黄浦区二中2018-2019学年高三上学期11月月考数学试卷含答案
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
黄浦区二中2018-2019学年高三上学期11月月考数学试卷含答案
一、选择题
1. 直线:
(为参数)与圆:(为参数)的位置关系是( )
A .相离
B .相切
C .相交且过圆心
D .相交但不过圆心
2. PM 2.5是指大气中直径小于或等于2.5微米的颗粒物,也称为可入肺颗粒物,如图是据某地某日早7点至晚8点甲、乙两个PM 2.5监测点统计的数据(单位:毫克/每立方米)列出的茎叶图,则甲、乙两地浓度的方差较小的是( )
A .甲
B .乙
C .甲乙相等
D .无法确定
3. 下列说法正确的是( ) A .类比推理是由特殊到一般的推理 B .演绎推理是特殊到一般的推理 C .归纳推理是个别到一般的推理 D .合情推理可以作为证明的步骤
4. 某单位综合治理领导小组成员之问的领导关系可以用框图表示,这种框图通常称为( )
A .程序流程图
B .工序流程图
C .知识结构图
D .组织结构图 5. △ABC 中,A (﹣5,0),B (5,0),点C
在双曲线
上,则
=( )
A
.
B
.
C
.
D .
± 6. 若实数x ,y 满足不等式组则2x+4y 的最小值是( )
A .6
B .﹣6
C .4
D .2
7. 如图,空间四边形OABC 中,,
,,点M 在OA
上,且,点N 为BC 中点,
则
等于( )
班级_______________ 座号______ 姓名_______________ 分数_______________
___________________________________________________________________________________________________
A .
B .
C .
D .
8. 已知f (x )为定义在(0,+∞)上的可导函数,且f (x )>xf ′(x )恒成立,则不等式x 2f ()﹣f (x )>0的解集为( )
A .(0,1)
B .(1,2)
C .(1,+∞)
D .(2,+∞)
9. 不等式x (x ﹣1)<2的解集是( )
A .{x|﹣2<x <1}
B .{x|﹣1<x <2}
C .{x|x >1或x <﹣2}
D .{x|x >2或x <﹣1}
10.已知变量x 与y 负相关,且由观测数据算得样本平均数=3, =2.7,则由该观测数据算得的线性回归方程可能是( )
A . =﹣0.2x+3.3
B . =0.4x+1.5
C . =2x ﹣3.2
D . =﹣2x+8.6
11.已知实数x ,y 满足有不等式组,且z=2x+y 的最大值是最小值的2倍,则实数a 的值是( )
A .2
B .
C .
D .
12.将函数y=cosx 的图象上各点的横坐标伸长到原来的2倍(纵坐标不变),再向右平移个单位,所得函
数图象的一条对称轴方程是( )
A .x=π
B .
C .
D .
二、填空题
13.函数y=lgx 的定义域为 .
14.若复数12,z z 在复平面内对应的点关于y 轴对称,且12i z =-,则复数1
212
||z z z +在复平面内对应的点在
( )
A .第一象限
B .第二象限
C .第三象限
D .第四象限
【命题意图】本题考查复数的几何意义、模与代数运算等基础知识,意在考查转化思想与计算能力. 15.在三棱柱ABC ﹣A 1B 1C 1中,底面为棱长为1的正三角形,侧棱AA 1⊥底面ABC ,点D 在棱BB 1上,且所成的角为,则的值是 所示的框图,输入
,则输出的数等于
17.若x ,y 满足约束条件⎩⎪⎨⎪
⎧x +y -5≤02x -y -1≥0x -2y +1≤0,若z =2x +by (b >0)的最小值为3,则b =________.
18.设α为锐角,若sin (α
﹣
)
=,则cos2α= .
三、解答题
19.(本题满分15分)
设点P 是椭圆14
:2
21=+y x C 上任意一点,
过点P 作椭圆的切线,与椭圆)1(14:22222>=+t t y t x C 交于A ,B 两点.
