考研数学真题

合集下载

高等数学考研真题

高等数学考研真题

一、判断共10题(共计10分)第1题(1.0分)题号:1488函数即可以嵌套定义,又可以嵌套调用.答案:N第2题(1.0分)题号:1256unsigned 和void 在C 中都是保留字.答案:Y第3题(1.0分)题号:1280表达式++i 表示对变量i 自加1.答案:Y第4题(1.0分)题号:1282C 语言源程序的基本结构单位是main 函数.答案:N第5题(1.0分)题号:1276字符常量的长度肯定为1.答案:Y第6题(1.0分)题号:1469char a[]={'a','b','c'};char b[]={"abc"};数组a 和数组b 占用的内存空间大小不一样.答案:Y第7题(1.0分)题号:1249若有int i=10,j=2; 则执行完i*=j+8;后i 的值为28.答案:N第8题(1.0分)题号:33int i,*p=&i;是正确的C 说明。

答案:Y第9题(1.0分)题号:1250While 循环语句的循环体至少执行一次. 答案:N第10题(1.0分)题号:1510有数组定义int a[2][2]={{1},{2,3}};则a[0][1] 的值为0.答案:Y二、单项选择共30题(共计30分)第1题(1.0分)题号:456执行下面程序后,输出结果是()。

main(){ a=45,b=27,c=0;c=max(a,b);printf("%d\n",c);}int max(x,y) int x,y;{ int z;if(x>y) z=x;else z=y;return(z);}A:45B:27C:18D:72答案:A第2题(1.0分)题号:437下列数组说明中,正确的是()。

A:int array[][4];B:int array[][];C:int array[][][5];D:int array[3][];答案:A第3题(1.0分)题号:2396下面有关for 循环的正确描述是()A:for 循环只能用于循环次数已经确定的情况B:for 循环是先执行循环体语句,后判断表达式C:在for 循环中,不能用break 语句跳出循环体D:for 循环的循环体语句中,可以包含多条语句,但必须用花括号括起来答案:D第4题(1.0分)题号:2817以下程序的输出结果是().main(){int i,j,k,a=3,b=2;i=(--a==b++)?--a:++b;j=a++;k=b;printf("i=%d,j=%d,k=%d\n",i,j,k);}A:i=2,j=1,k=3B:i=1,j=1,k=2C:i=4,j=2,k=4D:i=1,j=1,k=3答案:D第5题(1.0分)题号:2866若有下列定义,则对a 数组元素地址的正确引用是().int a[5],*p=a;A:*(p+5)B:*p+2C:*(a+2)D:*&a[5]答案:C第6题(1.0分)题号:711下列选项中正确的语句组是()。

2023年考研数学一真题及答案

2023年考研数学一真题及答案

2023年考研数学一真题及答案一、选择题:1~10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一个选项是最符合题目要求的,请将所选项前的字母填在答题纸指定位置上.1. 的斜渐近线为( )A. B.C. D.【答案】B.【解析】由已知,则,,所以斜渐近线为.故选B.2.若的通解在上有界,则().A. B.C. D.【答案】D. 【解析】微分方程的特征方程为.若,则通解为;若,则通解为;若,则通解为.由于在上有界,若,则中时通解无界,若,则中时通解无界,故.时,若,则,通解为,在上有界.时,若,则,通解为,在上无界. 综上可得,.3. 设函数由参数方程确定,则( ).A .连续,不存在 B.存在,在处不连续C.连续,不存在D.存在,在处不连续【答案】C【解析】,故在连续..时,;时,;时,,故在连续.,,故不存在.故选C.4.设,且与收敛,绝对收敛是绝对收敛的().A.充分必要条件B.充分不必要条件C.必要不充分条件D.既非充分又非必要条件【答案】A.【解析】由已知条件可知为收敛的正项级数,进而绝对收敛.设绝对收敛,则由与比较判别法,得绝对收玫; 设绝对收敛,则由与比较判别法,得绝对收敛.故选A.5.设均为阶矩阵,,记矩阵的秩分别为,则( )A. B. C. D.【答案】B【解析】由矩阵的初等变换可得,故.,故.,故. 综上,比较可得B正确.6. 下列矩阵不能相似对角化的是( )A. B.C. D.【答案】D.【解析】由于A.中矩阵的特征值为,特征值互不相同,故可相似对角化.B.中矩阵为实对称矩阵,故可相似对角化.C.中矩阵的特征值为,且,故可相似对角化.D.中矩阵的特征值为,且,故不可相似对角化. 选D.7. 已知向量,,,,若既可由线性表示,也可由线性表示,则( ) A . B.C. D.【答案】D.【解析】设,则,对关于的方程组的系数矩阵作初等变换化为最简形,,解得,故.8.设服从参数为1的泊松分布,则().A. B. C. D.【答案】C.【解析】方法一由已知可得,,,故,故选C.方法二由于,于是,因此. 由已知可得,,故,故选C. 9.设为来自总体的简单随机样本,为来自总体的简单随机样本,且两样本相互独立,记,,,,则( )A. B.C. D.【答案】D.【解析】由两样本相互独立可得与相互独立,且,,因此,故选D.10. 已知总体服从正态分布,其中为未知参数,,为来自总体的简单随机样本,且为的无偏估计,则( ).A. B. C. D.【答案】A.【解析】由与,为来自总体的简单随机样本,,相互独立,且,,因而,令,所以的概率密度为,所以,又由为的无偏估计可得,,即,解得,故选A.二、填空题:11~16小题,每小题5分,共30分.请将答案写在答题纸指定位置上.11.当时,与是等价无穷小,则.【答案】【解析】由题意可知,,于是,即,从而.12.曲面在处的切平面方程为_ .【答案】【解析】由于在点处的法向量为,从而曲面在处的切平面方程为.13.设是周期为的周期函数,且,则.【答案】【解析】由题意知,于是.14.设连续函数满足,,则.【答案】【解析】.15.已知向量,若,则.【答案】【解析】,;,;,.故.16. 设随机变量与相互独立,且则. 答案】【解析】.三、解答题:17~22小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.(本题满分10分)设曲线经过点,该曲线上任意一点到轴的距离等于该点处的切线在轴上的截距.(1)求;(2)求函数在的最大值.【解】(1)曲线在点处的切线方程为,于是切线在轴上的截距为,由题意可知,即,此为一阶线性微分方程,根据通解公式可得,将代入上式得,即.(2)由(1)知,于是,. 令,解得唯一驻点,,故.18.(本题满分12分)求函数的极值.【解】由已知可得,,由解得驻点为.又,,.在处,,,取,于是,从而在的领域内;取,于是,从而在的领域内,从而在点处不去极值;在处,,于是,故不是极大值点在处,,于是,是极小值点,极小值.19.(本题满分12分)已知有界闭区域是由,,所围的,为边界的外侧,计算曲面积分.【解】由高斯公式,有.由于关于坐标面对称,是关于的奇函数,因此,所以.20.(本题满分12分)设函数在上有二阶连续导数.(1)证明:若,存在,使得;(2)若在上存在极值,证明:存在,使得.【证明】(1)将在处展开为,其中介于与之间.分别令和,则,,,,两式相加可得,又函数在上有二阶连续导数,由介值定理知存在,使得,即.(2)设在处取得极值,则.将在处展开为,其中介于与之间.分别令和,则,,,,两式相减可得,所以,即.21.(本题满分12分)设二次型,,(1)求可逆变换,将化为.(2)是否存在正交矩阵,使得时,将化为.【解】(1) 由配方法得..令,则,即时,规范形为.令,则时,规范形为.故可得时化为,可逆变换,其中. (2)二次型的矩阵为.,所以的特征值为.二次型的矩阵为.,所以的特征值为.故合同但不相似,故不存在可逆矩阵使得.若存在正交矩阵,当时,,即,即相似,矛盾,故不存在正交矩阵,使得时,化为.22.(本题满分12分)设二维随机变量的概率密度函数为(1)求和的协方差;(2)判断和是否相互独立;(3)求的概率密度函数.【解】(1)由题意可得,和的边缘概率密度分别为因此,其中,,,故.(2)由(1)可知,,故和不相互独立.(3)设的分布函数为,概率密度为,则根据分布函数的定义有当时,;当时,;当时,.综上,故。

2021年至2023年全国考研数学真题(附解析答案)

2021年至2023年全国考研数学真题(附解析答案)

2023年全国硕士研究生招生考试考研(数学三)真题及详解1.已知函数f 一、选择题:1~10小题,每小题5分,共50分。

在每小题给出的四个选项中,只有一个选项是最符合题目要求的,请将所选项前的字母填在答题纸指定位置上。

(x ,y )=ln (y +|xsiny|),则( )。

A .∂∂x f0,1)(不存在,∂∂y f 0,1)(存在B .∂∂x f0,1)(存在,∂∂y f 0,1)(不存在C .∂∂x f0,1)(,∂∂y f 0,1)(均存在D .∂∂x f0,1)(,∂∂yf 0,1)(均不存在2.函数x ≤0)⎩(x +1cos x ,x >0f (x )=的原函数为()。

A. ⎪≤⎧F x x x 1cos sin ,0)⎩(x +x -x x >)()=⎨⎪ln ,0B.⎪+≤⎧F x x x 1cos sin ,0)⎩(x +x -x x >)()=⎨⎪ln 1,0C.⎪+≤⎧F x x x 1sin cos ,0)⎩(x +x +x x >)()=⎨⎪ln ,0D.⎪++≤⎧F x x x 1sin cos ,0)⎩(x +x +x x >)()=⎨⎪ln 1,0)。

3.已知微分方程式y ′′+ay ′+by =0的解在(-∞,+∞)上有界,则(A .a <0,b >0B .a >0,b >0C .a =0,b >0D .a =0,b <0n =1,2,…),若级数∑∞n =1a n 与∑∞n =1bn均收敛,则“级数∑∞n =1an绝对收敛”是“∑∞bnn =14.已知a n <b n(绝对收敛”的()。

A .充分必要条件B .充分不必要条件C .必要不充分条件D .既不充分也不必要条件5.设A ,B 为n 阶可逆矩阵,E 为n 阶单位矩阵,M *为矩阵M 的伴随矩阵,则⎝⎭⎪⎛⎫O B A E *=()。

A .⎝⎭⎪ ⎪-⎛⎫A B B A OB A ****B .⎝⎭⎪⎪-⎛⎫B A A B O A B ****C . ⎝⎭ ⎪ ⎪-⎛⎫B A B A OA B ****D .⎝⎭⎪ ⎪-⎛⎫A BA B OB A ****x 1,x 2,x 3)=(x 1+x 2)2+(x 1+x 3)2-4(x 2-x 3)2的规范形为()。

考研数学历年真题(2008-2017)年数学一

考研数学历年真题(2008-2017)年数学一

(C) ab 0
(D) ab 2
(2)设函数 f x 可导,且 f x f x 0 则( )
(A) f 1 f 1
(B) f 1 f 1
(C) f 1 f 1
(D) f 1 f 1
(3)函数 f x, y, z x2 y z2 在点 1, 2, 0 处沿向量 n 1, 2, 2 的方向导数为( )
y)
(2x
1)e2xy , 且
f
(0,
y)
y
1,
Lt
是从点 (0, 0)
到点 (1,t)
的光滑曲线,计算曲线积分 I (t) f (x, y) dx f (x, y) dy ,并求 I (t) 的最小值
Lt x
y
(18)设有界区域 由平面 2x y 2z 2 与三个坐标平面围成, 为 整个表面的外侧,计算曲面积分
A3x1 x2
B 3x1 x2
C
1
x x
2
D
1
x x2
(4)已知函数
f
x
x, x 0
1 n
,
n
1 1
x
1 n
,n
1, 2,,则(

(A) x 0 是 f x 的第一类间断点
(B) x 0 是 f x 的第二类间断点
(C) f x 在 x 0 处连续但不可导
(D) f x 在 x 0 处可导
0 0 1
2 1 0 1 0 0 B 0 2 0 C 0 2 0 ,则( )
0 0 1 0 0 2
1
(A) A 与 C 相似,B 与 C 相似
(B) A 与 C 相似,B 与 C 不相似
(C) A 与 C 不相似,B 与 C 相似 (D) A 与 C 不相似,B 与 C 不相似

2020年考研数学一真题及答案解析(完整版)

2020年考研数学一真题及答案解析(完整版)

2020年考研数学一真题及答案解析(完整版)2020年考研数学一真题及答案解析(完整版)一、选择题:1~8小题,每小题4分,共32分。

下列每题给出的四个选项中,只有一个选项是符合题目要求的,请将选项前的字母填在答题纸指定位置上。

XXX 时,下列无穷小量中最高阶是()A。

$\int_{x^2}^{et-1}dt$B。

$\int_0^x\frac{3\ln(1+tdt)}{t}$C。

$\int_0^x\frac{\sin x}{\sin t^2}dt$D。

$\int_0^x\frac{1-\cos x}{\sin t^2}dt$2.设函数 $f(x)$ 在区间 $(-1,1)$ 内有定义,且$\lim\limits_{x\to 0}f(x)=0$,则()A。

当 $\lim\limits_{x\to 0}\frac{f(x)}{|x|}=0$,$f(x)$ 在$x=0$ 处可导。

B。

当 $\lim\limits_{x\to 0}\frac{f(x)}{x^2}=0$,$f(x)$ 在$x=0$ 处可导。

C。

当 $f(x)$ 在 $x=0$ 处可导时,$\lim\limits_{x\to0}\frac{f(x)}{|x|}=0$。

D。

当 $f(x)$ 在 $x=0$ 处可导时,$\lim\limits_{x\to0}\frac{f(x)}{x^2}=0$。

3.设函数 $f(x,y)$ 在点 $(0,0)$ 处可微,$f(0,0)=0,n=\begin{pmatrix}\frac{\partial f}{\partialx}(0,0)\\\frac{\partial f}{\partial y}(0,0)\\-1\end{pmatrix}$ 非零向量 $d$ 与 $n$ 垂直,则()A。

