上述步骤,直到栈 为空。
遍历后的结果
01
中序遍历的顺序为:左子树 -> 根节点 -> 右子树。
02
非递归方法利用了栈的性质,实 现了从上到下、从左到右的遍历 顺序。
THANKS
感谢观看
栈为空。
实例二:复杂的二叉树
总结词:进阶应用
详细描述:对于复杂的二叉树,非递归中序遍历需要 更加细致的处理。由于树的形状可能不规则,我们需 要更加灵活地使用栈来处理节点之间的关系。在遍历 过程中,我们需要注意处理各种特殊情况,例如循环 引用、节点值相等的情况,以避免陷入无限循环或访 问错误的节点。此外,我们还需要注意优化算法的时 间复杂度和空间复杂度,以提高遍历的效率和准确性。
遍历二叉树与线索二叉树PPT

作业:P217-218
后序列:DGJHEBIFCA, 中序列:DBGEHJACIF, 求:1、画出该二叉树; 2、先序; 3、画出该二叉树对应的森林。
由此可以看出:
(1)遍历操作实际上是将非线性结构线性化的过程, 其结果为线性序列; (2)遍历操作是一个递归的过程,因此,这三种遍历 操作的算法可以用递归函数实现。 先序遍历递归算法: DLR ( BiTree T ) { if (T) //非空二叉树 { printf(“%d”,T->data); //访问根结点D DLR(T->lchild); //递归遍历左子树 DLR(T->rchild); //递归遍历右子树 } return(0); }
这就是线索二叉树(Threaded Binary Tree)
如何预存这类信息?有两种解决方法: 缺点:空间效 ① 每个结点增加两个域:fwd和bwd; 率太低! fwd lchild data rchild bwd ② 与原有的左右孩子指针域“复用”,充分利用那n+1 个空链域。 lchild data rchild 如何判断是孩 子指针还是线 规 定: 索指针? 1)若结点有左子树,则lchild指向其左 孩子;否则,lchild指向其直接前驱(即 线索); 如何区 别? 2)若结点有右子树,则rchild指向其右 孩子;否则,rchild指向其直接后继(即线索) 。
中序遍历递归算法: LDR(BiTree T) { if(T) { LDR(T->lchild); printf(“%d”,T->data); LDR(T->rchild); } return(0); }
后序遍历递归算法 LRD (BiTree T) { if(T) { LRD(T->lchild); LRD(T->rchild); printf(“%d”,T->data); } return(0);}
云大《数据结构》课程教学课件-第6章 树和二叉树(147P)_OK

^d ^ ^ e ^ 三叉链表
3)二叉链表是二叉树最常用的存储结构。还有其它链接方 法,采用何种方法,主要取决于所要实施的各种运算频度。
例:若经常要在二叉树中寻找某结点的双亲时,可在每个结 点上再加一个指向其双亲的指针域parent,称为三叉链表。
lchild data parent rchild
2021/8/16
2021/8/16
9
6.2 二 叉 树
6.2.1 二叉树的概念
一、二叉树的定义: 二叉树(Binary Tree)是n(n>=0)个结点的有限集,它或者是 空集(n=0)或者由一个根结点和两棵互不相交的,分别称 为根的左子树和右子树的二叉树组成。 可以看出,二叉树的定义和树的定义一样,均为递归定 义。
A
集合3
集合1
BCD
EF
G
集合2
2021/8/16
3
2、树的表示方法 1)树形图法
A
BCD
EF
G
2)嵌套集合法
3)广义表形式 ( A(B, C(E,F), D(G) )
4)凹入表示法
2021/8/16
A B
D
CG
EF
A B C E DF G
4
3、 树结构的基本术语
1)结点的度(Degree):为该结点的子树的个数。 2)树的度:为该树中结点的最大度数。
7)路径(Path):若树中存在一个结点序列k1,k2,…,kj,使得ki是 ki+1的双亲(1<=i<j),则称该结点序列是从ki到kj一条路径 (Path)
路径长度:路径的长度为j-1,其为该路径所经过的边的数 目。
A
BCD
EF
G
二叉树的遍历PPT-课件

