义安区实验中学2018-2019学年高三上学期11月月考数学试卷含答案

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

义安区实验中学2018-2019学年高三上学期11月月考数学试卷含答案
一、选择题
1. 圆心为(1,1)且过原点的圆的方程是( )
A .2=1
B .2=1
C .2=2
D .2=2
2. 设()f x 是奇函数,且在(0,)+∞内是增函数,又(3)0f -=,则()0x f x ⋅<的解集是( ) A .{}|303x x x -<<>或 B . {}
|3003x x x -<<<<或
C .{}|33x x x <->或
D . {
}
|303x x x <-<<或 3. 如果集合 ,A B ,同时满足{}{}{}{}1,2,3,41,1,1A B B A B =≠≠,A =,就称有序集对
(),A B 为“ 好集对”. 这里有序集对(),A B 是指当A B ≠时,(),A B 和(),B A 是不同的集对, 那么
“好集对” 一共有( )个
A .个
B .个
C .个
D .个 4. 已知函数f (x )=2x ,则f ′(x )=( )
A .2x
B .2x ln2
C .2x +ln2
D

5. 已知复数z 满足zi=1﹣i ,(i 为虚数单位),则|z|=( ) A .1
B .2
C .3
D

6. 由小到大排列的一组数据x 1,x 2,x 3,x 4,x 5,其中每个数据都小于﹣1,则样本1,x 1,﹣x 2,x 3,﹣x 4,x 5的中位数为( )
A

B

C

D

7. 已知
tanx=,则sin 2
(+x )=( ) A

B

C

D

8. 口袋内装有一些大小相同的红球、白球和黒球,从中摸出1个球,摸出红球的概率是0.42,摸出白球的概率是0.28,那么摸出黒球的概率是( ) A .0.42 B .0.28 C .0.3 D .0.7
9. 如右图,在长方体
中,=11,=7,=12,一质点从顶点A 射向点,遇长方体的面反射(反射服从光的反射原理),将
次到第次反射点之间的线
段记为


将线段
竖直放置在同一水平线上,则大致的图形是( )
班级_______________ 座号______ 姓名_______________ 分数_______________
___________________________________________________________________________________________________
A
B
C
D
10.某大学的8名同学准备拼车去旅游,其中大一、大二、大三、大四每个年级各两名,分乘甲、乙两辆汽 车,每车限坐4名同学(乘同一辆车的4名同学不考虑位置),其中大一的孪生姐妹需乘同一辆车,则乘 坐甲车的4名同学中恰有2名同学是来自同一年级的乘坐方式共有( )种. A .24 B .18 C .48 D .36
【命题意图】本题考查排列与组合的基础知识,考查学生分类讨论,运算能力以及逻辑推理能力. 11.下列各组函数中,表示同一函数的是( )
A 、()f x =x 与()f x =2x x
B 、()1f x x =- 与()f x =
C 、()f x x =与
()f x = D 、()f x x =与2()f x =
12.已知在数轴上0和3之间任取一实数,则使“2log 1x <”的概率为( ) A .
14 B .18 C .23 D .112
二、填空题
13.已知复数
,则1+z 50+z 100
= .
14.在ABC ∆中,90C ∠=,2BC =,M 为BC 的中点,1
sin 3
BAM ∠=,则AC 的长为_________. 15.【常熟中学2018届高三10月阶段性抽测(一)】已知函数()()ln R x
f x x a a x =+-∈,若曲线122e e 1
x x y +=+(e 为自然对数的底数)上存在点()00,x y 使得()()00f f y y =,则实数a 的取值范围为__________.
16.椭圆C : +
=1(a >b >0)的右焦点为(2,0),且点(2,3)在椭圆上,则椭圆的短轴长为 .
17.在等差数列}{n a 中,20161-=a ,其前n 项和为n S ,若
28
108
10=-S S ,则2016S 的值等于 . 【命题意图】本题考查等差数列的通项公式、前n 项和公式,对等差数列性质也有较高要求,属于中等难度.
18.已知实数x ,y 满足约束条,则z=
的最小值为 .
三、解答题
19.永泰青云山特产经营店销售某种品牌蜜饯,蜜饯每盒进价为8元,预计这种蜜饯以每盒20元的价格销售时该店一天可销售20盒,经过市场调研发现每盒蜜饯的销售价格在每盒20元的基础上每减少一元则增加销售4盒,每增加一元则减少销售1盒,现设每盒蜜饯的销售价格为x元.
(1)写出该特产店一天内销售这种蜜饯所获得的利润y(元)与每盒蜜饯的销售价格x的函数关系式;(2)当每盒蜜饯销售价格x为多少时,该特产店一天内利润y(元)最大,并求出这个最大值.
20.已知函数f(x)=|2x﹣1|+|2x+a|,g(x)=x+3.
(1)当a=2时,求不等式f(x)<g(x)的解集;
(2)设a>,且当x∈[,a]时,f(x)≤g(x),求a的取值范围.
21.已知函数f(x)=+lnx﹣1(a是常数,e≈=2.71828).
(1)若x=2是函数f(x)的极值点,求曲线y=f(x)在点(1,f(1))处的切线方程;
(2)当a=1时,方程f(x)=m在x∈[,e2]上有两解,求实数m的取值范围;
(3)求证:n∈N*,ln(en)>1+.
22.已知f(x)=lg(x+1)
(1)若0<f(1﹣2x)﹣f(x)<1,求x的取值范围;
(2)若g(x)是以2为周期的偶函数,且当0≤x≤1时,g(x)=f(x),求函数y=g(x)(x∈[1,2])的反函数.
23.已知函数f(x)=x|x﹣m|,x∈R.且f(4)=0
(1)求实数m的值.
(2)作出函数f(x)的图象,并根据图象写出f(x)的单调区间
(3)若方程f(x)=k有三个实数解,求实数k的取值范围.
24.已知函数f(x)=2cos2ωx+2sinωxcosωx﹣1,且f(x)的周期为2.
(Ⅰ)当时,求f(x)的最值;
(Ⅱ)若,求的值.
义安区实验中学2018-2019学年高三上学期11月月考数学试卷含答案(参考答案) 一、选择题
1. 【答案】D
【解析】解:由题意知圆半径r=