$\lim\limits_{(x,y)\to(0,0)}n\cdot(x,y,f(x,y))$ 存在。

B。

$\lim\limits_{(x,y)\to(0,0)}n\times(x,y,f(x,y))$ 存在。

考研数学一-278_真题-无答案

考研数学一-278_真题-无答案

考研数学一-278(总分100,考试时间90分钟)选择题1. 假设随机变量X的分布函数为F(x),概率密度函数f(x)=af。

(x)+bf2(x),其中f1(x)是正态分布N(O,σ2)的密度函数,f2(x)是参数为λ的指数分布的密度函数,已知,则A.a=1,b=0.B.C.D.2. 设随机变量X的分布函数为F(x)A.当x<a时F(x)=0,则F(a)=0.B.当x>a时F(x)=1,则F(a)=1.C.当时,则D.当时,则3. 设随机变量Xi的分布函数为Fi(x),概率密度函数为fi(x),(i=1,2).对任意常数a,(0<a<1)A. F2(x)+a[F2(x)-F1(x)]也是分布函数.B. aF1(x)F2(x)也是分布函数.C. f2(x)+a[f1(x)-f2(x)]也是概率密度函数.D. f1(x)f2(x)也是概率密度函数.4. 已知随机变量X1与X2具有相同的分布函数F(x),设X=X1+X2的分布函A. G(2x)=2F(x).B. G(2x)=F(x)·F(x).C. G(2x)≤2F(x).D. G(2x)≥2F(x).5. 设随机变量X服从正态分布N((1,σ2),其分布函数为F(x),则对任意实数x,有A. F(x)+F(-x)=1.B. F(1+x)+F(1-x)=1.C. F(1+x)+F(x-1)=1.D. F(1-x)+F(x-1)=1.6. 设随机变量X的分布函数为F(x),则可以作出分布函数A.F(ax).**(x2+1).**(x3-1)**(|x|)7. 设随机变量X的概率密度为f(x),则可以作出密度函数A.f(2x).**(2-x).**(x).**(x2).8. 假设随机变量X的密度函数如果常数k使P{X>k}=P{X<k},则k的取值范围是A. (-∞,-2].B. [-1,0].C. [1,2].D. [3,+∞).9. 设随机变量X的密度函数为(λ>0),则概率P<X<λ+a}(a>0)的值A. 与a无关随λ的增大而增大.B. 与a无关随λ的增大而减小.C. 与λ无关随a的增大而增大.D. 与λ无关随a的增大而减小.10. 设随机变量X~N(0,1),其分布函数为Φ(x),则随机变量y=min{x,0}的分布函数F(y)为A.B.C.D.11. 设随机变量X的分布函数为F(x),其密度函数为其中A为常数,则的值为A.B.C.D.12. 连续型随机变量X的分布函数其中的常数a和b为A.B.C.D.13. 设随机变量X的概率密度为,则P{X≤2|X≥1}的值为A.e-2.**.**.**.14. 已知X~N(15,4),若X的值落入区间(-∞,x1),(x1,x2),(x2,x3),(x3,x4),(x4,+∞)内的概率之比为7:24:38:24:7,则x1,x2,x3,x4分别为附:标准正态分布函数值Φ(1.5)=0.93,Φ(0.5)=0.69.A. 12,13.5,16.5,18.B. 11.5,13.5,16.5,18.5.C. 12,14,16,18.D. 11,14,16,19.15. 设随机变量X~N(μ,σ2),σ>0,其分布函数F(x)的曲线的拐点为(a,b),则(a,b)为A.(μ,σ).B.C.D.(0,σ).16. 假设随机变量X与Y相互独立,X服从参数为λ的指数分布,Y的分布律为P{Y=1)=P{Y=-1)=,则X+Y的分布函数A. 是连续函数.B. 恰有一个间断点的阶梯函数.C. 恰有一个间断点的非阶梯函数.D. 至少有两个间断点.17. 设随机变量(X,Y)的分布函数为F(x,y),边缘分布为FX(x)和FY(y),则概率P{X>x,Y>y)等于A. 1-F(x,y).B. 1-FX(x)-FY(y).C. F(x,y)-FX(x)-FY(y)+1.D. FX(x)+FY(y)+F(x,y)-1.18. 设随机变量Xi的分布函数分别为Fi(x),i=1,2.假设:如果Xi为离散型,则Xi~B(1,pi)其中0<Pi<1,i=1,2.如果Xi为连续型,则其概率密度函数为fi(x),i=1,2.已知成立F1(x)≤F2(x),则A. p1≤p2.B. p1≥p2.C. f1(x)≤f2(x).D. f1(x)≥f2(x).19. 假设随机变量X与Y相互独立且都服从参数为λ的指数分布,则可以作出服从参数为2λ的指数分布的随机变量如A.X+Y.B.X-Y.C.max(X,Y).D.min(X,Y).20. 设随机变量X和Y相互独立同分布.已知P{X=k)=pqk-1(k=1,2,3,…)其中0<p<1,q=1-p,则P{X=Y}等于A.B.C.D.21. 已知随机变量X与Y相互独立且都服从正态分布,如果P{X+Y≤1}=,则μ等于A.-1.B.0.C.D.1.22. 设随机变量X与Y相互独立且都服从标准正态分布N(0,1),则A.B.C.D.23. 设随机变量X和Y相互独立,均服从分布,则成立A.P{X=Y)=1.B.C.D.P{X=Y}=0.24. 设随机变量(i=1,2)且满足条件P{X1+X2=0)=1,则P{X1=X2)等于A.0.B.C.D.1.25. 已知随机变量(X,Y)在区域D={(x,y)|-1<x<1,-1<y<1}上服从均匀分布,则A.B.C.D.26. 设(X,Y)具有密度函数,则A. (X,Y)服从二维正态,且X与Y服从一维正态分布.B. (X,Y)服从二维正态,但X与Y不服从一维正态分布.C. (X,Y)不服从二维正态,且X与Y不服从一维正态分布.D. (X,Y)不服从二维正态,但X与Y服从一维正态分布.27. 设二维随机变量(XfY)与(U,V)有相同的边缘分布,则A. (X,Y)与(U,V)有相同的联合分布.B. (X,Y)与(U,V)不一定有相同的联合分布.C. (X+Y)与(U+V)有相同的分布.D. (X-Y)与(U-V)有相同的分布.28. 设随机变量(XfY)的分布函数为F(x,y),则概率P{X>a,y>b}等于A. 1-F(a,b).B. 1-F(a,+∞)-F(+∞,b).C. F(a,b)-F(a,+∞)-F(+∞,b)+1.D. F(a,b)+F(a,+∞)+F(+∞,b)-1.29. 设相互独立的两随机变量X和Y,其中,而Y具有概率密度则的值为A.B.C.D.30. 设相互独立的两随机变量X和Y均且艮从分布,则P{X≤2Y}=A.B.C.D.31. 设随机变量X1,X2,X3,X4均服从分布,则A.X1+X2与X3+X4同分布.**与X3-X4同分布.C.(X1,X1)与(X3,X4)同分布.**,X22,X32,X42同分布.。

2020考研数学二真题含答案解析

2020考研数学二真题含答案解析

2020年全国硕士研究生招生考试数学二试题一、选择题:1~8题,每小题4分,共32分。

下列每题给出的四个选项中,只有一个选项符合题目要求。

(1)当x 0时,下列无穷小量中最高阶的是A. ()x0(e 1)dte1x 1t 2 B.x0ln(1 t )dt3 C.sin x0sin t dt2 D.1 cos xsin 3tdt(2)函数f (x ) A.1个(3)ln1 x(e x 1)(x 2)的第二类间断点的个数为C.3个D.4个()B.2个arcsin xx (1 x )dx 1()2A.42 2B.8 C.(n )4D. 8()(4)已知函数f (x ) x ln(1 x ),当n 3时,f A.(0)(n 2)!nD.n !n 2B.n !n 2 C.(n 2)!n()xy ,xy 0 (5)关于函数f (x ,y )x ,y 0,给出下列结论: y ,x 0f ① x2f 1;②x yB.3(0,0)(0,0)1;③(x ,y ) (0,0)limf (x ,y ) 0;④lim lim f (x ,y ) 0.y 0x 0其中正确的个数为A.4(C.2D.1(D.)(6)设函数f (x )在区间 2,2 上可导,且f (x ) f (x ) 0.则A.)f ( 2)1f ( 1)B.f (0) e f ( 1)C.f (1) e 2f ( 1)f (2) e 3f ( 1)*(7)设4阶矩阵A (a ij )不可逆,a 12的代数余子式A 12 0, 1, 2, 3, 4为矩阵A 的列向量组,A 为A 的伴随矩阵,则方程组A *x 0的通解为A.x k 1 1k 22k 33,其中k 1,k 2,k 3为任意数B.x k 1 1k 22k 34,其中k 1,k 2,k 3为任意数C.x k 1 1k 23k 34,其中k 1,k 2,k 3为任意数D.x k 12k 23k 34,其中k 1,k 2,k 3为任意数()(8)设A 为3阶矩阵, 1, 2为A 的属于特征值1的线性无关的特征向量, 3为A 的属于特征值-1的特1001征向量,则满足P AP 0 10 的可逆矩阵P 可为001A.( 13, 2, 3)B.( 1 2, 2, 3)C.( 1 3, 3, 2)()D.( 1 2, 3, 2)二、填空题:9~14小题,每小题4分,共24分.请将答案写在横线上.x t 2 1d 2y (9)设,则22dxy ln(t t 1)(10) ________.t 110dy1yx 3 1dx ________.(0, )(11)设z arctan xy sin(x y ),则dz ________.(12)斜边长为2a 的等腰直角三角形平板铅直地沉没在水中,且斜边与水面相齐,记重力加速度为g ,水的密度为 ,则该平板一侧所受的水压力为________.(13)设y y (x )满足y 2y y 0,且y (0) 0,y (0) 1,则y (x )dx ________.a(14)行列式a1 1 11a 0110a________.0 11三、解答题:15~23小题,共94分.解答应写出文字说明、证明过程或验算步骤.(15)(本题满分10分)x 1 x求曲线y x 0 的斜渐近线方程. 1 x x(16)(本题满分10分)已知函数f x 连续且lim x 01f (x ) 1,g (x ) f (xt )dt ,求g (x )并证明g (x )在x 0处连续.0x求函数f x ,y x 8y xy 的极值.33(18)(本题满分10分)21 x 2x 设函数f (x )的定义域为 0, 且满足2f (x ) x f.求f (x ),并求曲线2 x 1 x 213y f (x ),y ,y 及y 轴所围图形绕x 轴旋转所成转体的体积.22(19)(本题满分10分)设平面区域D 由直线x 1,x 2,y x 与x 轴围成,计算Dx 2 y 2dxdy .x设函数f (x ) x 1e t dt .22(Ⅰ)证明:存在 (1,2),使得f ( ) (2 )e ;(Ⅱ)证明:存在 (1,2),使得f (2) ln 2 e .2(21)(本题满分11分)设函数f (x )可导,且f (x ) 0,曲线y f (x )(x 0)经过坐标原点O ,其上任意一点M 处的切线与x 轴交于T ,又MP 垂直x 轴与点P .已知由曲线y f (x ),直线MP 以及x 轴所围图形的面积与 MTP 的面积之比恒为3:2,求满足上述条件的曲线的方程.设二次型f (x 1,x 2,x 3) x 1 x 2x 3 2ax 1x 2 2ax 1x 3 2ax 2x 3经过可逆线性变换222 x 1 y 1222x P 2 y 2 化为二次型g (y 1,y 2,y 3) y 1 y 24y 3 2y 1y 2. x y 33(Ⅰ)求a 的值;(Ⅱ)求可逆矩阵P .(23)(本题满分11分)设A 为2阶矩阵,P ( ,A ),其中 是非零向量且不是A 的特征向量.(Ⅰ)证明P 为可逆矩阵;(Ⅱ)若A A 6 0,求P AP ,并判断A 是否相似于对角矩阵.2 12020考研数学真题(数学二)一、选择题:1~8小题,每小题4分,共32分.下列每题给出的四个选项中,只有一个选项是符合题目要求的.请将所选项前的字母填在答题纸指定位置上....1.当x →0+时,下列无穷小量中最高阶的是()A.⎰x0(e -1)dtB.⎰ln(1+t )dtC.⎰0t 2x3sin x0sin t dtD.⎰21-cos xsin 3tdt解析:本题选D.考查了无穷小量的阶的比较,同时考查了变上限积分的函数的求导方法、洛必达法则等。

考研数学三真题及答案

考研数学三真题及答案

6、设二次型 f x , x , x 在正交变换 x Py 下的标准形为 2 y2 y2 y2 ,其中 P e , e , e ,
133
1
2
3
123
若 Q e1, e3, e2 ,则 f x1, x3 , x3 在正交变换 x Qy 下的标准形为( )
(n +1)! nn (n+1)
= limç
n
÷n = 1 <1 ,所以(D)是收敛的。
n (n +1) n! n ç1+ n÷ e
1 1 ç 1÷ 1
1 ç 1÷
对于(B)选项, n1
n
ln
1

n


ln
ç1+
n
÷
,所以
n
n ln ç1+ n÷
11 ,根据 p 级数的
nn

5
f 1 2
11. 若函数 z z(x, y) 由方程 ex2 y3z xyz 1确定,则 dz (0,0)
【答案】 1 dx 2dy
3
zz 【解析】这道题目主要考查的是隐函数求偏导数。对于这道题目求全微分,分别求出 ,
xy
ex2
y3z
1
3
z x
【答案】2
【解析】对于这道题目主要是考查变上限积分求导数。
(1)
1
f (t)dt 1
0
x2
x2
(x) 0 xf (t)dt x0 f (t)dt
(x) x2 f (t)dt xf x 2 2x 0
(1)

1
0f

考研数学一真题及答案(全)

考研数学一真题及答案(全)

全国硕士研究生入学统一考试数学(一)试题一、选择题:1~8小题,每小题4分,共32分.下列每题给出的四个选项中,只有一个选项是符合题目要求的.请将所选项前的字母填在答题纸...指定位置上.(1)若函数10(),0x f x axb x ⎧->⎪=⎨⎪≤⎩在x 连续,则 (A) 12ab =. (B) 12ab =-. (C) 0ab =. (D) 2ab =.【答案】A【详解】由011lim2x b ax a +→-==,得12ab =. (2)设函数()f x 可导,且()'()0f x f x >则(A) ()()11f f >- . (B) ()()11f f <-.(C) ()()11f f >-. (D) ()()11f f <-. 【答案】C【详解】2()()()[]02f x f x f x ''=>,从而2()f x 单调递增,22(1)(1)f f >-. (3)函数22(,,)f x y z x y z =+在点(1,2,0)处沿着向量(1,2,2)n =的方向导数为(A) 12. (B) 6. (C) 4. (D)2 .【答案】D【详解】方向余弦12cos ,cos cos 33===αβγ,偏导数22,,2x y z f xy f x f z '''===,代入cos cos cos x y z f f f '''++αβγ即可.(4)甲乙两人赛跑,计时开始时,甲在乙前方10(单位:m)处.图中,实线表示甲的速度曲线1()v v t =(单位:m/s),虚线表示乙的速度曲线2()v v t =(单位:m/s),三块阴影部分面积的数值一次为10,20,3,计时开始后乙追上甲的时刻记为(单位:s),则(A) 010t =. (B) 01520t <<.(C) 025t =. (D)025t >.【答案】C【详解】在025t =时,乙比甲多跑10m,而最开始的时候甲在乙前方10m 处.(5)设α为n 维单位列向量,E 为n 阶单位矩阵,则(A) T E -αα不可逆. (B) T E +αα不可逆.(C) T 2E +αα不可逆. (D) T 2E -αα不可逆.【答案】A【详解】可设T α=(1,0,,0),则T αα的特征值为1,0,,0,从而T αα-E 的特征值为011,,,,因此T αα-E 不可逆.(6)设有矩阵200021001A ⎛⎫ ⎪= ⎪ ⎪⎝⎭,210020001B ⎛⎫ ⎪= ⎪ ⎪⎝⎭,122C ⎛⎫⎪= ⎪ ⎪⎝⎭(A)A 与C 相似,B 与C 相似. (B) A 与C 相似,B 与C 不相似.(C) A 与C 不相似,B 与C 相似.(D) A 与C 不相似,B 与C 不相似.【答案】B【详解】,A B 的特征值为221,,,但A 有三个线性无关的特征向量,而B 只有两个,所以A 可对角化, B 则不行.(7)设,A B 为随机事件,若0()1P A <<,0()1P B <<,则(|)(|)P A B P B A >的充分必要条件(A) (|)(|)P B A P B A >. (B) (|)(|)P B A P B A <. (C) (|)(|)P B A P B A >. (D) (|)(|)P B A P B A <.【答案】A【详解】由(|)(|)P A B P A B >得()()()()()()1()P AB P AB P A P AB P B P B P B ->=-,即()>()()P AB P A P B ;由(|)(|)P B A P B A >也可得()>()()P AB P A P B .(8)设12,,,(2)n X X X n 为来自总体(,1)N μ的简单随机样本,记11ni i X X n ==∑,则下列结论不正确的是(A)21()ni i X μ=-∑服从2χ分布 . (B) 212()n X X -服从2χ分布.(C)21()nii XX =-∑服从2χ分布. (D) 2()n X -μ服从2χ分布.【答案】B【详解】222211~(0,1)()~(),()~(1)1n ni i i i i X N X n X X n ==----∑∑μμχχ;221~(,),()~(1);X N n X n-μμχ2211()~(0,2),~(1)2n n X X X X N --χ.二、填空题:9~14小题,每小题4分,共24分.请将答案写在答.题纸..指定位置上.(9)已知函数21(),1f x x=+(3)(0)f = . 【答案】0 【详解】2421()1(11)1f x x x x x==-++-<<+,没有三次项.(10)微分方程032=+'+''y y y 的通解为 .【答案】12e ()x y C C -=+【详解】特征方程2230r r ++=得1r =-+,因此12e ()x y C C -=+.(11)若曲线积分⎰-+-L y x aydyxdx 122在区域{}1),(22<+=y x y x D 内与路径无关,则=a.【答案】1-【详解】有题意可得Q Px x∂∂=∂∂,解得1a =-. (12)幂级数111)1(-∞=-∑-n n n nx 在(-1,1)内的和函数()S x = .【答案】21(1)x +【详解】112111(1)[()](1)n n n n n nxx x ∞∞--=='-=--=+∑∑.(13)⎪⎪⎪⎭⎫ ⎝⎛=110211101A ,321ααα,,是3维线性无关的列向量,则()321,,αααA A A 的秩为 .【答案】2【详解】123(,,)()2r r ααα==A A A A(14)设随即变量X 的分布函数4()0.5()0.5()2x F x x -=Φ+Φ,其中)(x Φ为标准正态分布函数,则EX = . 【答案】2【详解】00.54()d [0,5()()]d 222x EX xf x x x x x +∞+∞-∞-==+=⎰⎰ϕϕ. 三、解答题:15~23小题,共94分.解答应写出文字说明、证明过程或演算步骤.请将答案写在答题纸...指定位置上.(15)(本题满分10分).设函数(,)f u v 具有2阶连续偏导数,(e ,cos ),xy f x =求2200,x x dyd y dxdx==.【答案】(e ,cos )x y f x =()''12'12''''''''''111212122222''''11122sin ,0(1,1)sin (sin )sin cos 0(1,1)(1,1)(1,1)x x x x x dyf e f x dx dy x f dx d y f e f x e f e f e f x x f x dx d y x f f f dx ∴=-∴===-+---==+- (16)(本题满分10分).求2limln(1)n k k n n→∞+. 【答案】212221120012202lim ln(1)1122lim ln(1)ln(1)...ln(1)11122lim ln(1)ln(1)...ln(1)1ln(1)ln(1)21111ln(1)02211111ln 2221n k n n k k nn n n n n n n n n n n n n n n n n n x x dx x d x x x x dxx x ∞→∞=→∞→∞+⎛⎫=++++++ ⎪⎝⎭⎛⎫=++++++ ⎪⎝⎭=+=+=+-+-+=-∑⎰⎰⎰1011002111ln 2[(1)]22111111ln 2[()ln(1)]002221111ln 2(1ln 2)2224dxxx dx dx xx x x +=--++=--++=--+=⎰⎰⎰(17)(本题满分10分).已知函数)(x y 由方程333320x y x y +-+-=确定,求)(x y 的极值. 【答案】333320x y x y +-+-=①,方程①两边对x 求导得:22''33330x y y y +-+=②, 令'0y =,得233,1x x ==±. 当1x =时1y =,当1x =-时0y =.方程②两边再对x 求导:'22''''66()330x y y y y y +++=, 令'0y =,2''6(31)0x y y ++=,当1x =,1y =时''32y =-,当1x =-,0y =时''6y =.所以当1x =时函数有极大值,极大值为1,当1x =-时函数有极小值,极小值为0.(18)(本题满分10分).设函数()f x 在区间[0,1]上具有2阶导数,且(1)0f >,0()lim 0x f x x+→<.证明:(I )方程()0f x =在区间(0,1)内至少存在一个实根;(II )方程2()''()['()]0f x f x f x +=在区间(0,1)内至少存在两个不同实根. 【答案】 (1)()lim 0x f x x+→<,由极限的局部保号性,(0,),()0c f c δ∃∈<使得,又(1)0,f >由零点存在定理知,(c,1)ξ∃∈,使得,()0f ξ=.(2)构造()()'()F x f x f x =,(0)(0)'(0)0F f f ==,()()'()0F f f ξξξ==,0()lim 0,'(0)0,x f x f x+→<∴<由拉格朗日中值定理知(1)(0)(0,1),'()010f f f ηη-∃∈=>-,'(0)'()0,f f η<所以由零点定理知1(0,)(0,1)ξη∃∈⊂,使得1'()0f ξ=,111()()'()0,F f f ξξξ∴== 所以原方程至少有两个不同实根。

