高中物理带电粒子在磁场中的运动解题技巧和训练方法及练习题(含答案)含解析

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高中物理带电粒子在磁场中的运动解题技巧和训练方法及练习题(含答案)含解

一、带电粒子在磁场中的运动专项训练
1.如图所示,xOy平面处于匀强磁场中,磁感应强度大小为B,方向垂直纸面向外.点
3
,0
P L
⎛⎫


⎝⎭
处有一粒子源,可向各个方向发射速率不同、电荷量为q、质量为m的带负电粒子.不考虑粒子的重力.
(1)若粒子1经过第一、二、三象限后,恰好沿x轴正向通过点Q(0,-L),求其速率v1;
(2)若撤去第一象限的磁场,在其中加沿y轴正向的匀强电场,粒子2经过第一、二、三象限后,也以速率v1沿x轴正向通过点Q,求匀强电场的电场强度E以及粒子2的发射速率v2;
(3)若在xOy平面内加沿y轴正向的匀强电场E o,粒子3以速率v3沿y轴正向发射,求在运动过程中其最小速率v.
某同学查阅资料后,得到一种处理相关问题的思路:
带电粒子在正交的匀强磁场和匀强电场中运动,若所受洛伦兹力与电场力不平衡而做复杂的曲线运动时,可将带电粒子的初速度进行分解,将带电粒子的运动等效为沿某一方向的匀速直线运动和沿某一时针方向的匀速圆周运动的合运动.请尝试用该思路求解.
【答案】(1)
2
3
BLq
m
(2
221BLq
3
2
20
3
B
E E
v
B
+
⎛⎫

⎝⎭
【解析】
【详解】
(1)粒子1在一、二、三做匀速圆周运动,则
2
1
1
1
v
qv B m
r
=
由几何憨可知:()2
22
113r L r L ⎛⎫=-+ ⎪ ⎪⎝⎭
得到:123BLq
v m
=
(2)粒子2在第一象限中类斜劈运动,有:
13
L v t =,212qE h t m =
在第二、三象限中原圆周运动,由几何关系:12L h r +=,得到2
89qLB E m
=
又22
212v v Eh =+,得到:2221BLq
v =
(3)如图所示,将3v 分解成水平向右和v '和斜向的v '',则0qv B qE '=,即0
E v B
'= 而'223
v v v ''=
+ 所以,运动过程中粒子的最小速率为v v v =''-'
即:2
2
003E E v v B B ⎛⎫=+- ⎪⎝⎭
2.在如图所示的平面直角坐标系中,存在一个半径R =0.2m 的圆形匀强磁场区域,磁感应强度B =1.0T ,方向垂直纸面向外,该磁场区域的右边缘与y 坐标轴相切于原点O 点。

y 轴右侧存在一个匀强电场,方向沿y 轴正方向,电场区域宽度l =0.1m 。

现从坐标为(﹣0.2m ,﹣0.2m )的P 点发射出质量m =2.0×10﹣9kg 、带电荷量q =5.0×10﹣5C 的带正电粒子,沿y 轴正方向射入匀强磁场,速度大小v 0=5.0×103m/s (粒子重力不计)。

(1)带电粒子从坐标为(0.1m ,0.05m )的点射出电场,求该电场强度;
(2)为了使该带电粒子能从坐标为(0.1m ,﹣0.05m )的点回到电场,可在紧邻电场的右侧区域内加匀强磁场,试求所加匀强磁场的磁感应强度大小和方向。