∴圆的方程为2
=2.
故选:D .
【点评】本题考查圆的方程的求法,解题时要认真审题,注意圆的方程的求法,是基础题.
2. 【答案】B 【解析】
试题分析:因为()f x 为奇函数且()30f -=,所以()30f =,又因为()f x 在区间()0,+∞上为增函数且()30f =,所以当()0,3x ∈时,()0f x <,当()3,x ∈+∞时,()0f x >,再根据奇函数图象关于原点对称
可知:当()3,0x ∈-时,()0f x >,当(),3x ∈-∞-时,()0f x <,所以满足()0x f x ⋅<的x 的取值范围是:()3,0x ∈-或()0,3x ∈。

故选B 。

考点:1.函数的奇偶性;2.函数的单调性。

3. 【答案】B 【解析】
试题分析:因为{}{}{}{}1,2,3,41,1,1A
B B A B =≠≠,A =,所以当{1,2}A =时,{1,2,4}B =;当
{1,3}A =时,{1,2,4}B =;当{1,4}A =时,{1,2,3}B =;当{1,2,3}A =时,{1,4}B =;当{1,2,4}A =时,
{1,3}B =;当{1,3,4}A =时,{1,2}B =;所以满足条件的“好集对”一共有个,故选B.
考点:元素与集合的关系的判断.
【方法点晴】本题主要考查了元素与集合关系的判断与应用,其中解答中涉及到集合的交集和集合的并集运算与应用、元素与集合的关系等知识点的综合考查,着重考查了分类讨论思想的应用,以及学生分析问题和解答问题的能力,试题有一定的难度,属于中档试题,本题的解答中正确的理解题意是解答的关键.1111]
4. 【答案】B
【解析】解:f (x )=2x ,则f'(x )=2x
ln2, 故选:B .
【点评】本题考查了导数运算法则,属于基础题.
5. 【答案】D
【解析】解:∵复数z满足zi=1﹣i,(i为虚数单位),
∴z==﹣i﹣1,
∴|z|==.
故选:D.
【点评】本题考查了复数的化简与运算问题,是基础题目.
6.【答案】C
【解析】解:因为x1<x2<x3<x4<x5<﹣1,题目中数据共有六个,排序后为x1<x3<x5<1<﹣x4<﹣x2,
故中位数是按从小到大排列后第三,第四两个数的平均数作为中位数,
故这组数据的中位数是(x5+1).
故选:C.
【点评】注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数.如果数据有奇数个,则正中间的数字即为所求;如果是偶数个,则找中间两位数的平均数.
7.【答案】D
【解析】解:tanx=,则sin2(+x)===+
=+=+=,
故选:D.
【点评】本题主要考查同角三角函数的基本关系,半角公式的应用,属于基础题.
8.【答案】C
【解析】解:∵口袋内装有一些大小相同的红球、白球和黑球,从中摸出1个球,
在口袋中摸球,摸到红球,摸到黑球,摸到白球这三个事件是互斥的
摸出红球的概率是0.42,摸出白球的概率是0.28,
∵摸出黑球是摸出红球或摸出白球的对立事件,
∴摸出黑球的概率是1﹣0.42﹣0.28=0.3,
故选C.
【点评】本题考查互斥事件的概率,注意分清互斥事件与对立事件之间的关系,本题是一个简单的数字运算问题,只要细心做,这是一个一定会得分的题目.
9.【答案】C
【解析】根据题意有:
A的坐标为:(0,0,0),B的坐标为(11,0,0),C的坐标为(11,7,0),D的坐标为(0,7,0);
A 1的坐标为:(0,0,12),
B 1的坐标为(11,0,12),
C 1的坐标为(11,7,12),
D 1的坐标为(0,7,12);
E 的坐标为(4,3,12) (1)l 1长度计算 所以:l 1=|AE|==13。