考研数学(一)历年真题(1990-2021)无水印

考研数学(一)历年真题(1990-2021)无水印

1990年全国硕士研究生入学统一考试数学(一)试卷一、填空题(本题共5小题,每小题3分,满分15分.把答案填在题中横线上)2x t =-+(1)过点(1,21)M -且与直线34y t =-垂直的平面方程是_____________.1z t =-(2)设a 为非零常数,则lim(xx x a x a→∞+-=_____________.(3)设函数()f x =1011x x ≤>,则[()]f f x =_____________.(4)积分222e y xdx dy -⎰⎰的值等于_____________.(5)已知向量组1234(1,2,3,4),(2,3,4,5),(3,4,5,6),(4,5,6,7),====αααα则该向量组的秩是_____________.二、选择题(本题共5小题,每小题3分,满分15分.每小题给出的四个选项中,只有一个符合题目要求,把所选项前的字母填在题后的括号内)(1)设()f x 是连续函数,且e ()(),xxF x f t dt -=⎰则()F x '等于(A)e (e )()xx f f x ----(B)e (e )()xx f f x ---+(C)e(e )()x x f f x ---(D)e(e )()xx f f x --+(2)已知函数()f x 具有任意阶导数,且2()[()],f x f x '=则当n 为大于2的正整数时,()f x 的n 阶导数()()n f x 是(A)1![()]n n f x +(B)1[()]n n f x +(C)2[()]nf x (D)2![()]nn f x (3)设a 为常数,则级数21sin()[n na n ∞=∑(A)绝对收敛(B)条件收敛(C)发散(D)收敛性与a 的取值有关(4)已知()f x 在0x =的某个邻域内连续,且0()(0)0,lim2,1cos x f x f x→==-则在点0x =处()f x(A)不可导(B)可导,且(0)0f '≠(C)取得极大值(D)取得极小值(5)已知1β、2β是非齐次线性方程组=AX b 的两个不同的解1,α、2α是对应其次线性方程组=AX 0的基础解析1,k 、2k 为任意常数,则方程组=AX b 的通解(一般解)必是(A)1211212()2k k -+++ββααα(B)1211212()2k k ++-+ββααα(C)1211212()2k k -+++ββαββ(D)1211212()2k k ++-+ββαββ三、(本题共3小题,每小题5分,满分15分)(1)求120ln(1).(2)x dx x +-⎰(2)设(2,sin ),z f x y y x =-其中(,)f u v 具有连续的二阶偏导数,求2.zx y∂∂∂(3)求微分方程244e xy y y -'''++=的通解(一般解).四、(本题满分6分)求幂级数(21)nn n x∞=+∑的收敛域,并求其和函数.五、(本题满分8分)求曲面积分2SI yzdzdx dxdy =+⎰⎰其中S 是球面2224x y z ++=外侧在0z ≥的部分.六、(本题满分7分)设不恒为常数的函数()f x 在闭区间[,]a b 上连续,在开区间(,)a b 内可导,且()().f a f b =证明在(,)a b 内至少存在一点,ξ使得()0.f ξ'>七、(本题满分6分)设四阶矩阵1100213401100213,0011002100010002-⎡⎤⎡⎤⎢⎥⎢⎥-⎢⎥⎢⎥==⎢⎥⎢⎥-⎢⎥⎢⎥⎣⎦⎣⎦B C 且矩阵A 满足关系式1()-''-=A E C B C E其中E 为四阶单位矩阵1,-C 表示C 的逆矩阵,'C 表示C 的转置矩阵.将上述关系式化简并求矩阵.A 八、(本题满分8分)求一个正交变换化二次型22212312132344448f x x x x x x x x x =++-+-成标准型.九、(本题满分8分)质点P 沿着以AB 为直径的半圆周,从点(1,2)A 运动到点(3,4)B 的过程中受变力F 作用(见图).F的大小等于点P 与原点O 之间的距离,其方向垂直于线段OP 且与y 轴正向的夹角小于.2π求变力F 对质点P 所作的功.十、填空题(本题共3小题,每小题2分,满分6分.把答案填在题中横线上)(1)已知随机变量X 的概率密度函数1()e ,2xf x x -=-∞<<+∞则X 的概率分布函数()F x =____________.(2)设随机事件A 、B 及其和事件的概率分别是0.4、0.3和0.6,若B 表示B 的对立事件,那么积事件AB 的概率()P AB =____________.(3)已知离散型随机变量X 服从参数为2的泊松()Poisson 分布,即22e {},0,1,2,,!k P X k k k -=== 则随机变量32Z X =-的数学期望()E Z =____________.十一、(本题满分6分)设二维随机变量(,)X Y 在区域:01,D x y x <<<内服从均匀分布,求关于X 的边缘概率密度函数及随机变量21Z X =+的方差().D Z1991年全国硕士研究生入学统一考试数学(一)试卷一、填空题(本题共5小题,每小题3分,满分15分.把答案填在题中横线上)(1)设21cos x t y t=+=,则22d y dx =_____________.(2)由方程xyz +=所确定的函数(,)z z x y =在点(1,0,1)-处的全微分dz =_____________.(3)已知两条直线的方程是1212321:;:.101211x y z x y zl l ---+-====-则过1l 且平行于2l 的平面方程是_____________.(4)已知当0x →时123,(1)1ax +-与cos 1x -是等价无穷小,则常数a =_____________.(5)设4阶方阵52002100,00120011⎡⎤⎢⎥⎢⎥=⎢⎥-⎢⎥⎣⎦A 则A 的逆阵1-A =_____________.二、选择题(本题共5小题,每小题3分,满分15分.每小题给出的四个选项中,只有一个符合题目要求,把所选项前的字母填在题后的括号内)(1)曲线221e 1e x xy --+=-(A)没有渐近线(B)仅有水平渐近线(C)仅有铅直渐近线(D)既有水平渐近线又有铅直渐近线(2)若连续函数()f x 满足关系式20()()ln 2,2tf x f dt π=+⎰则()f x 等于(A)e ln 2x(B)2e ln 2x(C)e ln 2x +(D)2e ln 2x +(3)已知级数12111(1)2,5,n n n n n a a ∞∞--==-==∑∑则级数1n n a ∞=∑等于(A)3(B)7(C)8(D)9(4)设D 是平面xoy 上以(1,1)、(1,1)-和(1,1)--为顶点的三角形区域1,D 是D 在第一象限的部分,则(cos sin )Dxy x y dxdy +⎰⎰等于(A)12cos sin D x ydxdy⎰⎰(B)12D xydxdy⎰⎰(C)14(cos sin )D xy x y dxdy+⎰⎰(D)0(5)设n 阶方阵A 、B 、C 满足关系式,=ABC E 其中E 是n 阶单位阵,则必有(A)=ACB E (B)=CBA E (C)=BAC E(D)=BCA E三、(本题共3小题,每小题5分,满分15分)(1)求2lim .x π+→(2)设n是曲面222236x y z ++=在点(1,1,1)P 处的指向外侧的法向量,求函数u =在点P 处沿方向n 的方向导数.(3)22(),x y z dv Ω++⎰⎰⎰其中Ω是由曲线220y zx ==绕z 轴旋转一周而成的曲面与平面4z =所围城的立体.四、(本题满分6分)过点(0,0)O 和(,0)A π的曲线族sin (0)y a x a =>中,求一条曲线,L 使沿该曲线O 从到A 的积分3(1)(2)Ly dx x y dy +++⎰的值最小.五、(本题满分8分)将函数()2(11)f x x x =+-≤≤展开成以2为周期的傅里叶级数,并由此求级数211n n∞=∑的和.六、(本题满分7分)设函数()f x 在[0,1]上连续,(0,1)内可导,且1233()(0),f x dx f =⎰证明在(0,1)内存在一点,c 使()0.f c '=七、(本题满分8分)已知1234(1,0,2,3),(1,1,3,5),(1,1,2,1),(1,2,4,8)a a ===-+=+αααα及(1,1,3,5).b =+β(1)a 、b 为何值时,β不能表示成1234,,,αααα的线性组合?(2)a 、b 为何值时,β有1234,,,αααα的唯一的线性表示式?写出该表示式.八、(本题满分6分)设A 是n 阶正定阵,E 是n 阶单位阵,证明+A E 的行列式大于1.九、(本题满分8分)在上半平面求一条向上凹的曲线,其上任一点(,)P x y 处的曲率等于此曲线在该点的法线段PQ 长度的倒数(Q 是法线与x 轴的交点),且曲线在点(1,1)处的切线与x 轴平行.十、填空题(本题共2小题,每小题3分,满分6分.把答案填在题中横线上)(1)若随机变量X 服从均值为2、方差为2σ的正态分布,且{24}0.3,P X <<=则{0}P X <=____________.(2)随机地向半圆0y a <<为正常数)内掷一点,点落在半圆内任何区域的概率与区域的面积成正比,则原点和该点的连线与x 轴的夹角小于4π的概率为____________.十一、(本题满分6分)设二维随机变量(,)X Y 的密度函数为(,)f x y =(2)2e 0,00 x y x y -+>>其它求随机变量2Z X Y =+的分布函数.1992年全国硕士研究生入学统一考试数学(一)试卷一、填空题(本题共5小题,每小题3分,满分15分.把答案填在题中横线上)(1)设函数()y y x =由方程e cos()0x yxy ++=确定,则dydx=_____________.(2)函数222ln()u x y z =++在点(1,2,2)M -处的梯度grad Mu=_____________.(3)设()f x =211x-+00x x ππ-<≤<≤,则其以2π为周期的傅里叶级数在点x π=处收敛于_____________.(4)微分方程tan cos y y x x '+=的通解为y =_____________.(5)设111212121212,n n n n n n a b a b a b a b a b a b a b a b a b ⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦A 其中0,0,(1,2,,).i ia b i n ≠≠= 则矩阵A 的秩()r A =_____________.二、选择题(本题共5小题,每小题3分,满分15分.每小题给出的四个选项中,只有一个符合题目要求,把所选项前的字母填在题后的括号内)(1)当1x →时,函数1211e 1x x x ---的极限(A)等于2(B)等于0(C)为∞(D)不存在但不为∞(2)级数1(1)(1cos nn a n ∞=--∑常数0)a >(A)发散(B)条件收敛(C)绝对收敛(D)收敛性与a 有关(3)在曲线23,,x t y t z t ==-=的所有切线中,与平面24x y z ++=平行的切线(A)只有1条(B)只有2条(C)至少有3条(D)不存在(4)设32()3,f x x x x =+则使()(0)n f 存在的最高阶数n 为(A)0(B)1(C)2(D)3(5)要使12100,121⎛⎫⎛⎫ ⎪ ⎪== ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭ξξ都是线性方程组=AX 0的解,只要系数矩阵A 为(A)[]212-(B)201011-⎡⎤⎢⎥⎣⎦(C)102011-⎡⎤⎢⎥-⎣⎦(D)011422011-⎡⎤⎢⎥--⎢⎥⎢⎥⎣⎦三、(本题共3小题,每小题5分,满分15分)(1)求0x x →(2)设22(e sin ,),x z f y x y =+其中f 具有二阶连续偏导数,求2.z x y∂∂∂(3)设()f x =21ex x -+00x x ≤>,求31(2).f x dx -⎰四、(本题满分6分)求微分方程323e xy y y -'''+-=的通解.五、(本题满分8分)计算曲面积分323232()()(),x az dydz y ax dzdx z ay dxdy ∑+++++⎰⎰其中∑为上半球面z =的上侧.六、(本题满分7分)设()0,(0)0,f x f ''<=证明对任何120,0,x x >>有1212()()().f x x f x f x +<+七、(本题满分8分)在变力F yzi zxj xyk =++的作用下,质点由原点沿直线运动到椭球面2222221x y z a b c++=上第一卦限的点(,,),M ξηζ问当ξ、η、ζ取何值时,力F 所做的功W 最大?并求出W 的最大值.八、(本题满分7分)设向量组123,,ααα线性相关,向量组234,,ααα线性无关,问:(1)1α能否由23,αα线性表出?证明你的结论.(2)(2)4α能否由123,,ααα线性表出?证明你的结论.九、(本题满分7分)设3阶矩阵A 的特征值为1231,2,3,λλλ===对应的特征向量依次为1231111,2,3,149⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪=== ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ξξξ又向量12.3⎛⎫⎪= ⎪ ⎪⎝⎭β(1)将β用123,,ξξξ线性表出.(2)求(nn A β为自然数).十、填空题(本题共2小题,每小题3分,满分6分.把答案填在题中横线上)(1)已知11()()(),()0,()(),46P A P B P C P AB P AC P BC ======则事件A 、B 、C 全不发生的概率为____________.(2)设随机变量X 服从参数为1的指数分布,则数学期望2{e }XE X -+=____________.十一、(本题满分6分)设随机变量X 与Y 独立,X 服从正态分布2(,),N Y μσ服从[,]ππ-上的均匀分布,试求Z X Y =+的概率分布密度(计算结果用标准正态分布函数Φ表示,其中22()e)t xx dt --∞Φ=.1993年全国硕士研究生入学统一考试数学(一)试卷一、填空题(本题共5小题,每小题3分,满分15分.把答案填在题中横线上)(1)函数1()(2(0)xF x dt x =->⎰的单调减少区间为_____________.(2)由曲线223212x y z +==绕y 轴旋转一周得到的旋转面在点处的指向外侧的单位法向量为_____________.(3)设函数2()()f x x x x πππ=+-<<的傅里叶级数展开式为01(cos sin ),2n n n a a nx b nx ∞=++∑则其中系数3b 的值为_____________.(4)设数量场u =则div(grad )u =_____________.(5)设n 阶矩阵A 的各行元素之和均为零,且A 的秩为1,n -则线性方程组=AX 0的通解为_____________.二、选择题(本题共5小题,每小题3分,满分15分.每小题给出的四个选项中,只有一个符合题目要求,把所选项前的字母填在题后的括号内)(1)设sin 2340()sin(),(),xf x t dtg x x x ==+⎰则当0x →时,()f x 是()g x 的(A)等价无穷小(B)同价但非等价的无穷小(C)高阶无穷小(D)低价无穷小(2)双纽线22222()x y x y +=-所围成的区域面积可用定积分表示为(A)402cos 2d πθθ⎰(B)404cos 2d πθθ⎰(C)2θ(D)2401(cos 2)2d πθθ⎰(3)设有直线1158:121x y z l --+==-与2:l 623x y y z -=+=则1l 与2l 的夹角为(A)6π(B)4π(C)3π(D)2π(4)设曲线积分[()e ]sin ()cos x Lf t ydx f x ydy --⎰与路径无关,其中()f x 具有一阶连续导数,且(0)0,f =则()f x 等于(A)e e 2x x --(B)e e 2x x --(C)e e 12x x -+-(D)e e 12x x-+-(5)已知12324,369t ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦Q P 为三阶非零矩阵,且满足0,=PQ 则(A)6t =时P 的秩必为1(B)6t =时P 的秩必为2(C)6t ≠时P 的秩必为1(D)6t ≠时P 的秩必为2三、(本题共3小题,每小题5分,满分15分)(1)求21lim(sincos ).x x x x →∞+(2)求.x dx (3)求微分方程22,x y xy y '+=满足初始条件11x y==的特解.四、(本题满分6分)计算22,xzdydz yzdzdx z dxdy ∑+-⎰⎰ 其中∑是由曲面z =与z =所围立体的表面外侧.五、(本题满分7分)求级数20(1)(1)2n nn n n ∞=--+∑的和.六、(本题共2小题,每小题5分,满分10分)(1)设在[0,)+∞上函数()f x 有连续导数,且()0,(0)0,f x k f '≥><证明()f x 在(0,)+∞内有且仅有一个零点.(2)设,b a e >>证明.baa b >七、(本题满分8分)已知二次型22212312323(,,)2332(0)f x x x x x x ax x a =+++>通过正交变换化成标准形22212325,f y y y =++求参数a 及所用的正交变换矩阵.八、(本题满分6分)设A 是n m ⨯矩阵,B 是m n ⨯矩阵,其中,n m <I 是n 阶单位矩阵,若,=AB I 证明B 的列向量组线性无关.九、(本题满分6分)设物体A 从点(0,1)出发,以速度大小为常数v 沿y 轴正向运动.物体B 从点(1,0)-与A 同时出发,其速度大小为2,v 方向始终指向,A 试建立物体B 的运动轨迹所满足的微分方程,并写出初始条件.十、填空题(本题共2小题,每小题3分,满分6分.把答案填在题中横线上)(1)一批产品共有10个正品和2个次品,任意抽取两次,每次抽一个,抽出后不再放回,则第二次抽出的是次品的概率为____________.(2)设随机变量X 服从(0,2)上的均匀分布,则随机变量2Y X =在(0,4)内的概率分布密度()Y f y =____________.十一、(本题满分6分)设随机变量X 的概率分布密度为1()e ,.2xf x x -=-∞<<+∞(1)求X 的数学期望EX 和方差.DX (2)求X 与X 的协方差,并问X 与X 是否不相关?(3)问X 与X 是否相互独立?为什么?1994年全国硕士研究生入学统一考试数学(一)试卷一、填空题(本题共5小题,每小题3分,满分15分.把答案填在题中横线上)(1)011lim cot ()sin x x xπ→-=_____________.(2)曲面e 23xz xy -+=在点(1,2,0)处的切平面方程为_____________.(3)设e sin ,xxu y-=则2u x y ∂∂∂在点1(2,π处的值为_____________.(4)设区域D 为222,x y R +≤则2222()Dx y dxdy a b +⎰⎰=_____________.(5)已知11[1,2,3],[1,,23==αβ设,'=A αβ其中'α是α的转置,则n A =_____________.二、选择题(本题共5小题,每小题3分,满分15分.每小题给出的四个选项中,只有一个符合题目要求,把所选项前的字母填在题后的括号内)(1)设4342342222222sin cos ,(sin cos ),(sin cos ),1x M xdx N x x dx P x x x dx x ππππππ---==+=-+⎰⎰⎰则有(A)N P M<<(B)M P N <<(C)N M P <<(D)P M N<<(2)二元函数(,)f x y 在点00(,)x y 处两个偏导数00(,)x f x y '、00(,)y f x y '存在是(,)f x y 在该点连续的(A)充分条件而非必要条件(B)必要条件而非充分条件(C)充分必要条件(D)既非充分条件又非必要条件(3)设常数0,λ>且级数21nn a ∞=∑收敛,则级数1(1)nn ∞=-∑(A)发散(B)条件收敛(C)绝对收敛(D)收敛性与λ有关(4)2tan (1cos )lim2,ln(12)(1)x x a x b x c x d e-→+-=-+-其中220,a c +≠则必有(A)4b d =(B)4b d =-(C)4a c=(D)4a c=-(5)已知向量组1234,,,αααα线性无关,则向量组(A)12233441,,,++++αααααααα线性无关(B)12233441,,,----αααααααα线性无关(C)12233441,,,+++-αααααααα线性无关(D)12233441,,,++--αααααααα线性无关三、(本题共3小题,每小题5分,满分15分)(1)设2221cos()cos()t x t y t t udu ==-⎰,求dy dx 、22d y dx在t =的值.(2)将函数111()ln arctan 412x f x x x x +=+--展开成x 的幂级数.(3)求.sin(2)2sin dxx x +⎰四、(本题满分6分)计算曲面积分2222S xdydz z dxdyx y z +++⎰⎰其中S 是由曲面222x y R +=及,(0)z R z R R ==->两平面所围成立体表面的外侧.五、(本题满分9分)设()f x 具有二阶连续函数,(0)0,(0)1,f f '==且2[()()][()]0xy x y f x y dx f x x y dy '+-++=为一全微分方程,求()f x 及此全微分方程的通解.六、(本题满分8分)设()f x 在点0x =的某一邻域内具有二阶连续导数,且0()lim0,x f x x→=证明级数11()n f n∞=∑绝对收敛.七、(本题满分6分)已知点A 与B 的直角坐标分别为(1,0,0)与(0,1,1).线段AB 绕x 轴旋转一周所成的旋转曲面为.S 求由S 及两平面0,1z z ==所围成的立体体积.八、(本题满分8分)设四元线性齐次方程组(Ⅰ)为122400x x x x +=-=,又已知某线性齐次方程组(Ⅱ)的通解为12(0,1,1,0)(1,2,2,1).k k +-(1)求线性方程组(Ⅰ)的基础解析.(2)问线性方程组(Ⅰ)和(Ⅱ)是否有非零公共解?若有,则求出所有的非零公共解.若没有,则说明理由.九、(本题满分6分)设A 为n 阶非零方阵*,A 是A 的伴随矩阵,'A 是A 的转置矩阵,当*'=A A 时,证明0.≠A 十、填空题(本题共2小题,每小题3分,满分6分.把答案填在题中横线上)(1)已知A 、B 两个事件满足条件()(),P AB P AB =且(),P A p =则()P B =____________.(2)设相互独立的两个随机变量,X Y 具有同一分布率,且X 的分布率为X 01P1212则随机变量max{,}Z X Y =的分布率为____________.十一、(本题满分6分)设随机变量X 和Y 分别服从正态分布2(1,3)N 和2(0,4),N 且X 与Y 的相关系数1,2xy ρ=-设,32X YZ =+(1)求Z 的数学期望EZ 和DZ 方差.(2)求X 与Z 的相关系数.xz ρ(3)问X 与Y 是否相互独立?为什么?1995年全国硕士研究生入学统一考试数学(一)试卷一、填空题(本题共5小题,每小题3分,满分15分.把答案填在题中横线上)(1)2sin 0lim(13)xx x →+=_____________.(2)202cos x d x t dt dx⎰=_____________.(3)设()2,⨯=a b c 则[()()]()+⨯++a b b c c a =_____________.(4)幂级数2112(3)n n nn n ∞-=+-∑的收敛半径R =_____________.(5)设三阶方阵,A B 满足关系式16,-=+A BA A BA 且100310,41007⎡⎤⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦A 则B =_____________.