武汉市第四中学2018-2019学年高二9月月考数学试题解析
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
武汉市第四中学2018-2019学年高二9月月考数学试题解析 班级__________ 座号_____ 姓名__________ 分数__________
一、选择题(本大题共12小题,每小题5分,共60分.每小题给出的四个选项中,只有一项是符合题目要求的.)
1. 已知全集为R ,集合{}
|23A x x x =<->或,{}2,0,2,4B =-,则()
R A B =ð( )
A .{}2,0,2-
B .{}2,2,4-
C .{}2,0,3-
D .{}0,2,4 2. 设集合A ={1,2,3},B ={4,5},M ={x|x =a +b ,a ∈A ,b ∈B},则M 中元素的个数为( )。
A3 B4 C5 D6
3. 为调查某地区老人是否需要志愿者提供帮助,用简单随机抽样方法........从该地区调查了500位老年人,结果如
由2
()()()()()n ad bc K a b c d a c b d -=++++算得22
500(4027030160)9.96720030070430
K ⨯⨯-⨯=
=⨯⨯⨯ 附表:
参照附表,则下列结论正确的是( )
①有99%以上的把握认为“该地区的老年人是否需要志愿者提供帮助与性别无.
关”; ②有99%以上的把握认为“该地区的老年人是否需要志愿者提供帮助与性别有.关”; ③采用系统抽样方法比采用简单随机抽样方法更好; ④采用分层抽样方法比采用简单随机抽样方法更好; A .①③ B .①④ C .②③ D .②④
4. 某个几何体的三视图如图所示,其中正(主)视图中的圆弧是半径为2的半圆,则该几何体的表面积为 ( )
3.841 6.635 10.828k 2() 0.050 0.010 0.001
P K k ≥
A .π1492+
B .π1482+
C .π2492+
D .π2482+
【命题意图】本题考查三视图的还原以及特殊几何体的面积度量.重点考查空间想象能力及对基本面积公式的运用,难度中等.
5. 若复数12,z z 在复平面内对应的点关于y 轴对称,且12i z =-,则复数
1
2
z z 在复平面内对应的点在( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限
【命题意图】本题考查复数的几何意义、代数运算等基础知识,意在考查转化思想与计算能力. 6. 已知命题:()(0x
p f x a a =>且1)a ≠是单调增函数;命题5:(,)44
q x ππ
∀∈,sin cos x x >. 则下列命题为真命题的是( )
A .p q ∧
B .p q ∨⌝ C. p q ⌝∧⌝ D .p q ⌝∧ 7. 下列命题正确的是( )
A .很小的实数可以构成集合.
B .集合{}2|1y y x =-与集合(){}2,|1x y y x =-是同一个集合.
C .自然数集 N 中最小的数是.
D .空集是任何集合的子集.
8. 在ABC ∆中,,,a b c 分别为角,,A B C 所对的边,若2cos a b C =,则此三角形一定是( ) A .等腰直角三角形 B .直角三角形
C .等腰三角形
D .等腰三角形或直角三角形 9. 设复数1i z =-(i 是虚数单位),则复数
2
2z z
+=( ) A.1i - B.1i + C. 2i + D. 2i -
【命题意图】本题考查复数的有关概念,复数的四则运算等基础知识,意在考查学生的基本运算能力.
10.直线310x y -+=的倾斜角为( )
A .150
B .120
C .60
D .30
11.如图所示,网格纸表示边长为1的正方形,粗实线画出的是某几何体的三视图,则该几何体的体积为( ) A .4 B .8 C .12 D .20
【命题意图】本题考查三视图、几何体的体积等基础知识,意在考查空间想象能力和基本运算能力.
12.函数()()f x x R Î是周期为4的奇函数,且在02[,]上的解析式为(1),01
()sin ,12
x x x f x x x ì-#ï=íp <?ïî,则
1741
()()46f f +=( ) A .716 B .916 C .1116 D .1316
【命题意图】本题考查函数的奇偶性和周期性、分段函数等基础知识,意在考查转化和化归思想和基本运算能力.
二、填空题(本大题共4小题,每小题5分,共20分.把答案填写在横线上)
13.一个正四棱台,其上、下底面均为正方形,边长分别为2cm 和4cm ,侧棱长为2cm ,
则其
表面积为__________2cm .
14.在直角梯形,,DC//AB,AD DC 1,AB 2,E,F ABCD AB AD ⊥===分别为,AB AC 的中点,
点P 在以A 为圆心,AD 为半径的圆弧DE 上变动(如图所示).若AP ED AF λμ=+,其中,R λμ∈, 则2λμ-的取值范围是___________.
15.若x 、y 满足约束条件⎩⎪⎨⎪
⎧x -2y +1≤02x -y +2≥0x +y -2≤0,z =3x +y +m 的最小值为1,则m =________.