(1)求证:PB PA =;
(2)OAB ∆的面积是否为定值?若是,求出这个定值;若不是,请说明理由.
【命题意图】本题考查椭圆的几何性质,直线与椭圆的位置关系等基础知识,意在考查解析几何的基本思想方法和综合解题能力.
20.(本题满分12分)已知数列}{n a 的前n 项和为n S ,2
3
3-=n n a S (+∈N n ). (1)求数列}{n a 的通项公式;
(2)若数列}{n b 满足143log +=⋅n n n a b a ,记n n b b b b T ++++= 321,求证:2
7
<
n T (+∈N n ). 【命题意图】本题考查了利用递推关系求通项公式的技巧,同时也考查了用错位相减法求数列的前n 项和.重点突出运算、论证、化归能力的考查,属于中档难度.
21.已知
,数列{a n }的首项
(1)求数列{a n }的通项公式;
(2)设,数列{b n }的前n 项和为S n ,求使S n >2012的最小正整数n .
22.已知椭圆C :
+
=1(a >b >0)的短轴长为2
,且离心率e=,设F 1,F 2是椭圆的左、右焦点,
过F 2的直线与椭圆右侧(如图)相交于M ,N 两点,直线F 1M ,F 1N 分别与直线x=4相交于P ,Q 两点. (Ⅰ)求椭圆C 的方程; (Ⅱ)求△F 2PQ 面积的最小值.
23.(本小题满分12分)
已知直三棱柱111C B A ABC -中,上底面是斜边为AC 的直角三角形,F E 、分别是11AC B A 、的中点.
(1)求证://EF 平面ABC ; (2)求证:平面⊥AEF 平面B B AA 11.
24.(本小题满分12分)
已知圆M 与圆N :2
22)35()35(r y x =++-关于直线x y =对称,且点)3
5,31(-D 在圆M 上.
(1)判断圆M 与圆N 的位置关系;
(2)设P 为圆M 上任意一点,)35,1(-A ,)3
5,1(B ,B A P 、、三点不共线,PG 为APB ∠的平分线,且交
AB 于G . 求证:PBG ∆与APG ∆的面积之比为定值.
黄浦区二中2018-2019学年高三上学期11月月考数学试卷含答案(参考答案)
一、选择题
1.【答案】D
【解析】【知识点】直线与圆的位置关系参数和普通方程互化
【试题解析】将参数方程化普通方程为:直线:圆:
圆心(2,1),半径2.
圆心到直线的距离为:,所以直线与圆相交。
又圆心不在直线上,所以直线不过圆心。
故答案为:D
2.【答案】A
【解析】解:根据茎叶图中的数据可知,甲地的数据都集中在0.06和0.07之间,数据分别比较稳定,
而乙地的数据分布比较分散,不如甲地数据集中,
∴甲地的方差较小.
故选:A.
【点评】本题考查茎叶图的识别和判断,根据茎叶图中数据分布情况,即可确定方差的大小,比较基础.3.【答案】C
【解析】解:因为归纳推理是由部分到整体的推理;类比推理是由特殊到特殊的推理;演绎推理是由一般到特殊的推理;合情推理的结论不一定正确,不可以作为证明的步骤,
故选C.
【点评】本题考查合情推理与演绎推理,考查学生分析解决问题的能力,属于基础题.
4.【答案】D
【解析】解:用来描述系统结构的图示是结构图,
某单位综合治理领导小组成员之问的领导关系可以用组织结构图表示.
故选D.
【点评】本题考查结构图和流程图的概念,是基础题.解题时要认真审题,仔细解答.
5.【答案】D
【解析】解:△ABC中,A(﹣5,0),B(5,0),点C在双曲线上,
∴A与B为双曲线的两焦点,
根据双曲线的定义得:|AC﹣BC|=2a=8,|AB|=2c=10,
则==±=±.
故选:D.