二、选择题(本题共5小题,每小题3分,满分15分.每小题给出的四个选项中,只有一个符合题目要求,把所选项前的字母填在题后的括号内)(1)设有直线:L 321021030x y z x y z +++=--+=,及平面:4220,x y z π-+-=则直线L(A)平行于π(B)在π上(C)垂直于π(D)与π斜交(2)设在[0,1]上()0,f x ''>则(0),(1),(1)(0)f f f f ''-或(0)(1)f f -的大小顺序是(A)(1)(0)(1)(0)f f f f ''>>-(B)(1)(1)(0)(0)f f f f ''>->(C)(1)(0)(1)(0)f f f f ''->>(D)(1)(0)(1)(0)f f f f ''>->(3)设()f x 可导,()()(1sin ),F x f x x =+则(0)0f =是()F x 在0x =处可导的(A)充分必要条件(B)充分条件但非必要条件(C)必要条件但非充分条件(D)既非充分条件又非必要条件(4)设(1)ln(1nn u =-+则级数(A)1nn u∞=∑与21nn u∞=∑都收敛(B)1nn u∞=∑与21nn u∞=∑都发散(C)1nn u∞=∑收敛,而21nn u∞=∑发散(D)1nn u∞=∑收敛,而21nn u∞=∑发散(5)设11121311121321222321222312313233313233010100,,100,010,001101a a a a a a a a a a a a a a a a a a ⎡⎤⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥====⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎣⎦A B P P 则必有(A)12AP P =B (B)21AP P =B (C)12P P A =B(D)21P P A =B三、(本题共2小题,每小题5分,满分10分)(1)设2(,,),(,e ,)0,sin ,yu f x y z x z y x ϕ===其中,f ϕ都具有一阶连续偏导数,且0.zϕ∂≠∂求.du dx (2)设函数()f x 在区间[0,1]上连续,并设1(),f x dx A =⎰求11()().xdx f x f y dy ⎰⎰四、(本题共2小题,每小题6分,满分12分)(1)计算曲面积分,zdS ∑⎰⎰其中∑为锥面z =在柱体222x y x +≤内的部分.(2)将函数()1(02)f x x x =-≤≤展开成周期为4的余弦函数.五、(本题满分7分)设曲线L 位于平面xOy 的第一象限内,L 上任一点M 处的切线与y 轴总相交,交点记为.A 已知,MA OA =且L 过点33(,),22求L 的方程.六、(本题满分8分)设函数(,)Q x y 在平面xOy 上具有一阶连续偏导数,曲线积分2(,)Lxydx Q x y dy +⎰与路径无关,并且对任意t 恒有(,1)(1,)(0,0)(0,0)2(,)2(,),t t xydx Q x y dy xydx Q x y dy +=+⎰⎰求(,).Q x y 七、(本题满分8分)假设函数()f x 和()g x 在[,]a b 上存在二阶导数,并且()0,()()()()0,g x f a f b g a g b ''≠====试证:(1)在开区间(,)a b 内()0.g x ≠(2)在开区间(,)a b 内至少存在一点,ξ使()().()()f fg g ξξξξ''=''八、(本题满分7分)设三阶实对称矩阵A 的特征值为1231,1,λλλ=-==对应于1λ的特征向量为101,1⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦ξ求.A 九、(本题满分6分)设A 为n 阶矩阵,满足('=AA I I 是n 阶单位矩阵,'A 是A 的转置矩阵),0,<A 求.+A I 十、填空题(本题共2小题,每小题3分,满分6分.把答案填在题中横线上)(1)设X 表示10次独立重复射击命中目标的次数,每次射中目标的概率为0.4,则2X 的数学期望2()E X =____________.(2)设X 和Y 为两个随机变量,且34{0,0},{0}{0},77P X Y P X P Y ≥≥=≥=≥=则{max(,)0}P X Y ≥=____________.十一、(本题满分6分)设随机变量X 的概率密度为()X f x =e 0x -00x x ≥<,求随机变量e XY =的概率密度().Y f y1996年全国硕士研究生入学统一考试数学(一)试卷一、填空题(本题共5小题,每小题3分,满分15分.把答案填在题中横线上)(1)设2lim()8,xx x a x a→∞+=-则a =_____________.(2)设一平面经过原点及点(6,3,2),-且与平面428x y z -+=垂直,则此平面方程为_____________.(3)微分方程22e xy y y '''-+=的通解为_____________.(4)函数ln(u x =在点(1,0,1)A 处沿点A 指向点(3,2,2)B -方向的方向导数为_____________.(5)设A 是43⨯矩阵,且A 的秩()2,r =A 而102020,103⎡⎤⎢⎥=⎢⎥⎢⎥-⎣⎦B 则()r AB =_____________.二、选择题(本题共5小题,每小题3分,满分15分.每小题给出的四个选项中,只有一个符合题目要求,把所选项前的字母填在题后的括号内)(1)已知2()()x ay dx ydyx y +++为某函数的全微分,a 则等于(A)-1(B)0(C)1(D)2(2)设()f x 具有二阶连续导数,且0()(0)0,lim1,x f x f x→'''==则(A)(0)f 是()f x 的极大值(B)(0)f 是()f x 的极小值(C)(0,(0))f 是曲线()y f x =的拐点(D)(0)f 不是()f x 的极值,(0,(0))f 也不是曲线()y f x =的拐点(3)设0(1,2,),n a n >= 且1n n a ∞=∑收敛,常数(0,2πλ∈则级数21(1)(tan nnn n a n λ∞=-∑(A)绝对收敛(B)条件收敛(C)发散(D)散敛性与λ有关(4)设有()f x 连续的导数220,(0)0,(0)0,()()(),xf f F x x t f t dt '=≠=-⎰且当0x →时,()F x '与kx 是同阶无穷小,则k 等于(A)1(B)2(C)3(D)4(5)四阶行列式112233440000000a b a b a b b a 的值等于(A)12341234a a a ab b b b -(B)12341234a a a ab b b b +(C)12123434()()a ab b a a b b --(D)23231414()()a ab b a a b b --三、(本题共2小题,每小题5分,满分10分)(1)求心形线(1cos )r a θ=+的全长,其中0a >是常数.(2)设1110,1,2,),n x x n +=== 试证数列{}n x 极限存在,并求此极限.四、(本题共2小题,每小题6分,满分12分)(1)计算曲面积分(2),Sx z dydz zdxdy ++⎰⎰其中S 为有向曲面22(01),z xy x =+≤≤其法向量与z 轴正向的夹角为锐角.(2)设变换2u x y v x ay =-=+可把方程2222260z z z x x y y ∂∂∂+-=∂∂∂∂简化为20,zu v∂=∂∂求常数.a 五、(本题满分7分)求级数211(1)2n n n ∞=-∑的和.六、(本题满分7分)设对任意0,x >曲线()y f x =上点(,())x f x 处的切线在y 轴上的截距等于01(),xf t dt x⎰求()f x 的一般表达式.七、(本题满分8分)设()f x 在[0,1]上具有二阶导数,且满足条件(),(),f x a f x b ''≤≤其中,a b 都是非负常数,c 是(0,1)内任意一点.证明()2.2bf c a '≤+八、(本题满分6分)设,TA =-I ξξ其中I 是n 阶单位矩阵,ξ是n 维非零列向量,Tξ是ξ的转置.证明(1)2=A A 的充分条件是 1.T=ξξ(2)当1T=ξξ时,A 是不可逆矩阵.九、(本题满分8分)已知二次型222123123121323(,,)55266f x x x x x cx x x x x x x =++-+-的秩为2,(1)求参数c 及此二次型对应矩阵的特征值.(2)指出方程123(,,)1f x x x =表示何种二次曲面.十、填空题(本题共2小题,每小题3分,满分6分.把答案填在题中横线上)(1)设工厂A 和工厂B 的产品的次品率分别为1%和2%,现从由A 和B 的产品分别占60%和40%的一批产品中随机抽取一件,发现是次品,则该次品属A 生产的概率是____________.(2)设,ξη是两个相互独立且均服从正态分布2)N 的随机变量,则随机变量ξη-的数学期望()E ξη-=____________.十一、(本题满分6分)设,ξη是两个相互独立且服从同一分布的两个随机变量,已知ξ的分布率为1(),1,2,3.3P i i ξ===又设max(,),min(,).X Y ξηξη==(1)写出二维随机变量的分布率:XY123123(2)求随机变量X 的数学期望().E X1997年全国硕士研究生入学统一考试数学(一)试卷一、填空题(本题共5小题,每小题3分,满分15分.把答案填在题中横线上)(1)2013sin coslim(1cos )ln(1)x x x x x x →+++=_____________.(2)设幂级数1nnn a x∞=∑的收敛半径为3,则幂级数11(1)n nn na x ∞+=-∑的收敛区间为_____________.(3)对数螺线e θρ=在点2(,)(e ,)2ππρθ=处切线的直角坐标方程为_____________.(4)设12243,311t -⎡⎤⎢⎥=⎢⎥⎢⎥-⎣⎦A B 为三阶非零矩阵,且,=AB O 则t =_____________.(5)袋中有50个乒乓球,其中20个是黄球,30个是白球,今有两人依次随机地从袋中各取一球,取后不放回,则第二个人取得黄球的概率是_____________.二、选择题(本题共5小题,每小题3分,满分15分.每小题给出的四个选项中,只有一个符合题目要求,把所选项前的字母填在题后的括号内)(1)二元函数(,)f x y =22(,)(0,0)0(,)(0,0)xyx y x y x y ≠+=,在点(0,0)处(A)连续,偏导数存在(B)连续,偏导数不存在(C)不连续,偏导数存在(D)连续,偏导数不存在(2)设在区间[,]a b 上()0,()0,()0.f x f x f x '''><>令1231(),()(),[()()](),2ba S f x dx S fb b a S f a f b b a ==-=+-⎰则(A)123S S S <<(B)213S S S <<(C)312S S S <<(D)231S S S <<(3)设2sin ()e sin ,x t xF x tdt π+=⎰则()F x (A)为正常数(B)为负常数(C)恒为零(D)不为常数(4)设111122232333,,,a b c a b c a b c ⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥===⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦ααα则三条直线1112223330,0,0a x b y c a x b y c a x b y c ++=++=++=(其中220,1,2,3i i a b i +≠=)交于一点的充要条件是:(A)123,,ααα线性相关(B)123,,ααα线性无关(C)秩123(,,)r =ααα秩12(,)r αα(D)123,,ααα线性相关12,,αα线性无关(5)设两个相互独立的随机变量X 和Y 的方差分别为4和2,则随机变量32X Y -的方差是(A)8(B)16(C)28(D)44三、(本题共3小题,每小题5分,满分15分)(1)计算22(),I xy dv Ω=+⎰⎰⎰其中Ω为平面曲线220y zx ==绕z 轴旋转一周所成的曲面与平面8z =所围成的区域.(2)计算曲线积分()()(),cz y dx x z dy x y dz -+-+-⎰ 其中c 是曲线2212x y x y z +=-+=从z轴正向往z 轴负向看c 的方向是顺时针的.(3)在某一人群中推广新技术是通过其中掌握新技术的人进行的,设该人群的总人数为,N 在0t =时刻已掌握新技术的人数为0,x 在任意时刻t 已掌握新技术的人数为()(x t 将()x t 视为连续可微变量),其变化率与已掌握新技术人数和未掌握新技术人数之积成正比,比例常数0,k >求().x t 四、(本题共2小题,第(1)小题6分,第(2)小题7分,满分13分)(1)设直线:l 030x y b x ay z ++=+--=在平面π上,而平面π与曲面22z x y =+相切于点(1,2,5),-求,a b 之值.(2)设函数()f u 具有二阶连续导数,而(e sin )xz f y =满足方程22222e ,xz z z x y∂∂+=∂∂求().f u五、(本题满分6分)设()f x 连续1,()(),x f xt dt ϕ=⎰且0()lim(x f x A A x→=为常数),求()x ϕ'并讨论()x ϕ'在0x =处的连续性.六、(本题满分8分)设11110,(1,2,),2n n na a a n a +==+= 证明(1)lim n x a →∞存在.(2)级数11(1)nn n a a ∞=+-∑收敛.七、(本题共2小题,第(1)小题5分,第(2)小题6分,满分11分)(1)设B 是秩为2的54⨯矩阵123,[1,1,2,3],[1,1,4,1],[5,1,8,9]TTT==--=--ααα是齐次线性方程组x =B 0的解向量,求x =B 0的解空间的一个标准正交基.(2)已知111⎡⎤⎢⎥=⎢⎥⎢⎥-⎣⎦ξ是矩阵2125312a b -⎡⎤⎢⎥=⎢⎥⎢⎥--⎣⎦A 的一个特征向量.1)试确定,a b 参数及特征向量ξ所对应的特征值.2)问A 能否相似于对角阵?说明理由.八、(本题满分5分)设A 是n 阶可逆方阵,将A 的第i 行和第j 行对换后得到的矩阵记为.B (1)证明B 可逆.(2)求1.-AB 九、(本题满分7分)从学校乘汽车到火车站的途中有3个交通岗,假设再各个交通岗遇到红灯的事件是相互独立的,并且概率都是2.5设X 为途中遇到红灯的次数,求随机变量X 的分布律、分布函数和数学期望.十、(本题满分5分)设总体X 的概率密度为()f x =(1)0x θθ+01x <<其它其中1θ>-是未知参数12,,,,n X X X 是来自总体X 的一个容量为n 的简单随机样本,分别用矩估计法和极大似然估计法求θ的估计量.1998年全国硕士研究生入学统一考试数学(一)试卷一、填空题(本题共5小题,每小题3分,满分15分.把答案填在题中横线上)(1)2112limx x→-=_____________.(2)设1()(),,z f xy y x y f x ϕϕ=++具有二阶连续导数,则2z x y ∂∂∂=_____________.(3)设l 为椭圆221,43x y +=其周长记为,a 则22(234)Lxy x y ds ++⎰ =_____________.(4)设A 为n 阶矩阵*,0,≠A A 为A 的伴随矩阵,E 为n 阶单位矩阵.若A 有特征值,λ则*2()+A E 必有特征值_____________.(5)设平面区域D 由曲线1y x=及直线20,1,e y x x ===所围成,二维随机变量(,)X Y 在区域D 上服从均匀分布,则(,)X Y 关于X 的边缘概率密度在2x =处的值为_____________.二、选择题(本题共5小题,每小题3分,满分15分.每小题给出的四个选项中,只有一个符合题目要求,把所选项前的字母填在题后的括号内)(1)设()f x 连续,则220()x d tf x t dt dx-⎰=(A)2()xf x (B)2()xf x -(C)22()xf x (D)22()xf x -(2)函数23()(2)f x x x x x =---不可导点的个数是(A)3(B)2(C)1(D)0(3)已知函数()y y x =在任意点x 处的增量2,1y xy x α∆∆=++且当0x ∆→时,α是x ∆的高阶无穷小,(0)y π=,则(1)y 等于(A)2π(B)π(C)4eπ(D)4eππ(4)设矩阵111222333a b c a b c a b c ⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦是满秩的,则直线333121212x a y b z c a a b b c c ---==---与直线111232323x a y b z c a a b b c c ---==---(A)相交于一点(B)重合(C)平行但不重合(D)异面(5)设,A B 是两个随机事件,且0()1,()0,(|)(|),P A P B P B A P B A <<>=则必有(A)(|)(|)P A B P A B =(B)(|)(|)P A B P A B ≠(C)()()()P AB P A P B =(D)()()()P AB P A P B ≠三、(本题满分5分)求直线11:111x y z l --==-在平面:210x y z π-+-=上的投影直线0l 的方程,并求0l 绕y 轴旋转一周所成曲面的方程.四、(本题满分6分)确定常数,λ使在右半平面0x >上的向量42242(,)2()()x y xy x y x x y λλ=+-+A i j 为某二元函数(,)u x y 的梯度,并求(,).u x y 五、(本题满分6分)从船上向海中沉放某种探测仪器,按探测要求,需确定仪器的下沉深度(y 从海平面算起)与下沉速度v 之间的函数关系.设仪器在重力作用下,从海平面由静止开始铅直下沉,在下沉过程中还受到阻力和浮力的作用.设仪器的质量为,m 体积为,B 海水密度为,ρ仪器所受的阻力与下沉速度成正比,比例系数为(0).k k >试建立y 与v 所满足的微分方程,并求出函数关系式().y y v =六、(本题满分7分)计算222212(),()axdydz z a dxdy x y z ∑++++⎰⎰其中∑为下半平面z =,a 为大于零的常数.七、(本题满分6分)求2sin sin sin lim .1112x n n n n n n πππ→∞⎡⎤⎢⎥+++⎢⎥+⎢⎥++⎣⎦ 八、(本题满分5分)设正向数列{}n a 单调减少,且1(1)nn n a ∞=-∑发散,试问级数11(1nn n a ∞=+∑是否收敛?并说明理由.九、(本题满分6分)设()y f x =是区间[0,1]上的任一非负连续函数.(1)试证存在0(0,1),x ∈使得在区间0[0,]x 上以0()f x 为高的矩形面积,等于在区间0[,1]x 上以()y f x =为曲边的曲边梯形面积.(2)又设()f x 在区间(0,1)内可导,且2()(),f x f x x'>-证明(1)中的0x 是唯一的.十、(本题满分6分)已知二次曲面方程2222224x ay z bxy xz yz +++++=可以经过正交变换x y z ξηζ⎡⎤⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦P 化为椭圆柱面方程2244,ηξ+=求,a b 的值和正交矩阵.P 十一、(本题满分4分)设A 是n 阶矩阵,若存在正整数,k 使线性方程组kx =A 0有解向量,α且1.k -≠A α0证明:向量组1,,,k -αAαAα 是线性无关的.十二、(本题满分5分)已知方程组(Ⅰ)1111221,222112222,221122,22000n n n n n n n n n a x a x a x a x a x a x a x a x a x +++=+++=+++=的一个基础解析为11121,221222,212,2(,,,),(,,,),,(,,,).TTTn n n n n n b b b b b b b b b 试写出线性方程组(Ⅱ)1111221,222112222,221122,22000n n n n n n n n nb y b y b y b y b y b y b y b y b y +++=+++=+++=的通解,并说明理由.十三、(本题满分6分)设两个随机变量,X Y 相互独立,且都服从均值为0、方差为12的正态分布,求随机变量X Y -的方差.十四、(本题满分4分)从正态总体2(3.4,6)N 中抽取容量为n 的样本,如果要求其样本均值位于区间(1.4,5.4)内的概率不小于0.95,问样本容量n 至少应取多大?附:标准正态分布表22()t zx dt -Φ=⎰z1.28 1.645 1.962.33()x Φ0.9000.9500.9750.990十五、(本题满分4分)设某次考试的学生成绩服从正态分布,从中随机地抽取36位考生地成绩,算得平均成绩为66.5分,标准差为15分.问在显著性水平0.05下,是否可以认为这次考试全体考生的平均成绩为70分?并给出检验过程.附:t 分布表{()()}p P t n t n p≤=0.950.97535 1.6896 2.0301361.68832.02811999年全国硕士研究生入学统一考试数学(一)试卷一、填空题(本题共5小题,每小题3分,满分15分.把答案填在题中横线上)(1)2011lim(tan x x x x→-=_____________.(2)20sin()x d x t dt dx-⎰=_____________.(3)24e xy y ''-=的通解为y =_____________.(4)设n 阶矩阵A 的元素全为1,则A 的n 个特征值是_____________.(5)设两两相互独立的三事件,A B和C满足条件:1,()()(),2ABC P A P B P C =∅==<且已知9(),16P A B C =则()P A =_____________.二、选择题(本题共5小题,每小题3分,满分15分.每小题给出的四个选项中,只有一个符合题目要求,把所选项前的字母填在题后的括号内)(1)设()f x 是连续函数,()F x 是()f x 的原函数,则(A)当()f x 是奇函数时,()F x 必是偶函数(B)当()f x 是偶函数时,()F x 必是奇函数(C)当()f x 是周期函数时,()F x 必是周期函数(D)当()f x 是单调增函数时,()F x 必是单调增函数(2)设20()() 0x f x x g x x >=≤⎩,其中()g x 是有界函数,则()f x 在0x =处(A)极限不存在(B)极限存在,但不连续(C)连续,但不可导(D)可导(3)设 01()122 12x x f x x x ≤≤⎧⎪=⎨-<<⎪⎩,01()cos ,,2n n a S x a n x x π∞==+-∞<<+∞∑其中102()cos n a f x n xdx π=⎰(0,1,2,)n = ,则5()2S -等于(A)12(B)12-(C)34(D)34-(4)设A 是m n ⨯矩阵,B 是n m ⨯矩阵,则(A)当m n >时,必有行列式||0≠AB (B)当m n >时,必有行列式||0=AB (C)当n m >时,必有行列式||0≠AB (D)当n m >时,必有行列式||0=AB (5)设两个相互独立的随机变量X 和Y 分别服从正态分布(0,1)N 和(1,1)N ,则(A)1{0}2P X Y +≤=(B)1{1}2P X Y +≤=(C)1{0}2P X Y -≤=(D)1{1}2P X Y -≤=三、(本题满分6分)设(),()y y x z z x ==是由方程()z xf x y =+和(,,)0F x y z =所确定的函数,其中f 和F 分别具有一阶连续导数和一阶连续偏导数,求.dz dx四、(本题满分5分)求(e sin ())(e cos ),x x LI y b x y dx y ax dy =-++-⎰其中,a b 为正的常数,L 为从点(2,0)A a 沿曲线y =到点(0,0)O 的弧.五、(本题满分6分)设函数()(0)y x x ≥二阶可导且()0,(0) 1.y x y '>=过曲线()y y x =上任意一点。