16.已知向量(1,),(1,1),a x b x ==-若(2)a b a -⊥,则|2|a b -=( ) A .2 B .3 C .2 D
【命题意图】本题考查平面向量的坐标运算、数量积与模等基础知识,意在考查转化思想、方程思想、逻辑思维能力与计算能力.
三、解答题(本大共6小题,共70分。
解答应写出文字说明、证明过程或演算步骤。
)
17.(本题满分15分)
如图,已知长方形ABCD 中,2AB =,1AD =,M 为DC 的中点,将ADM ∆沿AM 折起,使得平面⊥ADM 平面ABCM .
(1)求证:BM AD ⊥;
(2)若)10(<<=λλDB DE ,当二面角D AM E --大小为
3
π
时,求λ的值.
【命题意图】本题考查空间点、线、面位置关系,二面角等基础知识,意在考查空间想象能力和运算求解能力.
18.(本题12分)在锐角ABC ∆中,内角A ,B ,C 所对的边分别为,,,且2sin a B =.111] (1)求角A 的大小;
(2)若6a =,8b c +=,求ABC ∆的面积.
19.(本小题满分12分)如图, 矩形ABCD 的两条对角线相交于点()2,0M ,AB 边所在直线的方 程为360x y --=点()1,1T -在AD 边所在直线上. (1)求AD 边所在直线的方程; (2)求矩形ABCD 外接圆的方程.
20.(本小题满分12分)为了普及法律知识,达到“法在心中”的目的,某市法制办组织了普法
知识竞赛.5名职工的成绩,成绩如下表:
(1 掌握更稳定;
(2)用简单随机抽样法从乙单位5名职工中抽取2名,他们的成绩组成一个样本,求抽取的2名职工的 分数差至少是4的概率.
21.(本小题满分10分)选修4-1:几何证明选讲
如图,四边形ABCD 外接于圆,AC 是圆周角BAD ∠的角平分线,过点C 的切线与AD 延长线交于点E ,AC 交BD 于点F . (1)求证:BD
CE ;
(2)若AB 是圆的直径,4AB =,1DE =,求AD 长
22.已知定义在[]3,2-的一次函数()f x 为单调增函数,且值域为[]2,7.
f x的解析式;
(1)求()
f f x的解析式并确定其定义域.(2)求函数[()]
武汉市第四中学2018-2019学年高二9月月考数学试题解析(参考答案)
一、选择题(本大题共12小题,每小题5分,共60分.每小题给出的四个选项中,只有一项是符合题目要求的.)
1.【答案】A
【解析】
考点:1、集合的表示方法;2、集合的补集及交集.
2.【答案】B
【解析】由题意知x=a+b,a∈A,b∈B,则x的可能取值为5,6,7,8.因此集合M共有4个元素,故选B 3.【答案】D
【解析】解析:本题考查独立性检验与统计抽样调查方法.
,所以有99%的把握认为该地区的老年人是否需要帮助与性别有关,②正确;该地区老年由于9.967 6.635
人是否需要帮助与性别有关,并且从样本数据能看出该地区男性老年人与女性老年人中需要帮助的比例有明显差异,因此在调查时,先确定该地区老年人中男、女的比例,再把老年人分成男、女两层并采用分层抽样方法比采用简单随机抽样方法更好,④正确,选D.
4.【答案】A
5.【答案】B
【解析】
6.【答案】D
【解析】
考点:1、指数函数与三角函数的性质;2、真值表的应用. 7. 【答案】D 【解析】
试题分析:根据子集概念可知,空集是任何集合的子集,是任何非空集合的真子集,所以选项D 是正确,故选D.
考点:集合的概念;子集的概念. 8. 【答案】C 【解析】
试题分析:因为2cos a b C =,由正弦定理得sin 2sin cos A B C =,因为()A B C π=-+, 所以sin sin[()]sin()sin cos cos sin A B C B C B C B C π=-+=+=+,
即sin cos cos sin 2sin cos B C B C B C +=,所以sin()0B C -=,所以B C =,所以三角形为等腰三角形,故选C .1
考点:三角形形状的判定. 9. 【答案】A 【
解
析
】
10.【答案】C 【解析】
310x y -+=,可得直线的斜率为3k =tan 360αα==,故选C.1
考点:直线的斜率与倾斜角. 11.【答案】C
【解析】由三视图可知该几何体是四棱锥,且底面为长6,宽2的矩形,高为3,所以此四棱锥体积为
123123
1
=⨯⨯,故选C. 12.【答案】C
二、填空题(本大题共4小题,每小题5分,共20分.把答案填写在横线上)
13.【答案】20
【解析】
考点:棱台的表面积的求解.
-
14.【答案】[]1,1
【解析】
考点:向量运算.
【思路点晴】本题主要考查向量运算的坐标法. 平面向量的数量积计算问题,往往有两种形式,一是利用数量积的定义式,二是利用数量积的坐标运算公式,涉及几何图形的问题,先建立适当的平面直角坐标系,可起到化繁为简的妙用. 利用向量夹角公式、模公式及向量垂直的充要条件,可将有关角度问题、线段长问题及垂直问题转化为向量的数量积来解决.