【答案】(1)1.0×104N/C (2)4T ,方向垂直纸面向外 【解析】 【详解】
解:(1)带正电粒子在磁场中做匀速圆周运动,根据洛伦兹力提供向心力有:
2
0v qv B m r
=
可得:r =0.20m =R
根据几何关系可以知道,带电粒子恰从O 点沿x 轴进入电场,带电粒子做类平抛运动,设
粒子到达电场边缘时,竖直方向的位移为y 根据类平抛规律可得:2012
l v t y at ==
, 根据牛顿第二定律可得:Eq ma = 联立可得:41.010E =⨯N/C
(2)粒子飞离电场时,沿电场方向速度:30
5.010y qE l
v at m v ===⨯m/s=0v
粒子射出电场时速度:0=v
根据几何关系可知,粒子在B '区域磁场中做圆周运动半径:r '=
根据洛伦兹力提供向心力可得: 2
v qvB m r '='
联立可得所加匀强磁场的磁感应强度大小:4mv
B qr
'=
='T 根据左手定则可知所加磁场方向垂直纸面向外。

3.科学家设想在宇宙中可能存在完全由反粒子构成的反物质.例如:正电子就是电子的反粒子,它跟电子相比较,质量相等、电量相等但电性相反.如图是反物质探测卫星的探测器截面示意图.MN 上方区域的平行长金属板AB 间电压大小可调,平行长金属板AB 间距为d ,匀强磁场的磁感应强度大小为B ,方向垂直纸面向里.MN 下方区域I 、II 为两相邻的方向相反的匀强磁场区,宽度均为3d ,磁感应强度均为B ,ef 是两磁场区的分界线,PQ 是粒子收集板,可以记录粒子打在收集板的位置.通过调节平行金属板AB 间电压,经过较长时间探测器能接收到沿平行金属板射入的各种带电粒子.已知电子、正电子的比荷是b ,不考虑相对论效应、粒子间的相互作用及电磁场的边缘效应.
(1)要使速度为v 的正电子匀速通过平行长金属极板AB ,求此时金属板AB 间所加电压U ;
(2)通过调节电压U 可以改变正电子通过匀强磁场区域I 和II 的运动时间,求沿平行长金属板方向进入MN 下方磁场区的正电子在匀强磁场区域I 和II 运动的最长时间t m ; (3)假如有一定速度范围的大量电子、正电子沿平行长金属板方向匀速进入MN 下方磁场区,它们既能被收集板接收又不重叠,求金属板AB 间所加电压U 的范围.
【答案】(1)Bvd (2)Bb π
(3)3B 2d 2b <U <22
1458
B d b
【解析】 【详解】
(1)正电子匀速直线通过平行金属极板AB ,需满足 Bev=Ee
因为正电子的比荷是b ,有 E=
U d
联立解得:
u Bvd =
(2)当正电子越过分界线ef 时恰好与分界线ef 相切,正电子在匀强磁场区域I 、II 运动的时间最长。