考研数学试题真题及答案

考研数学试题真题及答案

考研数学试题真题及答案一、选择题(每题5分,共20分)1. 设函数f(x)=x^3-3x,求f'(x)的值。

A. 3x^2-3B. 3x^2+3C. x^2-3xD. x^3-3答案:A2. 计算定积分∫(0,1) x^2 dx。

A. 1/3B. 1/2C. 2/3D. 1/4答案:B3. 已知矩阵A=\[\begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}\],求A的行列式。

A. -2B. 2C. -5D. 5答案:B4. 设随机变量X服从正态分布N(0,1),则P(X>1)的值是多少?A. 0.1587B. 0.8413C. 0.1587D. 0.8413答案:B二、填空题(每题5分,共20分)1. 设函数f(x)=x^3-6x^2+11x-6,求f(2)的值。

答案:12. 已知等差数列的前三项分别为2,5,8,求第n项的通项公式。

答案:a_n = 2 + 3(n-1)3. 计算极限lim(x→0) (sin x)/x。

答案:14. 设函数f(x)=x^2-4x+c,若f(x)在x=2处取得最小值,则c的值为。

答案:4三、解答题(每题10分,共60分)1. 求函数f(x)=x^3-6x^2+11x-6的极值点。

答案:函数f(x)的导数为f'(x)=3x^2-12x+11,令f'(x)=0,解得x=1或x=11/3。

经检验,x=1为极大值点,x=11/3为极小值点。

2. 已知函数f(x)=x^3-3x,求其在区间[-2,2]上的最大值和最小值。

答案:函数f(x)的导数为f'(x)=3x^2-3,令f'(x)=0,解得x=±1。

经检验,f(-2)=-2,f(-1)=2,f(1)=-2,f(2)=2。

因此,在区间[-2,2]上,最大值为2,最小值为-2。

3. 计算定积分∫(0,π) sin x dx。

高等数学历年考研真题十二套含答案

高等数学历年考研真题十二套含答案
考研真题一
1. 求 lim
x ® 0
10. 设 f ( x ) = lim
n ® ¥
( n - 1 ) x , 则 f ( x ) 的间断点为 x = _________ . 04数二考研题 2 nx + 1 cos x 是等价无
05数二考研题
[
2 + e 1/ x sin x + . x 1 + e 4/ x
5. 设 f ( 0 ) = 0 , 则 f ( x ) 在点 x = 0 可导的充要条件为 : (A) lim
0 h ®
15. 设函数 y = y ( x ) 由方程 y = 1 - xe y 确定 , 则 dy dx
1
h 2
1
1 f ( - cos h ) 存在 ;
x ) g ( x ) - f ( x ) g ¢( x ) < 0 , 3. 设 f ( x ) , g ( x ) 是恒大于零的可导函数 , 且 f ¢(
则当 a < x < b 时有 ( ).
00数二考研题
a , b 的值 .
2 ln b - ln a 1 a < < 11. 设 0 < a < b , 证明不等式 2 . a + b 2 b - a ab
01数二考研题
(A) x = 0 , x = 1 都是 f ( x ) 的第一类间断点 ; (B) x = 0 , x = 1 都是 f ( x ) 的第二类间断点 ; (C) x = 0 是 f ( x ) 的第一类间断点 , x = 1 是 f ( x ) 的第二类间断点 ; (D) x = 0 是 f ( x ) 的第二类间断点 , x = 1 是 f ( x ) 的第一类间断点 . 13. lim

历年考研数学真题及答案

历年考研数学真题及答案

历年考研数学真题及答案【篇一:历年考研数学一真题及答案(1987-2014)】ss=txt>(经典珍藏版)1987年全国硕士研究生入学统一考试数学(一)试卷一、填空题(本题共5小题,每小题3分,满分15分.把答案填在题中横线上)(1)当x=_____________时,函数y?x?2x取得极小值.(2)由曲线y?lnx与两直线y?e?1?x及y?0所围成的平面图形的面积是_____________.1?x(3)与两直线y??1?tz?2?t及x?1y?1?2z?11?1都平行且过原点的平面方程为_____________.(4)设l为取正向的圆周x2?y2?9,则曲线积分??l(2xy?2y)dx?(x2?4x)dy= _____________.(5)已知三维向量空间的基底为坐标是_____________.二、(本题满分8分)求正的常数a与b,使等式lim1x2x?0bx?sinx?0?1成立.三、(本题满分7分)(1)设f、g为连续可微函数,u?f(x,xy),v?g(x?xy),求?u?x,?v?x. (2)设矩阵a和b满足关系式ab=a?2b,其中??301?a??110?,求矩阵b.?4??01??四、(本题满分8分)求微分方程y????6y???(9?a2)y??1的通解,其中常数a?0.五、选择题(本题共4小题,每小题3分,满分12分.每小题给出的四个选项中,只有一个符合题目要求,把所选项前的字母填在题后的括号内) (1)设limf(x)?f(a)x?a(x?a)2??1,则在x?a处 (a)f(x)的导数存在,且f?(a)?0 (b)f(x)取得极大值(c)f(x)取得极小值 (d)f(x)的导数不存在 (2)设f(x)为已知连续函数s,i?t?t0f(tx)dx,其中t?0,s?0,则i的值(a)依赖于s和t (b)依赖于s、t和x(c)依赖于t、x,不依赖于s (d)依赖于s,不依赖于t(3)设常数?k?0,则级数?(?1)nk?nn2n?1(a)发散(b)绝对收敛(c)条件收敛(d)散敛性与k的取值有关(4)设a为n阶方阵,且a的行列式|a|?a?0,而a*是a的伴随矩阵,则|a*|等于(a)a (b)1a(c)an?1(d)an六、(本题满分10分)求幂级数??1n?1n?1n?2nx的收敛域,并求其和函数.七、(本题满分10分)求曲面积分i???x(8y?1)dydz?2(1?y2)dzdx?4yzdxdy,?其中?是由曲线f(x)???z?1?y?3?绕y轴旋转一周而成的曲面,其法向量与y轴正向的夹角恒大于?.2x?0??八、(本题满分10分)设函数f(x)在闭区间[0,1]上可微,对于[0,1]上的每一个x,函数f(x)的值都在开区间(0,1)内,且f?(x)?1,证明在(0,1)内有且仅有一个x,使得f(x)?x.九、(本题满分8分)问a,b为何值时,现线性方程组x1?x2?x3?x4?0x2?2x3?2x4?1?x2?(a?3)x3?2x4?b3x1?2x2?x3? ax4??1有唯一解,无解,有无穷多解?并求出有无穷多解时的通解.十、填空题(本题共3小题,每小题2分,满分6分.把答案填在题中横线上)(1)设在一次实验中,事件a发生的概率为p,现进行n次独立试验,则a至少发生一次的概率为____________;而事件a至多发生一次的概率为____________.(2)有两个箱子,第1个箱子有3个白球,2个红球, 第2个箱子有4个白球,4个红球.现从第1个箱子中随机地取1个球放到第2个箱子里,再从第2个箱子中取出1个球,此球是白球的概率为____________.已知上述从第2个箱子中取出的球是白球,则从第一个箱子中取出的球是白球的概率为____________. (3)已知连续随机变量x的概率密度函数为f(x)?十一、(本题满分6分)设随机变量x,y相互独立,其概率密度函数分别为fx(x)??x2?2x?1,则x的数学期望为____________,x的方差为____________.10?x?1其它,?yy?0,求zfy(y)?y?00?2x?y的概率密度函数.【篇二:历年考研数学一真题及答案(1987-2014)】ass=txt>数学(一)试卷一、填空题(本题共5小题,每小题3分,满分15分.把答案填在题中横线上)二、(本题满分8分)(1)当x=_____________时,函数y?x?2x取得极小值. (2)由曲线y?lnx与两直线y?e?1?x及y?0所围成的平面图形的面积是_____________.1?xx12求正的常数a与b,使等式lim?1成立. x?0bx?sinx?0(5)已知三维向量空间的基底为坐标是_____________.三、(本题满分7分)(1)设f、g为连续可微函数,u??u?v,. ?x?xf(x,xy),v?g(x?xy),(3)与两直线y??1?tz?2?t及x?1y?2z?1??111都平行且过原点的平面方程为_____________.(4)设l(2)设矩阵?3a???1??011a和b满足关系式ab=a?2b,其中l为取正向的圆周x2?y2?9,则曲线积分21??求矩阵0b. ?,?4???(2xy?2y)dx?(x?4x)dy= _____________.第 1 页共 1 页四、(本题满分8分)求微分方程y????6y???(9?a2)y??1的通解,其中常数a?0.五、选择题(本题共4小题,每小题3分,满分12分.每小题给出的四个选项中,只有一个符合题目要求,把所选项前的字母填在题后的括号内) (1)设limx?at和x(c)依赖于t、x,不依赖于s (d)依赖于s,不依赖于t(3)设常数k?0,则级数?(?1)nk?2nn?1n(a)发散(b)绝对收敛(c)条件收敛(d)散敛性f(x)?f(a)??1,则在x?a处 2(x?a)f(x)(a)f(x)的导数存在,且f?(a)?0 (b)得极大值(c)f(x)取得极小值 (d)导数不存在(2)设f(x)为已知连续函数,i?t?ist0取与k的取值有关(4)设a为n阶方阵,且a的行列式|a|?a?0,而a是a的伴*f(x)(a)a (b)1af(tx)dx,其中t?0,s?0,则(c)a (d)an?1n的值(a)依赖于s和t (b)依赖于s、六、(本题满分10分)第 2 页共 2 页求幂级数?七、(本题满分10分)??z?1?y?3其中?是由曲线f(x)??绕y轴旋转一周而成的曲面,其法向量与y轴正向的夹角恒大于?.2x?0??1n?1的收敛域,并求其和函数. xn2n?1n??求曲面积分i???x(8y?1)dydz?2(1?y2)dzdx?4yzdxdy,八、(本题满分10分)设函数f(x)在闭区间[0,1]上可微,对于[0,1]上的每一个x,函数f(x)的值都在开区间(0,1)内,且f?(x)?1,证明在(0,1)内有且仅有一个x,使得f(x)?x.九、(本题满分8分)问a,b为何值时,现线性方程组x1?x2?x3?x4?0x2?2x3?2x4?1?x2?(a?3)x3?2x4?b3x1?2x2?x3? ax4??1第 3 页共 3 页有唯一解,无解,有无穷多解?并求出有无穷多解时的通解.十、填空题(本题共3小题,每小题2分,满分6分.把答案填在题中横线上)(1)设在一次实验中,事件a发生的概率为p,现进行n次独立试验,则a至少发生一次的概率为____________;而事件a至多发生一次的概率为____________.(2)有两个箱子,第1个箱子有3个白球,2个红球, 第2个箱子有4个白球,4个红球.现从第1个箱子中随机地取1个球放到第2个箱子里,再从第2个箱子中取出1个球,此球是白球的概率为____________.已知上述从第2个箱子中取出的球是白球,则从第一个箱子中取出的球是白球的概率为____________. (3)已知连续随机变量x的概率密度函数为f(x)?十一、(本题满分6分)设随机变量x,y相互独立,其概率密度函数分别为fx(x)?1?x2?2x?1,则x的数学期望为____________,x的方差为____________.0?x?1其它,fy(y)? y?0,求z?2x?y的概率密度函数.?yy?0第 4 页共 4 页第 5 页共 5 页【篇三:历年考研数学一真题及答案(1987-2013)】ss=txt>数学(一)试卷一、填空题(本题共5小题,每小题3分,满分15分.把答案填在题中横线上)(1)?=_____________.(2)曲面x2?2y2?3z2?21在点(1,?2,?2)的法线方程为_____________.(3)微分方程xy???3y??0的通解为_____________.?121?(4)已知方程组??23a?2???x1??1?x???3??1a?2???2无解,则a= ???????x3????0??_____________.(5)设两个相互独立的事件a和b都不发生的概率为19,a发生b不发生的概率与b发生a不发生的概率相等,则p(a)=_____________.二、选择题(本题共5小题,每小题3分,满分15分.每小题给出的四个选项中,只有一个符合题目要求,把所选项前的字母填在题后的括号内) (1)设f(x)、g(x)是恒大于零的可导函数,且f?(x)g(x)?f(x)g?(x)?0,则当a?x?b时,有(a)f(x)g(b)?f(b)g(x)(b)f(x)g(a)?f(a)g(x)(c)f(x)g(x)?f(b)g(b)(d)f(x)g(x)?f(a)g(a)(2)设s:x2?y2?z2?a2(z?0),s1为s在第一卦限中的部分,则有(a)??xds?4s??xdss1(b)??yds?4??xdsss1(c)??zds?4??xdsss1(d)??xyzds?4??xyzdsss1(3)设级数??un收敛,则必收敛的级数为n?1(a)??(?1)nun (b)??u2nn?1nn?1(c)??(u2n?1?u2n)n?1(d)??(un?un?1)n?1(a)e(x)?e(y)(b)e(x2)?[e(x)]2?e(y2)?[e(y)]2(c)e(x2)?e(y2) (d)e(x2)?[e(x)]2?e(y2)?[e(y)]2三、(本题满分6分) 1求lim(2?exx??4?sinx).1?exx四、(本题满分5分) 设z?f(xy,xy)?g(xy),其中f具有二阶连续偏导数,g具有二阶连续导数,求?2z?x?y.五、(本题满分6分) 计算曲线积分i??xdy?ydxl4x2?y2,其中l是以点(1,0)为中心,r为半径的圆周(r?1),取逆时针方向.六、(本题满分7分)设对于半空间x?0内任意的光滑有向封闭曲面s,都有??xf(x)dydz?xyf(x)dzdx?e2xzdxdy?0,其中函数f(x)在s(0,??)内具有连续的一阶导数,且xlim?0?f(x)?1,求f(x).七、(本题满分6分)求幂级数??1xnn?13n?(?2)nn的收敛区间,并讨论该区间端点处的收敛性.八、(本题满分7分)设有一半径为r的球体,p0是此球的表面上的一个定点,球体上任一点的密度与该点到p0距离的平方成正比(比例常数k?0),求球体的重心位置.九、(本题满分6分) 设函数f(x)在[0,?]上连续,且???f(x)dx?0,?0f(x)cosxdx?0.试证:在(0,?)内至少存在两个不同的点?1,?2,使f(?1)?f(?2)?0.十、(本题满分6分)??1000?000? 设矩阵a的伴随矩阵a*??1??1010??,且?0?308??aba?1?ba?1?3e,其中e为4阶单位矩阵,求矩阵b.十一、(本题满分8分)某适应性生产线每年1月份进行熟练工与非熟练工的人数统计,然后将16熟练工支援其他生产部门,其缺额由招收新的非熟练工补齐.新、老非熟练工经过培训及实践至年终考核有25成为熟练工.设第n年1月份统计的熟练工与非熟练工所占百分比分别为xn和yn,记成向量??xn?y??. ?n(1)求??xn?1?与??xn?的关系式并写成矩阵形?y?n?1??y?n?式:??xn?1??xn?y??a???. n?1??yn??1??是a的两个线性无关的特征向量,并求出相应的特征值.?1?(3)当??x1??2?时,求??y?????xn?1??. 1???1??yn?1??2??十二、(本题满分8分)某流水线上每个产品不合格的概率为p(0?p?1),各产品合格与否相对独立,当出现1个不合格产品时即停机检修.设开机后第1次停机时已生产了的产品个数为x,求x的数学期望e(x)和方差d(x).十三、(本题满分6分) 设某种元件的使用寿命x的概率密度为?2e?2(x??)x??f(x;?)??x???0x1,x2,,其中??0为未知参数.又设,xn是x的一组样本观测值,求参数?的最大似然估计值.2001年全国硕士研究生入学统一考试数学(一)试卷一、填空题(本题共5小题,每小题3分,满分15分.把答案填在题中横线上)(1)设y?ex(asinx?bcosx)(a,b为任意常数)为某二阶常系数线性齐次微分方程的通解,则该方程为_____________. (2)r?x2?y2?z2,则div(gradr)(1,?2,2)=_____________.(3)交换二次积分的积分次序:?01?y?1dy?2f(x,y)dx=_____________. (4)设a2?a?4e?o,则(a?2e)?1= _____________.(5)d(x)?2,则根据车贝晓夫不等式有估计p{x?e(x)?2}? _____________.二、选择题(本题共5小题,每小题3分,满分15分.每小题给出的四个选项中,只有一个符合题目要求,把所选项前的字母填在题后的括号内) (1)设函数f(x)在定义域内可导,y?f(x)的图形如右图所示,则y?f?(x)的图形为(a)(b)(c)。

2020考研数学一真题及答案解析

2020考研数学一真题及答案解析

f
(12)设函数
x, y
xy ext2 dt
0
,则
2 f xy
1,1

【答案】 4e
a 0 1 1
0 a 1 1 1 1 a 0
(13)行列式 1 1 0 a

【答案】 a4 4a2 .
(14)已知随机变量
X
服从区间
2
,
2
上的均匀分布, Y
sin
X
,则 Cov X ,Y

2 【答案】 .
y2 8xy 4x2 (4x2 y2)2
,
P (4x2 y 2 ) 2y(4x y) y 2 8xy 4x2 ,
y
(4x2 y 2)2
(4x2 y 2)2
I
=
L1
4x 4x2
y y2
dx
x y 4x2 y2
dy
=
1 2
(4x
y)dx
(x
y)dy
L1
1 2
1
1
(1) dxdy
(B) n1
收敛,则
r
R
(D) r R ,则 n1 a2n x2n 收敛
(5)若矩阵 A 由初等列变换为矩阵 B ,则()
(A)存在矩阵 P ,使 PA B ;
(B)存在矩阵 P ,使 BP A ;
(C)存在矩阵 P ,使 PB A ;
(D)方程组 AX 0 与 BX =0 同解;
【答案】(B).
2020 年全国硕士研究生入学统一考试
数学(一)试题
一、 选择题:1~8 小题,每小题 4 分,共 32 分.下列每题给出的四个选项中,只有一个选项是符合题目要求
的.请将所选项前的字母填在答.题.纸.指定位置上.