(2)l 2长度计算
将平面A 1B 1C 1D 1沿Z 轴正向平移AA 1个单位,得到平面A 2B 2C 2D 2;显然有:
A 2的坐标为:(0,0,24),
B 2的坐标为(11,0,24),
C 2的坐标为(11,7,24),
D 2的坐标为(0,7,24);
显然平面A 2B 2C 2D 2和平面ABCD 关于平面A 1B 1C 1D 1对称。

设AE 与的延长线与平面A 2B 2C 2D 2相交于:E 2(x E2,y E2,24) 根据相识三角形易知: x E2=2x E =2×4=8, y E2=2y E =2×3=6, 即:E 2(8,6,24)
根据坐标可知,E 2在长方形A 2B 2C 2D 2内。

10.【答案】A
【解析】分类讨论,有2种情形.孪生姐妹乘坐甲车,则有121
21223=C C C 种. 孪生姐妹不乘坐甲车,则有12121213=C C C 种. 共有24种. 选A.
11.【答案】C 【解析】
试题分析:如果两个函数为同一函数,必须满足以下两点:①定义域相同,②对应法则相同。

选项A 中两个函数定义域不同,选项B 中两个函数对应法则不同,选项D 中两个函数定义域不同。

故选C 。

考点:同一函数的判定。

12.【答案】C 【解析】
试题分析:由2log 1x <得02x <<,由几何概型可得所求概率为202
303
-=-.故本题答案选C. 考点:几何概型.
二、填空题
13.【答案】 i .
【解析】解:复数

所以z 2=i ,又i 2=﹣1,所以1+z 50+z 100=1+i 25+i 50
=1+i ﹣1=i ;
故答案为:i .
【点评】本题考查了虚数单位i 的性质运用;注意i 2
=﹣1.
14.
【答案】
2 【解析】
考点:1、正弦定理及勾股定理;2诱导公式及直角三角形的性质.
【方法点睛】本题主要考查正弦定理及勾股定理、诱导公式及直角三角形的性质,属于难题,高考三角函数的考查主要以三角恒等变形,三角函数的图象和性质,利用正弦定理、余弦定理解三角形为主,难度中等,因此只要掌握基本的解题方法与技巧即可, 对于三角函数与解三角形相结合的题目,要注意通过正余弦定理以及面积公式实现边角互化,求出相关的边和角的大小,有时也要考虑特殊三角形的特殊性质(如正三角形,直角三角形等).
15.【答案】1,e
⎛⎤-∞ ⎥⎝

【解析】结合函数的解析式:1
22e e 1x x y +=+可得:()
()
122
221'1
x x x e e y e +-=+, 令y ′=0,解得:x =0,
当x >0时,y ′>0,当x <0,y ′<0,
则x ∈(-∞,0),函数单调递增,x ∈(0,+∞)时,函数y 单调递减, 则当x =0时,取最大值,最大值为e , ∴y 0的取值范围(0,e ],
结合函数的解析式:()()R lnx
f x x a a x =+-∈可得:()22ln 1'x x f x x
-+=,
x ∈(0,e ),()'0f x >, 则f (x )在(0,e )单调递增, 下面证明f (y 0)=y 0.
假设f (y 0)=c >y 0,则f (f (y 0))=f (c )>f (y 0)=c >y 0,不满足f (f (y 0))=y 0. 同理假设f (y 0)=c <y 0,则不满足f (f (y 0))=y 0. 综上可得:f (y 0)=y 0.
令函数()ln x
f x x a x x =
+-=. 设()ln x g x x =,求导()2
1ln 'x
g x x
-=, 当x ∈(0,e ),g ′(x )>0, g (x )在(0,e )单调递增, 当x =e 时取最大值,最大值为()1g e e
=, 当x →0时,a →-∞, ∴a 的取值范围1,e
⎛⎤-∞ ⎥⎝