4
T t =
m t =2t
2
111
v ev B m R =
T =122R m
v Be
=ππ 联立解得:t Bb
π
=
(3)临界态1:正电子恰好越过分界线ef ,需满足 轨迹半径R 1=3d
1ev B =m 2
11
v R
1
1U ev B e
d
=⑪ 联立解得:22
13U d B b =
临界态2:沿A 极板射入的正电子和沿B 极板射入的电子恰好射到收集板同一点 设正电子在磁场中运动的轨迹半径为R 1 有(R 2﹣
14
d )2+9d 2=22R 2Bev =m 22
2
v R
Be 2v =
2
U e d 联立解得:
2221458
B d b
U =
解得:U 的范围是:3B 2d 2
b <U <221458
B d b
4.某控制带电粒子运动的仪器原理如图所示,区域PP′M′M 内有竖直向下的匀强电场,电场场强E =1.0×103V/m ,宽度d =0.05m ,长度L =0.40m ;区域MM′N′N 内有垂直纸面向里
的匀强磁场,磁感应强度B =2.5×10-2T ,宽度D =0.05m ,比荷
q
m
=1.0×108C/kg 的带正电的粒子以水平初速度v 0从P 点射入电场.边界MM′不影响粒子的运动,不计粒子重力.
(1) 若v 0=8.0×105m/s ,求粒子从区域PP′N′N 射出的位置;
(2) 若粒子第一次进入磁场后就从M′N′间垂直边界射出,求v 0的大小; (3) 若粒子从M′点射出,求v 0满足的条件.
【答案】(1)0.0125m (2) 3.6×105m/s. (3) 第一种情况:v 0=54.00.8()10/21
n
m s n -⨯+ (其中n =
0、1、2、3、4)第二种情况:v 0=53.20.8()10/21
n
m s n -⨯+ (其中n =0、1、2、3).
【解析】 【详解】
(1) 粒子以水平初速度从P 点射入电场后,在电场中做类平抛运动,假设粒子能够进入磁场,则
竖直方向2
1··
2Eq d t m
= 得2md
t qE
=
代入数据解得t =1.0×10-6s 水平位移x =v 0t 代入数据解得x =0.80m
因为x 大于L ,所以粒子不能进入磁场,而是从P′M′间射出, 则运动时间t 0=
L v =0.5×10-
6s , 竖直位移2
01··
2Eq y t m
==0.0125m 所以粒子从P′点下方0.0125m 处射出.
(2) 由第一问可以求得粒子在电场中做类平抛运动的水平位移x =v 2md
qE
粒子进入磁场时,垂直边界的速度 v 1=
qE m ·t 2qEd m
设粒子与磁场边界之间的夹角为α,则粒子进入磁场时的速度为v =
1
v sin α
在磁场中由qvB =m 2
v R
得R =mv qB 粒子第一次进入磁场后,垂直边界M′N′射出磁场,必须满足x +Rsinα=L 把x =v 0
2md qE 、R =mv qB 、v =1v sin α、12qEd
v m =
代入解得 v 0=L·
2Eq
md
-E B v 0=3.6×105m/s.
(3) 由第二问解答的图可知粒子离MM′的最远距离Δy =R -Rcosα=R(1-cosα) 把R =
mv qB 、v =1v sin α、12qEd v m
=代入解得 12(1cos )12tan sin 2
mEd mEd y B q B q αα
α-∆=
=
可以看出当α=90°时,Δy 有最大值,(α=90°即粒子从P 点射入电场的速度为零,直接在电场中加速后以v 1的速度垂直MM′进入磁场运动半个圆周回到电场)
1max 212mv m qEd mEd
y qB qB m B q
∆=
== Δy max =0.04m ,Δy max 小于磁场宽度D ,所以不管粒子的水平射入速度是多少,粒子都不会从边界NN′射出磁场.
若粒子速度较小,周期性运动的轨迹如下图所示:
粒子要从M′点射出边界有两种情况, 第一种情况: L =n(2v 0t +2Rsinα)+v 0t 把2md t qE =
R =mv qB 、v 1=vsinα、12qEd
v m
=代入解得
0221221L qE n E
v n md n B
=
-⋅++
v 0= 4.00.821n n -⎛⎫
⎪+⎝⎭
×105
m/s(其中n =0、1、2、3、4)
第二种情况:
L =n(2v 0t +2Rsinα)+v 0t +2Rsinα 把2md t qE =
、R =mv qB 、v 1=vsinα、12qEd v m
=代入解得
02(1)21221L qE n E v n md n B
+=
-⋅++
v 0= 3.20.821n n -⎛⎫
⎪+⎝⎭
×105
m/s(其中n =0、1、2、3).
5.如图所示,坐标原点O 左侧2m 处有一粒子源,粒子源中,有带正电的粒子(比荷为
q
m
=1.0×1010C/kg)由静止进人电压U= 800V 的加速电场,经加速后沿x 轴正方向运动,O 点右侧有以O 1点为圆心、r=0.20m 为半径的圆形区域,内部存在方向垂直纸面向里,磁感应强度大小为B=1.0×10-3T 的匀强磁场(图中未画出)圆的左端跟y 轴相切于直角坐标系原点O ,右端与一个足够大的荧光屏MN 相切于x 轴上的A 点,粒子重力不计。