【点评】本题考查了正弦定理的应用问题,也考查了双曲线的定义与简单性质的应用问题,是基础题目.
6.【答案】B
【解析】解:作出不等式组对应的平面区域如图:
设z=2x+4y得y=﹣x+,
平移直线y=﹣x+,由图象可知当直线y=﹣x+经过点C时,
直线y=﹣x+的截距最小,此时z最小,
由,解得,
即C(3,﹣3),
此时z=2x+4y=2×3+4×(﹣3)=6﹣12=﹣6.
故选:B
【点评】本题主要考查线性规划的应用,利用目标函数的几何意义是解决本题的关键.
7.【答案】B
【解析】解:===;
又,,,
∴.
故选B.
【点评】本题考查了向量加法的几何意义,是基础题.
8.【答案】C
【解析】解:令F(x)=,(x>0),
则F′(x)=,
∵f(x)>xf′(x),∴F′(x)<0,
∴F(x)为定义域上的减函数,
由不等式x2f()﹣f(x)>0,
得:>,
∴<x,∴x>1,
故选:C.
9.【答案】B
【解析】解:∵x(x﹣1)<2,
∴x2﹣x﹣2<0,
即(x﹣2)(x+1)<0,
∴﹣1<x<2,
即不等式的解集为{x|﹣1<x<2}.
故选:B
10.【答案】A
【解析】解:变量x与y负相关,排除选项B,C;回归直线方程经过样本中心,
把=3,=2.7,代入A成立,代入D不成立.
故选:A.
11.【答案】B
【解析】解:由约束条件作出可行域如图,
联立,得A(a,a),
联立,得B(1,1),
化目标函数z=2x+y为y=﹣2x+z,
由图可知z max=2×1+1=3,z min=2a+a=3a,
由6a=3,得a=.
故选:B.
【点评】本题考查了简单的线性规划考查了数形结合的解题思想方法,是中档题.
12.【答案】B
【解析】解:将函数y=cosx的图象上各点的横坐标伸长到原来的2倍(纵坐标不变),
得到y=cos x,再向右平移个单位得到y=cos[(x)],
由(x)=kπ,得x=2kπ,
即+2kπ,k∈Z,
当k=0时,,
即函数的一条对称轴为,
故选:B
【点评】本题主要考查三角函数的对称轴的求解,利用三角函数的图象关系求出函数的解析式是解决本题的关键.
二、填空题
13.【答案】{x|x>0}.
【解析】解:对数函数y=lgx的定义域为:{x|x>0}.
故答案为:{x|x>0}.
【点评】本题考查基本函数的定义域的求法.
14.【答案】D
【解析】
15.【答案】.
【解析】解:如图所示,
分别取AC,A1C1的中点O,O1,连接OO1,取OE=1,连接DE,B1O1,AE.
∴BO⊥AC,
∵侧棱AA1⊥底面ABC,∴三棱柱ABC﹣A1B1C1是直棱柱.
由直棱柱的性质可得:BO⊥侧面ACC1A1.
∴四边形BODE是矩形.
∴DE⊥侧面ACC1A1.
∴∠DAE是AD与平面AA1C1C所成的角,为α,
∴DE==OB.
AD==.
在Rt△ADE中,sinα==.
故答案为:.
【点评】本题考查了直棱柱的性质、空间角、空间位置关系、等边三角形的性质,考查了推理能力与计算能力,属于中档题.
16.【答案】
【解析】由框图的算法功能可知,输出的数为三个数的方差,
则。
17.【答案】
【解析】
约束条件表示的区域如图,
当直线l :z =2x +by (b >0)经过直线2x -y -1=0与x -2y +1=0的交点A (1,1)时,z min =2+b ,∴2+b =3,∴b =1. 答案:1
18.【答案】 ﹣ .
【解析】解:∵α为锐角,若sin (α﹣)=,
∴cos (α﹣)=,
∴sin
=
[sin (α﹣
)+cos (α﹣
)]=
,
∴cos2α=1﹣2sin 2
α=﹣
.