4 、二叉树的创建算法
利用二叉树前序遍历的结果可以非常方便地生成给定的
二叉树,具体做法是:将第一个输入的结点作为二叉树的 根结点,后继输入的结点序列是二叉树左子树前序遍历的 结果,由它们生成二叉树的左子树;再接下来输入的结点 序列为二叉树右子树前序遍历的结果,应该由它们生成二 叉树的右子树;而由二叉树左子树前序遍历的结果生成二 叉树的左子树和由二叉树右子树前序遍历的结果生成二叉 树的右子树的过程均与由整棵二叉树的前序遍历结果生成 该二叉树的过程完全相同,只是所处理的对象范围不同, 于是完全可以使用递归方式加以实现。
void createbintree(bintree *t) { char ch; if ((ch=getchar())==' ') *t=NULL; else { *t=(bintnode *)malloc(sizeof(bintnode)); /*生成二叉树的根结点*/ (*t)->data=ch; createbintree(&(*t)->lchild); /*递归实现左子树的建立*/ createbintree(&(*t)->rchild); /*递归实现右子树的建立*/ }
if (s.top>-1) { t=s.data[s.top]; s.tag[s.top]=1; t=t->rchild; }
else t=NULL; }
}
7.5 二叉树其它运算的实现
由于二叉树本身的定义是递归的,因此关于二叉树的许多 问题或运算采用递归方式实现非常地简单和自然。 1、二叉树的查找locate(t,x)
(1)对一棵二叉树中序遍历时,若我们将二叉树严
格地按左子树的所有结点位于根结点的左侧,右子树的所
数据结构线性表栈队列二叉树图PPT课件

• 表达式a*(b+c)-d的后缀表达式是: A)abcd*+- B) abc+*d- C) abc*+dD) -+*abcd
• 假设一棵二叉树的后序遍历序列为DGJHEBIFCA,中序遍历序列为DBGEHJACIF, 则其前序遍历序列为 。
• 一棵二叉树的中序遍历序列为:DGBAECHF,后序遍历序列为:GDBEHFCA,则前 序列遍历序列是 __。
第36页/共40页
广度优先遍历: 从图中某个结点V0出发,访问此结点,然后依次访问与V0
邻接的、未被访问过的所有结点,然后再分别从这些结点出发 进行广度优先遍历,直到图中所有被访问过的结点的相邻结点 都被访问到。若此时图中还有结点尚未被访问,则另选图中一 个未被访问过的结点作为起点,重复上述过程,直到图中所有 结点都被访问到为止。
第25页/共40页
欧拉通过对柯尼斯堡桥问题的研究,于 1736年发表了著名的关于图论的论文,从而 创立了图论的学说。图1—2一类的问题就是 图论中所指的图。
第26页/共40页
又如,有6个足球队之间进行循环赛,他们 比赛的场次可以用图1-3(1)来表示。有3个 人相互写信,可以用图1—3(2)来表示。
• [定理1] 图G中所有顶点的度数之和等于边数的2倍。因为计算顶点的度数时。每条边均用到2次。 [定理2] 任意一个图一定有偶数个奇点。
第32页/共40页
连通:如果图中结点U,V之间存在一条从U通过若干条边、点到达V的通路,称U、 V是连通的。 连通图:如果一个无向图中,任一对不同顶点U、V,都有一条(U,V)通路,则 称图G是连通的。 强连通图:在有向图G中,每一对结点之间都有路径的图。 网络:带权的连通图。
二叉树的遍历

T->rchild= CreatBiTree(); /*构造右子树*/ 扩展先序遍历序列
}
2021/2/21
return (T) ;}
A B Φ D Φ Φ C Φ 17Φ
T
T
T
ch=B
ch=Φ
Λ
T
T= Λ, Creat(T)
ch=A T
A
B creat(T L)
ΛB 返回
creat(T L)
creat(T R)
A
p=p->RChild;
}
2021/2/21
}
top
A
B
C
D
top
B
top
A
A
top
D
A
top
A
top
C
13
top
中序遍历二叉树的非递归算法:
A
void InOrder(BiTree T)
{ InitStack(&S); 相当于top=-1;
p=T;
B
C
while(p!=NULL | | !IsEmpty(S)) 相当于top==-1;
}
后序遍历二叉树的递归算法:
void PostOrder (BiTree T)
{ if(T!=NULL)
{ PostOrder (T->lchild);
PostOrder (T->rchild);
printf(T->data); }
2021/2/21
15
}
先序遍历二叉树的递归算法: void PreOder (BiTree T) { if(T! =NULL){ printf (T->data); PreOrder (T->lchild); PreOrder (T->rchild); } }