考研数学一真题及答案

考研数学一真题及答案

考研数学一真题(一)一、填空题(本题共6小题,每小题4分,满分24分。

答案写在题中横线上)(1)曲线的斜渐近线方程为。

【答案】【解析】所以斜渐近线方程为。

综上所述,本题正确答案是。

【考点】高等数学—一元函数微分学—函数图形的凹凸性、拐点及渐近线(2)微分方程满足的解为。

【答案】【解析】原方程等价于所以通解为将代入可得综上所述,本题正确答案是。

【考点】高等数学—常微分方程—一阶线性微分方程(3)设函数,单位向量,则。

【答案】【解析】因为所以综上所述,本题正确答案是。

【考点】高等数学—多元函数微分学—方向导数和梯度(4)设是由锥面与半球面围成的空间区域,是的整个边界的外侧,则。

【答案】。

【解析】综上所述,本题正确答案是。

【考点】高等数学—多元函数积分学—两类曲面积分的概念、性质及计算(5)设均为三维列向量,记矩阵如果,那么。

【答案】2。

【解析】【方法一】【方法二】由于两列取行列式,并用行列式乘法公式,所以综上所述,本题正确答案是2。

【考点】线性代数—行列式—行列式的概念和基本性质,行列式按行(列)展开定理(6)从数中任取一个数,记为,再从中任一个数,记为,则。

【答案】。

【解析】【方法一】先求出的概率分布,因为是等可能的取,故关于的边缘分布必有,而只从中抽取,又是等可能抽取的概率为所以即:X Y12341000200304所以【方法二】1综上所述,本题正确答案是。

【考点】概率论与数理统计—多维随机变量及其分布—二维离散型随机变量的概率分布、边缘分布和条件分布二、选择题(本题共8小题,每小题4分,满分32分。

在每小题给出的四个选项中,只有一项符合题目要求。

)(7)设函数,则(A)处处可导 (B)恰有一个不可导点 (C)恰有两个不可导点 (D)恰有三个不可导点 【答案】C 。

【解析】 由知由的表达式和其图像可知在处不可导,在其余点均可导。

综上所述,本题正确答案是C 。

【考点】高等数学—一元函数微分学—导数和微分的概念 (8)设是连续函数的一个原函数,表示的充分必要条件是,则必有(A)是偶函数是奇函数 (B)是奇函数是偶函数 (C)是周期函数是周期函数 (D)是单调函数是单调函数【答案】A 。

2022年考研数学真题(附解析答案)

2022年考研数学真题(附解析答案)