.
点睛:(1)利用导数研究函数的单调性的关键在于准确判定导数的符号.而解答本题(2)问时,关键是分离参数k ,把所求问题转化为求函数的最小值问题.
(2)若可导函数f (x )在指定的区间D 上单调递增(减),求参数范围问题,可转化为f ′(x )≥0(或f ′(x )≤0)恒成立问题,从而构建不等式,要注意“=”是否可以取到.
16.【答案】 .
【解析】解:椭圆C : +=1(a >b >0)的右焦点为(2,0),且点(2,3)在椭圆上,
可得c=2,2a=
=8,可得a=4,
b 2=a 2﹣
c 2=12,可得b=2,
椭圆的短轴长为:4.
故答案为:4

【点评】本题考查椭圆的简单性质以及椭圆的定义的应用,考查计算能力.
17.【答案】2016-
18.【答案】 .
【解析】解:作出不等式组对应的平面区域如图:(阴影部分).
由z==32x+y,
设t=2x+y,
则y=﹣2x+t,
平移直线y=﹣2x+t,
由图象可知当直线y=﹣2x+t经过点B时,直线y=﹣2x+t的截距最小,
此时t最小.
由,解得,即B(﹣3,3),
代入t=2x+y得t=2×(﹣3)+3=﹣3.
∴t最小为﹣3,z有最小值为z==3﹣3=.
故答案为:.
【点评】本题主要考查线性规划的应用,利用目标函数的几何意义,结合数形结合的数学思想是解决此类问题的基本方法.
三、解答题
19.【答案】
【解析】解:(1)当0<x≤20时,y=[20+4(20﹣x)](x﹣8)=﹣4x2+132x﹣800,
当20<x<40时,y=[20﹣(x﹣20)](x﹣8)=﹣x2+48x﹣320,

(2)①当,
∴当x=16.5时,y取得最大值为289,
②当20<x<40时,y=﹣(x﹣24)2+256,
∴当x=24时,y取得最大值256,
综上所述,当蜜饯价格是16.5元时,该特产店一天的利润最大,最大值为289元.20.【答案】
【解析】解:(1)由|2x﹣1|+|2x+2|<x+3,得:
①得x∈∅;
②得0<x≤;
③得…
综上:不等式f(x)<g(x)的解集为…
(2)∵a>,x∈[,a],
∴f(x)=4x+a﹣1…
由f(x)≤g(x)得:3x≤4﹣a,即x≤.
依题意:[,a]⊆(﹣∞,]
∴a≤即a≤1…
∴a的取值范围是(,1]…
21.【答案】
【解析】解:(1).
因为x=2是函数f(x)的极值点,
所以a=2,则f(x)=,
则f(1)=1,f'(1)=﹣1,所以切线方程为x+y﹣2=0;
(2)当a=1时,,其中x∈[,e2],
当x∈[,1)时,f'(x)<0;x∈(1,e2]时,f'(x)>0,
∴x=1是f(x)在[,e2]上唯一的极小值点,∴[f(x)]min=f(1)=0.
又,,
综上,所求实数m的取值范围为{m|0<m≤e﹣2};
(3)等价于,
若a=1时,由(2)知f(x)=在[1,+∞)上为增函数,
当n>1时,令x=,则x>1,故f(x)>f(1)=0,
即,∴.

即,
即.
22.【答案】
【解析】解:(1)f(1﹣2x)﹣f(x)=lg(1﹣2x+1)﹣lg(x+1)=lg(2﹣2x)﹣lg(x+1),要使函数有意义,则
由解得:﹣1<x<1.
由0<lg(2﹣2x)﹣lg(x+1)=lg<1得:1<<10,
∵x+1>0,
∴x+1<2﹣2x<10x+10,
∴.
由,得:.
(2)当x∈[1,2]时,2﹣x∈[0,1],
∴y=g(x)=g(x﹣2)=g(2﹣x)=f(2﹣x)=lg(3﹣x),
由单调性可知y∈[0,lg2],
又∵x=3﹣10y,
∴所求反函数是y=3﹣10x,x∈[0,lg2].
23.【答案】
【解析】解:(1)∵f(4)=0,
∴4|4﹣m|=0
∴m=4,
(2)f(x)=x|x﹣4|=图象如图所示:
由图象可知,函数在(﹣∞,2),(4,+∞)上单调递增,在(2,4)上单调递减.(3)方程f(x)=k的解的个数等价于函数y=f(x)与函数y=k的图象交点的个数,由图可知k∈(0,4).
24.【答案】
【解析】(本题满分为13分)
解:(Ⅰ)∵=,…
∵T=2,∴,…
∴,…
∵,
∴,
∴,…
∴,…
当时,f(x)有最小值,当时,f(x)有最大值2.…
(Ⅱ)由,
所以,
所以,…
而,…
所以,…
即.…。

相关文档
最新文档