(1)求粒子打到荧光屏上的位置到A 点的距离;
(2)若撤去磁场在荧光屏左侧某区域加竖直向上匀强电场,电场左右宽度为2r ,场强大小E=1.0×103V/m ,粒子仍打在荧光屏的同一位置,求电场右边界到屏幕MN 的距离。

【答案】(1)0.267m (2)0.867m 【解析】 【详解】
(1)粒子射入O 点时的速度v ,由动能定理得到:2
12
qU m v =
进入磁场后做匀速圆周运动,2
qvB m R
v =
设圆周运动的速度偏向角为α,则联立以上方程可以得到:1
tan
2
2
r R α
=
=,故4tan 3
α=
由几何关系可知纵坐标为y ,则tan y r
α= 解得:4
0.26715
y m m =
=;
(2)粒子在电场中做类平抛运动,Eq ma =,2r vt =,2
112
y at =,y v at = 射出电场时的偏向角为β
,tan y v v
β=
磁场右边界到荧光屏的距离为x ,由几何关系1
tan y y x
β-=
,解得:0.867x m =。

6.如图:竖直面内固定的绝缘轨道abc ,由半径R =3 m 的光滑圆弧段bc 与长l =1.5 m 的粗糙水平段ab 在b 点相切而构成,O 点是圆弧段的圆心,Oc 与Ob 的夹角θ=37°;过f 点的竖直虚线左侧有方向竖直向上、场强大小E =10 N/C 的匀强电场,Ocb 的外侧有一长度足够长、宽度d =1.6 m 的矩形区域efgh ,ef 与Oc 交于c 点,ecf 与水平向右的方向所成的夹角为β(53°≤β≤147°),矩形区域内有方向水平向里的匀强磁场.质量m 2=3×10-3 kg 、电荷量q =3×l0-3 C 的带正电小物体Q 静止在圆弧轨道上b 点,质量m 1=1.5×10-3 kg 的不带电小物体P 从轨道右端a 以v 0=8 m/s 的水平速度向左运动,P 、Q 碰撞时间极短,碰后P 以1 m/s 的速度水平向右弹回.已知P 与ab 间的动摩擦因数μ=0.5,A 、B 均可视为质点,Q 的电荷量始终不变,忽略空气阻力,sin37°=0.6,cos37°=0.8,重力加速度大小g =10 m/s 2.求:
(1)碰后瞬间,圆弧轨道对物体Q 的弹力大小F N ;
(2)当β=53°时,物体Q 刚好不从gh 边穿出磁场,求区域efgh 内所加磁场的磁感应强度大小B 1;
(3)当区域efgh 内所加磁场的磁感应强度为B 2=2T 时,要让物体Q 从gh 边穿出磁场且在磁场中运动的时间最长,求此最长时间t 及对应的β值.
【答案】(1)2
4.610N F N -=⨯ (2)1 1.25B T = (3)127s 360
t π
=
,001290143ββ==和 【解析】 【详解】
解:(1)设P 碰撞前后的速度分别为1v 和1v ',Q 碰后的速度为2v 从a 到b ,对P ,由动能定理得:221011111
-22
m gl m v m v μ=- 解得:17m/s v =
碰撞过程中,对P ,Q 系统:由动量守恒定律:111122m v m v m v '
=+
取向左为正方向,由题意11m/s v =-', 解得:24m/s v =
b 点:对Q ,由牛顿第二定律得:2
222N v F m g m R
-=
解得:2
4.610N N F -=⨯
(2)设Q 在c 点的速度为c v ,在b 到c 点,由机械能守恒定律:
22222211
(1cos )22
c m gR m v m v θ-+=
解得:2m/s c v =
进入磁场后:Q 所受电场力2
2310N F qE m g -==⨯= ,Q 在磁场做匀速率圆周运动
由牛顿第二定律得:2
211
c c m v qv B r =
Q 刚好不从gh 边穿出磁场,由几何关系:1 1.6m r d == 解得:1 1.25T B =
(3)当所加磁场22T
B=,
2
2
2
1m
c
m v
r
qB
==
要让Q从gh边穿出磁场且在磁场中运动的时间最长,则Q在磁场中运动轨迹对应的圆心角最大,则当gh边或ef边与圆轨迹相切,轨迹如图所示:
设最大圆心角为α,由几何关系得:2
2
cos(180)
d r
r
α
-
︒-=
解得:127
α=︒
运动周期:2
2
2m
T
qB
π
=
则Q在磁场中运动的最长时间:2
2
2
127127
•s
360360360
m
t T
qB
π
απ
===