2022年全国硕士研究生招生考试数学试题(数学三)(科目代码:303)一、选择题:1~10小题,每小题5分,共50分,下列每题给出的四个选项中,只有一个选项是符合题目要求的,请将所有选项前的字母填在答题卡指定位置(1)当0→x 时,)(),(x x βα是非零无穷小量,给出以下四个命题①若)(~)(x x βα,则)(~)(22x x βα②若)(~)(22x x βα,则)(~)(x x βα③若)(~)(x x βα,则))(()()(x o x x αβα=-④若))(()()(x o x x αβα=-,则)(~)(x x βα其中正确的是()(A)①②(B)①④(C)①③④(D)②③④(2)已知,...)2,1()1(=--=n nn a nn n ,则}{n a ()(A)有最大值,有最小值(B)有最大值,没有最小值(C)没有最大值,有最小值(D)没有最大值,没有最小值(3)设函数)(t f 连续,令0(,)()()d x y F x y x y t f t t -=--⎰,则()(A)y F x F y F x F 2222,∂∂=∂∂∂∂=∂∂(B)y Fx F y F x F 2222,∂∂-=∂∂∂∂=∂∂(C)yF x F y F x F 2222,∂∂=∂∂∂∂-=∂∂(D)yFx F y F x F 2222,∂∂-=∂∂∂∂-=∂∂(4)已知111123000ln(1)2d d d ,2(1cos )1cos 1sin x x xI x I x I x x x x+===+++⎰⎰⎰,,则()(A )321I I I <<(B )312I I I <<(C )231I I I <<(D )123I I I <<(5)设A 为3阶矩阵,100010000⎛⎫⎪=- ⎪ ⎪⎝⎭Λ,则A 的特征值为0,11-,的充分必要条件是()(A)存在可逆矩阵,P Q ,使得=A PΛQ(B)存在可逆矩阵P ,使得1-=A PΛP (C)存在正交矩阵Q ,使得1-=A QΛQ (D)存在可逆矩阵P ,使得T=A PΛP (6)设矩阵2211111,214a a b b ⎛⎫⎛⎫ ⎪ ⎪== ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭A b ,则线性方程组=Ax b 解的情况为()(A)无解(B)有解(C)有无穷多解或无解(D)有唯一解或无解(7)设11,1λ⎛⎫ ⎪= ⎪ ⎪⎝⎭α21,1λ⎛⎫ ⎪= ⎪ ⎪⎝⎭α311,λ⎛⎫ ⎪= ⎪ ⎪⎝⎭α421,λλ⎛⎫ ⎪= ⎪ ⎪⎝⎭α若向量组123,,ααα与124,,ααα等价,则λ的取值范围是()(A )}1,0{(B )}2|{-≠∈λλλ,R (C )}2,1,|{-≠-≠∈λλλλR (D )}1|{-≠∈λλλ,R (8)设随机变量)4,0(~N X ,随机变量)31,3(~B Y ,且X 与Y 不相关,则=+-)13(Y X D ()(A)2(B)4(C)6(D)10(9)设随机变量序列 ,,,,21n X X X 独立同分布,且1X 的概率密度为⎩⎨⎧<-=其他,01|||,|1)(x x x f ,则∞→n 时,211i n i X n =∑依概率收敛于()(A)81(B)61(C)31(D)21(10)设二维随机变量),(Y X 的概率分布若事件}2},{max{=Y X 与事件}1},{min{=Y X 相互独立,则=),(Y X Cov ()(A)6.0-(B)36.0-(C)0(D)0.48Y X0121-0.10.1b 1a0.10.1二、填空题:11-16小题,每小题5分,共30分(11)cot 01e lim()2x xx →+=_______.(12)2224d 24x x x x -=++⎰_______.(13)已知函数sin sin ()e e x x f x -=+,则=''')2(πf _______.(14)已知函数e ,01()0,x x f x ⎧≤≤=⎨⎩其他,则d ()()d x f x f y x y +∞+∞-∞-∞-=⎰⎰_______.(15)设A 为3阶矩阵,交换A 的第2行和第3行,再将第2列的1-倍加到第1列,得到矩阵⎪⎪⎪⎭⎫⎝⎛----001011112,则1-A 的迹1()tr -=A _______.(16)设,,A B C 为随机事件,且A 与B 互不相容,A 与C 互不相容,B 与C 相互独立,31)()()(===C P B P A P ,则=)|(C B A C B P _______.三、解答题:17-22小题,共70分.解答应写出文字说明、证明过程或演算步骤(17)(本题满分10分)设函数)(x y 是微分方程x y xy +=+'221满足条件3)1(=y 的解,求曲线)(x y y =的渐近线.(18)(本题满分12分)设某产品的产量Q 由资本投入量x 和劳动投入量y 决定,生产函数为612112y x Q =,该产品的销售单价P 与Q 的关系为 1.5Q 1160-=P ,若单位资本投入和单位劳动投入的价格分别为6和8,求利润最大时的产量.(19)(本题满分12分)已知平面区域}20,42|),{(2≤≤-≤≤-=y y x y y x D ,计算y x y x y x I Dd d )(222⎰⎰+-=.(20)(本题满分12分)求幂级数nn nn x n 20)12(41)4(∑∞=++-的收敛域及和函数)(x S .(21)已知二次型312322213212343),,(x x x x x x x x f +++=(i)求正交变换=x Qy 将),,(321x x x f 化为标准形;(ii)证明T()min2x f x ≠=x x.(22)设n X X X ,,,21 为来自均值为θ的指数分布总体的简单随机样本,求m Y Y Y ,,,21 为来自均值为θ2的指数分布总体的简单随机样本,且两样本相互独立,其中)0(>θθ是未知参数.利用样本m n Y Y Y X X X ,,,,,,,2121 ,求θ的最大似然估计量θˆ,并求)ˆ(θD .一、选择题:1~10小题,每小题5分,共50分,下列每小题给出的四个选项中,只有一项符合题目要求的,请将所选项前的字母填在答题纸...指定位置上. (1)当0x →时,()(),x x αβ是非零无穷小量,给出以下四个命题 ①若()()~x x αβ,则()()22~x x αβ②若()()22~x x αβ,则()()~x x αβ③若()()~x x αβ,则()()()()x x o x αβα-= ④若()()()()x x o x αβα-=,则()()~x x αβ 其中正确的序号是( ) (A )①②(B )①④ (C )①③④(D )②③④【答案】C【解析】当0x →时,()()x x αβ:,则222000()()()lim1,lim lim 1()()()x x x x x x x x x αααβββ→→→⎡⎤===⎢⎥⎣⎦,则: 0()()lim0()x x x x αβα→-=,所以()()(())x x o x αβα-=,故①③正确;当0x →时,22()()x x αβ:,则220()lim 1()x x x αβ→=,则0()lim1()x x x αβ→=±,当0()lim 1()x x x αβ→=-时, ()x α与()x β不是等价无穷小,所以②不正确;当()()(())x x o x αβα-=时,000()()()limlim lim 1()()(())()x x x x x x x x o x x αααβααα→→→===-,④正确.(2)已知()()11,2,nna n n-==L ,则{}n a ( )(A )有最大值,有最小值 (B )有最大值,没有最小值 (C )没有最大值,有最小值(D )没有最大值,没有最小值【答案】(A )2022年研究生考试数学三真题及详解【解析】()1lim lim 1nn n n a n →∞→∞⎤-=-=⎥⎥⎣⎦,12121,12a a =>=<,则{}n a 有最大值,有最小值(3)设函数()f t 连续,令()()()0,x yF x y x y t f t dt -=--⎰,则( )(A )2222,F F F Fx y x y ∂∂∂∂==∂∂∂∂(B )2222,F F F Fx y x y ∂∂∂∂==-∂∂∂∂(C )2222,F F F F x y x y∂∂∂∂=-=∂∂∂∂(D )2222,F F F F x y x y∂∂∂∂=-=-∂∂∂∂【答案】C【解析】原式0()()()x yx yx y f t dt tf t dt --=--⎰⎰则:00()()()()()()x y x y Ff t dt x y f x y x y f x y f t dt x--∂=+-----=∂⎰⎰,22()Ff x y x∂=-∂ 同理:00()()()()()()x y x y Ff t dt x y f x y x y f x y f t dt y--∂=----+--=-∂⎰⎰22()Ff x y y∂=-∂ 综上所述:2222,F F F Fx y x y∂∂∂∂=-=∂∂∂∂.(4)已知1102(1cos )x I dx x =+⎰,120ln(1)1cos x I dx x+=+⎰,13021sin xI dx x =+⎰,则( ) (A )123I I I << (B )213I I I << (C )132I I I <<(D )321I I I <<【答案】A【解析】令()ln(1)2x h x x =+-,11()012h x x '=->+,()0, 1x ∈,于是()h x 单调递增,又由(0)0h =可知()ln(1)02xh x x =+->,其中()0, 1x ∈,故ln(1)2(1cos )1cos x x x x +<++,故12I I <. 当()0, 1x ∈时,,则,故23I I <.(5)设A 为3阶矩阵,100010000⎡⎤⎢⎥Λ=-⎢⎥⎢⎥⎣⎦,则A 特征值为1,1,0-的充分必要条件是( )(A )存在可逆矩阵,P Q ,使得A P Q =Λ (B )存在可逆矩阵P ,使得1A P P -=Λ (C )存在正交矩阵Q ,使得1A Q Q -=Λ (D )存在可逆矩阵P ,使得T A P P =Λ 【答案】(B )【解析】若(B )成立,则矩阵A Λ与相似,特征值相等,可推出A 特征值为1,1,0- 若A 特征值为1,1,0-,则矩阵A 可以相似对角化,矩阵A Λ与相似,所以(B )为充要条件(6)设矩阵2211111,214A a a b b b ⎡⎤⎡⎤⎢⎥⎢⎥==⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦,则线性方程组Ax b =的解的情况为( ) (A )无解(B )有解(C )有无穷多解或无解(D )有唯一解或无解【答案】(D )【解析】()()()11A a b b a =---, 当1,1,a b a b ≠≠≠时,方程有唯一解,当1a b ==时,()1111,00010000A b ⎡⎤⎢⎥→⎢⎥⎢⎥⎣⎦,方程无解,故选(D ) (7)设1=11λα⎛⎫ ⎪ ⎪ ⎪⎝⎭,21=1αλ⎛⎫ ⎪ ⎪ ⎪⎝⎭,31=1αλ⎛⎫ ⎪ ⎪ ⎪⎝⎭,421=αλλ⎛⎫⎪⎪ ⎪⎝⎭,若向量组123,,ααα与124,,ααα等价,则λ的取值范围是( ))cos 1(22)sin 1()1ln()sin 1(x x x x x x +<<+<++xxx x sin 12cos 1)1ln(+<++(A ){}01,(B ){},2R λλλ∈≠-(C ){},12R λλλλ∈≠-≠-,(D ){},1R λλλ∈≠-【答案】C【解析】由()()()212311,,=111211λαααλλλλ=-+,()()()22124211,,=11+111λαααλλλλλ=-,当1,λ≠-2,λ≠-时满足题意,故选C.(8)设随机变量()~0,4X N ,随机变量1~3,3Y B ⎛⎫ ⎪⎝⎭,且X Y 与不相关,则()3+1D X Y -=( )(A )2 (B )4 (C )6(D )10【答案】(D )【解析】()()113+1+96,4+93101033D X Y DX DY COV X Y ⎛⎫-=-=--= ⎪⎝⎭gg (9)设随机变量序列12,,,,n X X X L L 独立同分布,且1X 的概率密度为()1,10,x x f x ⎧-<⎪=⎨⎪⎩其他,则当n →∞时,211n i i X n =∑依概率收敛于( ) (A )18(B )16(C )13(D )12【答案】(B )【解析】()()()112222101111216n i i i E X E X x x dx x x dx n -=⎛⎫==-=-= ⎪⎝⎭∑⎰⎰(10)设二维随机变量(),X Y 的概率分布若事件{}{}max ,2X Y =与事件{}{}min ,1X Y =相互独立,则(),COV X Y =( ) (A )0.6- (B )0.36- (C )0(D )0.48【答案】(B )【解析】{}{}max ,20.1+P X Y b ==;{}{}min ,10.2P X Y =={}{}{}max ,2,min ,10.1P X Y X Y ===, ()0.10.20.1+0.40.2b b a =⇒=⇒=()()()0.6,0.2, 1.2E XY E X E Y =-=-=()()()(),0.36COV X Y E XY E X E Y =-=-二、填空题:11-16小题,每小题5分,共30分,请将答案写在答题纸指定位置上.(11) cot 01lim 2xx x e →⎛⎫+= ⎪⎝⎭【答案】12e【解析】001cot 11lim cot lim22tan 21lim 2x x x x e xe xx In x x e e ee →→⎛⎫+-⋅⎪ ⎪⎝⎭→⎛⎫+=== ⎪⎝⎭(12)22024+2+4x dx x x -=⎰【答案】ln 3- 【解析】()()2222200220242+26+2+4+2+4+1+3ln +2+4ln 3x x dx dx x x x x x x x -=-⎡=⎢⎣=⎰⎰ (13) 已知函数sin sin ()x x f x e e -=+,则(2)f π'''= . 【答案】0【解析】由sin sin ()()x x f x e e f x --=+=,(2)()f x f x π+=,可知()f x 是以2π为周期的偶函数,那么()f x '''是以2π为周期的奇函数,故(2)(0)0f f π''''''==.(14) 已知函数,01()0,x e x f x ⎧≤≤=⎨⎩其他,则()()dx f x f y x dy +∞+∞-∞-∞-=⎰⎰ .【答案】2(1)e -【解析】记{(,)01,01}D x y x y x =≤≤≤-≤, 则11120()()(1)(1)x x y x x xdx f x f y x dy dx e e dy e e dx e +∞+∞+--∞-∞-=⋅=-=-⎰⎰⎰⎰⎰.(15)设A 为3阶矩阵,交换A 的第2行和第3行,再将第2列的-1倍加到第一列,得到矩阵211110100--⎛⎫ ⎪- ⎪ ⎪-⎝⎭,则1A -的迹1()tr A -= .【答案】1-【解析】符合左行右列原则由题意可得:2312211(1)110100E AE --⎛⎫⎪-=- ⎪ ⎪-⎝⎭,则:2312211111110(1)100100010A E E ----⎛⎫⎛⎫⎪ ⎪=-=- ⎪ ⎪ ⎪ ⎪--⎝⎭⎝⎭,所以211110(1)(1)001E A λλλλλλ+--==++=,解得1231,,i i λλλ=-==-所以1A -的特征值为1231,,i i λλλ=-==-,所以1()1tr A -=-.