熵增原理
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
热力学第一定律就是能量守恒与转换定律,但是它并未涉及能量状态的过程能否自发地进行以及可进行到何种程度。
热力学第二定律就是判断自发过程进行的方向和限度的定律,它有不同的表述方法:
克劳修斯的描述①热量不可能自发地从低温物体传到高温物体,即热量不可能从低温物体传到高温物体而不引起其他变化;
开尔文的描述②不可能从单一热源取出热量使之全部转化为功而不发生其他影响;
因此第二类永动机是不可能造成的。
热力学第二定律是人类经验的总结,它不能从其他更普遍的定律推导出来,但是迄今为止没有一个实验事实与之相违背,它是基本的自然法则之一。
由于一切热力学变化(包括相变化和化学变化)的方向和限度都可归结为热和功之间的相互转化及其转化限度的问题,那么就一定能找到一个普遍的热力学函数来判别自发过程的方向和限度。
可以设想,这种函数是一种状态函数,又是一个判别性函数(有符号差异),它能定量说明自发过程的趋势大小,这种状态函数就是熵函数。
如果把任意的可逆循环分割成许多小的卡诺循环,可得出
0i
i Q r T δ=∑ (1)
即任意的可逆循环过程的热温商之和为零。
其中,δQi 为任意无限小可逆循环中系统与环境的热交换量;Ti 为任意无限小可逆循环中系统的温度。
上式也可写成 0Qr
T δ=⎰ (2)
克劳修斯总结了这一规律,称这个状态函数为“熵”,用S来表示,即 Qr
dS T δ= (3)
对于不可逆过程,则可得
dS>δQr/T (4)
或 dS-δQr/T>0 (5)
这就是克劳修斯不等式,表明了一个隔离系统在经历了一个微小不可逆变化后,系统的熵变大于过程中的热温商。
对于任一过程(包括可逆与不可逆过程),则有 dS-δQ/T≥0 (6)
式中:不等号适用于不可逆过程,等号适用于可逆过程。
由于不可逆过程是所有自发过程之共同特征,而可逆过程的每一步微小变化,都无限接近于平衡状态,因此这一平衡状态正是不可逆过程所能达到的限度。
因此,上式也可作为判断这一过程自发与否的判据,称为“熵判据”。
对于绝热过程,δQ=0,代入上式,则
dSj≥0 (7)
由此可见,在绝热过程中,系统的熵值永不减少。
其中,对于可逆的绝热过程,dSj =0,即系统的熵值不变;对于不可逆的绝热过程,dSj >0,即系统的熵值
增加。
这就是“熵增原理”,是热力学第二定律的数学表述,即在隔离或绝热条件下,系统进行自发过程的方向总是熵值增大的方向,直到熵值达到最大值,此时系统达到平衡状态。