此时对应的β角:190
β=︒和
2
143
β=︒
7.空间中存在方向垂直于纸面向里的匀强磁场,磁感应强度为B,一带电量为+q、质量为m的粒子,在P点以某一初速开始运动,初速方向在图中纸面内如图中P点箭头所示.该粒子运动到图中Q点时速度方向与P点时速度方向垂直,如图中Q点箭头所示.已知P、Q间的距离为L.若保持粒子在P点时的速度不变,而将匀强磁场换成匀强电场,电场方向与纸面平行且与粒子在P点时速度方向垂直,在此电场作用下粒子也由P点运动到Q 点.不计重力.
求:(1)电场强度的大小.
(2)两种情况中粒子由P运动到Q点所经历的时间之比.
【答案】
2
2
B qL
E
m
=;
2
B
E
t
t
π
=
【解析】
【分析】
【详解】
(1)粒子在磁场中做匀速圆周运动,以v0表示粒子在P点的初速度,R表示圆周的半径,
则有
2
0 0
v qv B m
R
=
由于粒子在Q点的速度垂直它在p点时的速度,可知粒子由P点到Q点的轨迹为
1
4
圆周,
故有
2
R=
以E表示电场强度的大小,a表示粒子在电场中加速度的大小,t E表示粒子在电场中由p 点运动到Q点经过的时间,则有qE ma
=
水平方向上:2
1
2E
R at
=
竖直方向上:0E
R v t
=
由以上各式,得
2
2
B qL
E
m
=且E
m
t
qB
=
(2)因粒子在磁场中由P点运动到Q点的轨迹为
1
4
圆周,即
1
42
B
t T
m
qB
π
==所以2
B
E
t
t
π
=
8.电子扩束装置由电子加速器、偏转电场和偏转磁场组成.偏转电场的极板由相距为d的两块水平平行放置的导体板组成,如图甲所示.大量电子由静止开始,经加速电场加速后,连续不断地沿平行板的方向从两板正中间OO’射入偏转电场.当两板不带电时,这些电子通过两板之间的时间为2t0;:当在两板间加最大值为U0、周期为2t0的电压(如图乙所示)时,所有电子均能从两板间通过,然后进入竖直宽度足够大的匀强酸场中,最后打在竖直放置的荧光屏上.已知磁场的水平宽度为L,电子的质量为m、电荷量为e,其重力不计.
(1)求电子离开偏转电场时的位置到OO’的最远位置和最近位置之间的距离
(2)要使所有电子都能垂直打在荧光屏上,
①求匀强磁场的磁感应强度B
②求垂直打在荧光屏上的电子束的宽度△y 【答案】(1)2010U e y t dm ∆= (2)①00U t B dL =②2
010U e y y t dm
∆=∆= 【解析】 【详解】
(1)由题意可知,从0、2t 0、4t 0、……等时刻进入偏转电场的电子离开偏转电场时的位置到OO ′的距离最大,在这种情况下,电子的最大距离为:
2222
000max 00000311222y U e U e U e y at v t t t t dm dm dm
=
+=+= 从t 0、3t 0、……等时刻进入偏转电场的电子离开偏转电场时的位置到OO ′的距离最小,在这种情况下,电子的最小距离为:
220min 001122U e y at t dm
=
= 最远位置和最近位置之间的距离:1max min y y y ∆=-,
2
010U e y t dm
∆=
(2)①设电子从偏转电场中射出时的偏向角为θ,由于电子要垂直打在荧光屏上,所以电子在磁场中运动半径应为:
sin L R θ
=
设电子离开偏转电场时的速度为v 1,垂直偏转极板的速度为v y ,则电子离开偏转电场时的偏向角为θ,1
sin y v v θ=,
式中00y U e
v t dm
= 又:1
mv R Be =
解得:00U t
B dL
=
②由于各个时刻从偏转电场中射出的电子的速度大小相等,方向相同,因此电子进入磁场后做圆周运动的半径也相同,都能垂直打在荧光屏上.
由第(1)问知电子离开偏转电场时的位置到OO ′的最大距离和最小距离的差值为△y 1, 所以垂直打在荧光屏上的电子束的宽度为:2
010U e y y t dm
∆=∆=
9.如图所示,在竖直平面内建立直角坐标系,y 轴沿竖直方向.在x = L 到x =2L 之间存在竖直向上的匀强电场和垂直坐标平面向里的匀强磁场,一个比荷(
q
m
)为k 的带电微粒从
坐标原点以一定初速度沿+x 方向抛出,进入电场和磁场后恰好在竖直平面内做匀速圆周运动,离开电场和磁场后,带电微粒恰好沿+x 方向通过x 轴上x =3L 的位置,已知匀强磁场的磁感应强度为B ,重力加速度为g .求:
(1)电场强度的大小; (2)带电微粒的初速度;
(3)带电微粒做圆周运动的圆心坐标.
【答案】(1)g k (2)2g
kB
(3)2222232(,)28g k B L L k B g -
【解析】 【分析】 【详解】
(1)由于粒子在复合场中做匀速圆周运动,则:mg =qE ,又=q
k m
解得g E k
=
(2)由几何关系:2R cos θ=L ,
粒子做圆周运动的向心力等于洛伦兹力:2
v qvB m r
= ;