故答案为:﹣.
【点评】本题主要考查了同角三角函数关系式,二倍角的余弦函数公式的应用,属于基础题.
三、解答题
19.【答案】(1)详见解析;(2)详见解析.
∴点P 为线段AB 中点,PB PA =;…………7分
(2)若直线AB 斜率不存在,则2:±=x AB ,与椭圆2C 方程联立可得,)1,2(2--±t A ,)1,2(2-±t B ,
故122
-=∆t S OAB ,…………9分
若直线AB 斜率存在,由(1)可得
148221+-=+k km x x ,144422221+-=k t m x x ,1
41141222212
+-+=-+=k t k x x k AB ,…………11分
点O 到直线AB 的距离2
22
1
141k
k k
m d ++=
+=
,…………13分
∴122
1
2-=⋅=
∆t d AB S OAB ,综上,OAB ∆的面积为定值122-t .…………15分 20.【答案】 【
解
析
】
21.【答案】
【解析】解:(Ⅰ)
,
,
.
数列是以1为首项,4为公差的等差数列.…
,
则数列{a n}的通项公式为.…
(Ⅱ).…①
.…②
②﹣①并化简得.…
易见S n为n的增函数,S n>2012,
即(4n﹣7)•2n+1>1998.
满足此式的最小正整数n=6.…
【点评】本题考查数列与函数的综合运用,解题时要认真审题,仔细解答,注意错位相减求和法的合理运用.22.【答案】
【解析】解:(Ⅰ)∵椭圆C:+=1(a>b>0)的短轴长为2,且离心率e=,
∴,解得a2=4,b2=3,
∴椭圆C的方程为=1.
(Ⅱ)设直线MN的方程为x=ty+1,(﹣),
代入椭圆,化简,得(3t2+4)y2+6ty﹣9=0,
∴,,
设M(x1,y1),N(x2,y2),又F1(﹣1,0),F2(1,0),
则直线F1M:,令x=4,得P(4,),同理,Q(4,),
∴=||=15×||=180×||,
令μ=∈[1,),则=180×,
∵y==在[1,)上是增函数,
∴当μ=1时,即t=0时,(
)min =
.
【点评】本题考查椭圆方程的求法,考查三角形面积的最小值的求法,是中档题,解题时要认真审题,注意韦达定理、直线方程、弦长公式、函数单调性、椭圆性质的合理运用.
23.【答案】(1)详见解析;(2)详见解析. 【
解
析
】
试
题解析:证明:(1)连接C A 1,∵直三棱柱111C B A ABC -中,四边形C C AA 11是矩形, 故点F 在C A 1上,且F 为C A 1的中点,
在BC A 1∆中,∵F E 、分别是11AC B A 、的中点,∴BC EF //. 又⊄EF 平面ABC ,⊂BC 平面ABC ,∴//EF 平面ABC .
考点:1.线面平行的判定定理;2.面面垂直的判定定理. 24.【答案】(1)圆与圆相离;(2)定值为2. 【解析】
试题分析:(1)若两圆关于直线对称,则圆心关于直线对称,并且两圆的半径相等,可先求得圆M 的圆心,
DM r =,然后根据圆心距MN 与半径和比较大小,从而判断圆与圆的位置关系;(2)因为点G 到AP 和
BP 的距离相等,所以两个三角形的面积比值
PA
PB
S S APG PBG =
∆∆,根据点P 在圆M 上,代入两点间距离公式求PB
和PA ,最后得到其比值.
试题解析:(1) ∵圆N 的圆心)35,35(-N 关于直线x y =的对称点为)3
5,35(-M , ∴9
16)3
4(||2
2
2
=
-==MD r , ∴圆M 的方程为9
16
)35()35(22=
-++y x .
∵3
8
23210)310()310(||22=>=+=r MN ,∴圆M 与圆N 相离.
考点:1.圆与圆的位置关系;2.点与圆的位置关系.1。