(16)设A,B,C 为随机事件,且A 与B 互不相容,A 与C 互不相容,B 与C 相互独立,1()()()3P A P B P C ===,则()P B C A B C =U U U ___________.【答案】58【解析】()()()()()()()()()()P B C P B P C P BC P B C A B C P A B C P A P B P C P BC +-==++-U U U U U U()()()()()()()()()215391819P B P C P B P C P A P B P C P B P C -+-===++--. 三、解答题:17—22小题,共70分.请将解答写在答题纸指定位置上.解答应写出文字说明、证明过程或演算步骤.(17)(本题满分10分)设函数()y x是微分方程2y y '=满足()1=3y 的解,求曲线()y y x =的渐近线. 【答案】2y x =【解析】根据题意,求解微分方程2y y '=+有,()((()2=2y x e dx C eC e -⎛⎫=++ ⎪ ⎪⎝⎭⎰⎰求解(()22+222t t t e tdt t e ⋅==⎰,进而有,()2y x x Ce =+()1=3y ,知=C e ,故而()12y x x e =+进一步,()12limlim 2x x y x x e k x x→+∞→+∞+===,()()1lim lim 0x x b y x kx e →+∞→+∞=-==,故而,曲线()y y x =的渐近线为2y x =. (18)(本题满分10分)设某产品的产量Q 由资本投入量x 和劳动投入量y 决定,生产函数为116212Q x y =,该产品的销售单价P 与Q 的关系为1160 1.5P Q =-,若单位资本投入和单位劳动投入的价格分别为6和8,求利润最大时的产量.【答案】384【解析】利润()111166221160 1.5121268L PQ C x y x y x y ⎛⎫=-=-⨯⨯-+ ⎪⎝⎭,即1116321392021668L x y xy x y =---,令11163252163269602166023207280x yL x y y L x y xy ---⎧'=--=⎪⎨⎪'=--=⎩得驻点()256,64,此时11621225664384Q =⨯⨯=,由于驻点唯一,故利润L 在384Q =时取到最大值.(19)(本题满分12分)已知平面区域(){},22D x y y x y =-≤≤≤≤,计算()222Dx y I dxdy x y -=+⎰⎰【答案】22π- 【解析】方法一:()()()()()1222222222222sin cos 0002222+=cos sin cos sin 122cos sin 2sin cos 22D D x y x y I dxdy dxdyx yx yd rdr d rdr d ππθθπππθθθθθθπθθθθθπ---=++-⋅+-⋅⎛⎫=-+-⋅ ⎪-⎝⎭=-⎰⎰⎰⎰⎰⎰⎰⎰⎰方法二:()1212222222220sin cos 22021=S 22222sin cos 424sin cos sin cos =22D D D D D xy I dxdy x y xydxdy x y xydxdy x yd rdrd πθθπππθθθπθθθθθπ⋃+⎛⎫=- ⎪+⎝⎭-+=+-+=+-⋅⎡⎤=+--⎢⎥+⎢⎥⎣⎦-⎰⎰⎰⎰⎰⎰⎰⎰⎰(20)(本题满分10分)求幂级数20(4)14(21)n nnn x n ∞=-++∑的收敛域及和函数()S x . 【答案】收敛域[1,1]-,12arctan ln ,[1,1]0()22,0x x x x S x x x x ⎧+⎛⎫+∈-≠⎪ ⎪=-⎝⎭⎨⎪=⎩且 【解析】11111(4)14(21)(4)14(21)1(4)1lim lim lim4(23)(4)14(23)(4)14(4)1n n n n n n n n n n n n n n n n n +++++→∞→∞→∞-++-++-+⋅=⋅=+-++-+-+ 111(4)1(4)1lim141(4)1(4)n n n n n ++→∞⎡⎤-+⎢⎥-⎣⎦==⎡⎤-+⎢⎥-⎣⎦,进而可得收敛半径为1. 当1x =±时,原级数为000(4)1(1)14(21)214(21)n n n n n n n n n n ∞∞∞===-+-=++++∑∑∑,其中0(1)21nn n ∞=-+∑为交错级数,k 可知其收敛;014(21)nn n ∞=+∑为正项级数,可知其收敛.222000(4)1(1)()4(21)214(21)n n nn n n nn n n x S x x x n n n ∞∞∞===-+-==++++∑∑∑,[1,1]x ∈-. 令2110(1)()21n n n S x x n ∞+=-=+∑,21201()(1)1n n n S x x x ∞='=-=+∑,12()arctan 1dx S x x C x ==++⎰, 又1(0)0S =,得0C =.令2120()4(21)n n n x S x n +∞='=+∑,2222004()444nn n n n x x S x x ∞∞==⎛⎫'=== ⎪-⎝⎭∑∑,2242()ln 42xS x dx C x x +==+--⎰, 又2(0)0S =,得0C =. 当0x ≠时,arctan 12()ln2x xS x x x x+=+-;又(0)2S =. 综上,12arctan ln ,[1,1]0()22,0x x x x S x x x x ⎧+⎛⎫+∈-≠⎪ ⎪=-⎝⎭⎨⎪=⎩且. (21)(本题满分15分)已知二次型22212312313(,,)3432f x x x x x x x x =+++, (1)求正交变换x Qy =将123(,,)f x x x 化为标准形; (2)证明:()min2T f x x x=. 【答案】(1)00100Q ⎛= ⎪ ⎪ ⎝,(2)见解析. 【解析】(1)301040103A ⎛⎫⎪= ⎪ ⎪⎝⎭,2301040(2)(4)0103A E λλλλλλ--=-=--=-,得特征值12λ=,234λλ==.当12λ=时,1012020000A E ⎛⎫⎪- ⎪ ⎪⎝⎭:,解得特征向量1(1,0,1)T α=-;当234λλ==时,1014000000A E -⎛⎫⎪- ⎪ ⎪⎝⎭:,解得特征向量2(0,1,0)T α=,3(1,0,1)T α=;单位化1(T β=,2(0,1,0)T β=,3T β=得正交矩阵00100Q ⎛= ⎪ ⎪ ⎝,故二次型经过正交变换x Q y =得到的标准形为222123123(,,)244f y y y y y y =++.(2)()TTTx x Qy Qy y y ==,222222123123222222123123244222()()2T T y y y y y y f x f y x x y y y y y y y y ++++==≥=++++, 故()min2T f x x x=. (22)(本题满分15分)设12,,,n X X X ⋅⋅⋅为来自均值为θ的指数分布总体的简单随机样本,12,,,m Y Y Y ⋅⋅⋅为来自均值为2θ的指数分布总体的简单随机样本,且两样本相互独立,其中(0)θθ>是未知参数.利用样本1212,,,,,,,n m X X X Y Y Y ⋅⋅⋅⋅⋅⋅,求θ的最大似然估计量$θ,并求$()D θ. 【答案】$2mnX Y n mθ+=+,$2()D n m θθ=+【解析】由题意可知10()0xex f x θθ-⎧>⎪=⎨⎪⎩其他,210()20y ey f y θθ-⎧>⎪=⎨⎪⎩其他,且X 与Y 相互独立,故(,)()()f x y f x f y =.构造似然函数1111211()(2)mnjij i y x nmL e eθθθθθ==--∑∑=⋅⋅⋅,取对数1111ln ()ln ln(2)2nmi ji j L n x m yθθθθθ===----∑∑,求导2211ln ()112nmiji j d L n mx yd θθθθθθ===-+-+∑∑,令ln ()0d L d θθ=,得$2m nX Y n mθ+=+. $22222222111()(2)()4()4()4m m m D n DX DY nDX DY n n m n m n m n m θθθθ⎡⎤⎡⎤⎡⎤=+=+=+=⎢⎥⎢⎥⎢⎥++++⎣⎦⎣⎦⎣⎦。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2015年全国硕士研究生入学统一考试数学三试题
一、选择题:1~8小题,每小题4分,共32分.下列每题给出的四个选项中,只有一个选项符合 题目要求的,请将所选项前的字母填在答题纸...
指定位置上. 1.设{k x }是数列,下列命题中不正确的是()
(A)若lim k k x a →∞=,则221lim lim k k k k x x a +→∞→∞
==. (B)若221lim lim k k k k x x a +→∞→∞==,则lim k k x a →∞
= (C) 若lim k k x a →∞=,则321lim lim k k k k x x a +→∞→∞
== (D)若331lim lim k k k k x x a +→∞→∞==,则lim k k x a →∞
= 2.设函数()f x 在(,)-∞+∞连续,其二阶导函数()f x ''的图形如右图所示,则曲线()y f x =的拐点个数为()
(A )0 (B)1 (C)2 (D)3
3.设{}2222(,)2,2D x y x y x x y y =+≤+≤,函数(,)f x y D 上连续, 则
(,)D f x y dxdy ⎰⎰=()
2cos 2sin 4
200
042sin 2cos 4
20
0041
011
0()(cos ,sin )(cos ,sin )()(cos ,sin )(cos ,sin )()2(,)()2(,)x X
A d f r r rdr d f r r rdr
B d f r r rdr d f r r rdr
C dx f x y dy
D dx f x y dy ππ
θθπππ
θθπθθθθθθθθθθθθ++⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰
⎰ 4.下列级数中发散的是()
(A )13n n n ∞
=∑
(B)1)n n ∞=+ (C)2(1)1ln n n n ∞=-+∑ (D)1!n n n n ∞=∑ 5.设矩阵22111112,,14A a b d a d ⎛⎫⎛⎫ ⎪ ⎪== ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭
若集合(1,2)Ω=,则线性方程组Ax b =有无穷多解的充分必要条件为()
(),A a d ∉Ω∉Ω (),B a d ∉Ω∈Ω (),C a d ∈Ω∉Ω (),D a d ∈Ω∈Ω
6.设二次型1,23(,)f x x x 在正交变换x py =下的标准形为2221232y y y +-,其中123(,,)p e e e =,
若132(,,),Q e e e =-则123(,,)x x x 在正交变换x Qy =下的标准形为()
(A )2221232y y y -+ (B)2221232y y y +- (C)2221232y y y -- (D)2221232y y y ++
7.设A,B 为任意两个随机事件,则()
(A )()()()P AB P A P B ≤ (B)()()()P AB P A P B ≥ (C) ()()()2P A P B P AB +≤ (D)()()()2
P A P B P AB +≥ 8.设总体(,)X B m θ:,12,,n x x x K 为来自该总体的简单随机样本,X 为样本均值,则
21()n i i E x X =⎡⎤-=⎢⎥⎣⎦
∑() (A )(1)(1)m n θθ-- (B) (1)(1)m n θθ--
(C) (1)(1)(1)m n θθ--- (D) (1)mn θθ-
二、填空题:9~14小题,每小题4分,共24分.请将答案写在答题纸...
指定位置上. 92ln(cos )lim x x x
→∞= 10设函数()f x 连续,20()()x x xf t ϕ=
⎰,若(1)ϕ1=,'(1)5ϕ=,则(1)f = 11若函数z = (,)z x y 由方程2+3z 1x y e xyz ++=确定,则(0,0)dz =
12设函数()y y x =是微分方程'''20y y y +-=的解,且在x =0处()y x 取得极值3,则()y x =
13设3阶矩阵A 的特征值为2,-2,1,2
B A A E =-+,其中E 为3阶单位矩阵,则行列式B = 14设二维随机变量(,)X Y 服从正态分布(1,0;1,1;0)N ,则(0)P XY Y -<=
三、解答题:15~23小题,共94分.请将解答写在答.题纸..
指定位置上.解答应写出文字说明、证明过程或演算步骤.
15、(本题满分10分)
设函数3()ln(1)sin ,(),f x x x bx x g x kx α=+++⋅=若()f x 与()g x 在0x →时
是等价无穷小,求a,b,k 的值。

16、(本题满分10分)
计算二重积分()D
x x y dxdy +⎰⎰,其中{}222(,)2,D x y x y y x =+≤≥ 17、(本题满分10分)
为了实现利润最大化,厂商需要对某商品确定其定价模型,设Q 为该商品的需求量,p 为价格,MC 为边际成本,η为需求弹性(η>0)
(i )证明定价模型为11MC p η
=- (ii )若该商品的成本函数为2
()1600C Q Q =+,需求函数为40Q p =-,试由(1)中的定价模型确定此商品的价格。

18、(本题满分10分)
设函数()f x 在定义域I 上的导数大于零,若对任意的0x I ∈,曲线()y f x =在点()00,()x f x 处的切线与直线0x x =及x 轴所围成区域的面积恒为4,且(0)2f =,求()f x 的表达式。

19、(本题满分10分)
(i )设函数()u x ,()v x 可导,利用导数定义证明[]'''()()()()()()u x v x u x v x u x v x =+ (ii )设函数12*(),(),,()u x u x K u x 可导,12*()()()()f x u x u x Ku x =,写出()f x 的求导公式。

20(本题满分11分)
设矩阵101101a A a a ⎛⎫ ⎪=- ⎪ ⎪⎝⎭
,且30A =.
(i )求a 的值;
(ii )若矩阵X 满足22
X XA AX AXA E --+=,其中E 为3阶单位矩阵,求X .
21(本题满分11分) 设矩阵02313312A a -⎛⎫ ⎪=-- ⎪ ⎪-⎝⎭,相似于矩阵12000031B b -⎛⎫ ⎪= ⎪ ⎪⎝⎭

(i )求a,b 的值(ii )求可逆矩阵P ,使1
P AP -为对角矩阵。

22(本题满分11分)
设随机变量X 的概率密度为2ln 2,0,()0,0
x x f x x -⎧=⎨≤⎩>
对X 进行独立重复的观测,直到第2个大于3的观测值出现时停止,记Y 为观测次数。

(1) 求Y 的概率分布;
(2) 求EY 。

23(本题满分11分)
设总体X 的概率密度为
11(:)10,x f x θθθ⎧≤≤⎪=-⎨⎪⎩,其他
其中θ为未知参数,12,,R X X L X ,为来自该总体的简单随机样本。


(1) 求θ的矩估计量;
(2) 求θ的最大似然估计量。

相关文档
最新文档