cos y v v
θ=
在进入复合场之前做平抛运动:y gt =v
0L v t =
解得02g v kB
=
(3)由2
12
h gt =
其中2kBL t g = ,
则带电微粒做圆周运动的圆心坐标:
'3 2
O
x L
=;
222
'22
2
sin
8
O
g k B L
y h R
k B g
θ
=-+=-
10.如图所示,在直角坐标系xOy平面内有两个同心圆,圆心在坐标原点O,小圆内部(I区)和两圆之间的环形区域(Ⅱ区)存在方向均垂直xOy平面向里的匀强磁场(图中未画出),I、Ⅱ区域磁场磁感应强度大小分别为B、2B。

a、b两带正电粒子从O点同时分别沿y轴正向、负向运动,已知粒子a质量为m、电量为q、速度大小为v,粒子b质量为2m、电量为2q、速度大小为v/2,粒子b恰好不穿出1区域,粒子a不穿出大圆区域,不计粒子重力,不计粒子间相互作用力。

求:
(1)小圆半径R1;
(2)大圆半径最小值
(3)a、b两粒子从O点出发到在x轴相遇所经过的最短时间t(不考虑a、b在其它位置相遇)。

【答案】(1)1
mv
R
qB
= (2)
2min
(31)
2
mv
R
qB
= (3)
14m
qB
π
【解析】
【详解】
解:(1)粒子b在Ⅰ区域做匀速圆周运动,设其半径为
b
r
根据洛伦磁力提供向心力有:
2
2()
2
2
2
b
v
m
v
q B
r
=
由粒子b恰好不穿出Ⅰ区域:12b
R r
=
解得:1
mv
R
qB
=
(2)设a在Ⅰ区域做匀速圆周运动的半径为1a r,
根据洛伦磁力提供向心力有:
2
1a
mv
qvB
r
=
解得:11
a
mv
r R
qB
==
设a 在Ⅱ区域做匀速圆周运动的半径为2a r ,
根据洛伦磁力提供向心力有:2
2
2a mv qv B r •=
解得: 211
22
a mv r R qB =
= 设大圆半径为2R
,由几何关系得:12112
R R R ≥+ 所以,大圆半径最小值为:
2min 1)2qB
R mv