15.【答案】
【解析】解析:可行域如图,当直线y =-3x +z +m 与直线y =-3x 平行,且在y 轴上的截距最小时,z 才能取最小值,此时l 经过直线2x -y +2=0与x -2y +1=0的交点A (-1,0),z min =3×(-1)+0+m =-3+m =1, ∴m =4.
答案:4 16.【答案】A 【
解
析】
三、解答题(本大共6小题,共70分。
解答应写出文字说明、证明过程或演算步骤。
)
17.【答案】(1)详见解析;(2)3λ=.
【解析】(1)由于2AB =,AM BM ==AM BM ⊥,
又∵平面⊥ADM 平面ABCM ,平面 ADM 平面ABCM =AM ,⊂BM 平面ABCM ,
∴⊥BM 平面ADM ,…………3分
又∵⊂AD 平面ADM ,∴有BM AD ⊥;……………6分
18.【答案】(1)3
π
=A ;(2)3
3
7=
∆ABC S . 【解析】
试题分析:(1)利用正弦定理
A
a
B b sin sin =及b B a 3sin 2=,便可求出A sin ,得到A 的大小;(2)利用(1)中所求A 的大小,结合余弦定理求出bc 的值,最后再用三角形面积公式求出1
sin 2
ABC S bc A ∆=值.
试题解析:(1)由b B a 3sin 2=及正弦定理A
a
B b sin sin =
,得23sin =A .…………分
因为A 为锐角,所以3
π
=
A .………………分
(2)由余弦定理A bc c b a cos 22
22-+=,得3622=-+bc c b ,………………分
又8=+c b ,所以3
28
=bc ,………………分
所以3
3
72332821sin 21=⨯⨯==∆A bc S ABC .………………12分
考点:正余弦定理的综合应用及面积公式.
19.【答案】(1)320x y ++=;(2)()2
228x y -+=. 【解析】
试题分析:(1)由已知中AB 边所在直线方程为360x y --=,且AD 与AB 垂直,结合点()1,1T -在直线
AD 上,可得到AD 边所在直线的点斜式方程,即可求得AD 边所在直线的方程;(2)根据矩形的性质可得
矩形ABCD 外接圆圆心纪委两条直线的交点()2,0M ,根据(1)中直线,即可得到圆的圆心和半径,即可求
得矩形ABCD 外接圆的方程.
(2)由360
320
x y x y --=⎧⎨
++=⎩解得点A 的坐标为()0,2-,
因为矩形ABCD 两条对角线的交点为()2,0M ,
所以M 为距形ABCD 外接圆的圆心, 又AM =
=从而距形ABCD 外接圆的方程为()2
2
28x y -+=.1 考点:直线的点斜式方程;圆的方程的求解.
【方法点晴】本题主要考查了直线的点斜式方程、圆的方程的求解,其中解答中涉及到两条直线的交点坐标,圆的标准方程,其中(1)中的关键是根据已知中AB 边所在的直线方程以及AD 与AB 垂直,求出直线AD 的斜率;(2)中的关键是求出A 点的坐标,进而求解圆的圆心坐标和半径,着重考查了学生分析问题和解答问题的能力,以及推理与运算能力.
20.【答案】(1)90=甲x ,90=乙x ,5242
=甲s ,82=乙s ,甲单位对法律知识的掌握更稳定;(2)2
1
. 【解析】
试题分析:(1)先求出甲乙两个单位职工的考试成绩的平均数,以及他们的方差,则方差小的更稳定;(2)从乙单位抽取两名职工的成绩,所有基本事件用列举法得到共10种情况,抽取的两名职工的分数差至少是的事件用列举法求得共有种,由古典概型公式得出概率.
试题解析:解:(1)90939191888751
=++++=)(甲x ,9093929189855
1=++++=)(乙x
524
])9093()9091()9091()9088()9087[(51222222
=
-+-+-+-+-=
甲s 8])9093()9092()9091()9089()9085[(51222222
=-+-+-+-+-=乙s
∵85
24<,∴甲单位的成绩比乙单位稳定,即甲单位对法律知识的掌握更稳定. (6分)
考
点:1.平均数与方差公式;2.古典概型. 21.【答案】
【解析】【命题意图】本题主要考查圆周角定理、弦切角定理、三角形相似的判断与性质等基础知识,意在考查逻辑推证能力、转化能力、识图能力.
22.【答案】(1)()5f x x =+,[]3,2x ∈-;(2)[]()10f f x x =+,{}3x ∈-. 【
解
析
】
试
题解析:
(1)设()(0)f x kx b k =+>,111]
由题意有:32,27,k b k b -+=⎧⎨+=⎩解得1,
5,k b =⎧⎨=⎩
∴()5f x x =+,[]3,2x ∈-. (2)(())(5)10f f x f x x =+=+,{}3x ∈-.
考点:待定系数法.。