(3)粒子a 在Ⅰ区域的周期为12a m T qB π=
,Ⅱ区域的周期为2a m
T qB
π=
粒子a 从O 点出发回到O 点所经过的最短时间为:1121
13
2
a a a t T T =+ 解得:176a m
t qB
π=
粒子b 在Ⅰ区域的周期为:2b m
T qB
π=
讨论:①如果a 、b 两粒子在O 点相遇,粒子a 经过时间:176a a n m
t nt qB
π== n=1,2,3… 粒子b 经过时间:2b b k m
t kT qB
π==
k=1,2,3… a b t t =时,解得:
726
n
k = 当7k =,12n =时,有最短时间:114m
t qB
π=
②设粒子b 轨迹与小圆相切于P 点,如果a 粒子在射出小圆时与b 粒子在P 点相遇
则有:121
5(218)663a a a a n m t T T n t qB
π+=++= n=1,2,3… 粒子b 经过时间: (21)(21)2b b k T k m
t qB π--=
= k=1,2,3… a b t t =时,解得:218
213
n k +-=
ab 不能相遇
③如果a 粒子在射入小圆时与b 粒子在P 点相遇 则有:1217(2113)2663a a a a n m t T T n t qB
π+=
++= n=1,2,3…
粒子b 经过时间:(21)(21)2b b k T k m
t qB
π--=
= k=1,2,3… a b t t =时,解得:2113
213
n k +-=
ab 不能相遇
a 、
b 两粒子从O 点出发到在x 轴相遇所经过的最短时间为14m
qB
π
11.如图为一装放射源氡的盒子,静止的氡核经过一次α衰变成钋Po ,新核Po 的速率约为2×105m/s .衰变后的α粒子从小孔P 进入正交的电磁场区域Ⅰ,且恰好可沿中心线匀速通过,磁感应强度B =0.1T .之后经过A 孔进入电场加速区域Ⅱ,加速电压U =3×106V .从区域Ⅱ射出的α粒子随后又进入半径为r =
3
m 的圆形匀强磁场区域Ⅲ,该区域磁感应强度B 0=0.4T 、方向垂直纸面向里.圆形磁场右边有一竖直荧光屏与之相切,荧光屏的中心点M 和圆形磁场的圆心O 、电磁场区域Ⅰ的中线在同一条直线上,α粒子的比荷为
q
m
=5×107C/kg .
(1)请写出衰变方程,并求出α粒子的速率(保留一位有效数字); (2)求电磁场区域Ⅰ的电场强度大小; (3)粒子在圆形磁场区域Ⅲ的运动时间多长? (4)求出粒子打在荧光屏上的位置. 【答案】(1)
2222184
86
842Rn Po He →
+ 1×107 m/s
(2)1×106V/m (3)
6
π
×10-7s (4)打在荧光屏上的M 点上方1 m 处 【解析】 【分析】
(1)根据质量数守恒和电荷数守恒写出方程,根据动量守恒求解速度; (2)根据速度选择器的原理求解电场强度的大小;
(3)粒子在磁场中匀速圆周运动,并结合几何知识进行求解即可;
【详解】
(1)根据质量数守恒和电荷数守恒,则衰变方程为:
2222184
86
842Rn Po He →
+ ①
设α粒子的速度为0v ,则衰变过程动量守恒:100Po He m v m v =- ②
联立①②可得:7
0110/v m s =⨯ ③
(2)α粒子匀速通过电磁场区域Ⅰ:0qE qv B =④ 联立③④可得:6110/E V m =⨯ ⑤ (3)α粒子在区域Ⅱ被电场加速:2201122
qU mv mv =- 所以得到:7210/v m s =⨯⑥
α粒子在区域Ⅲ中做匀速圆周运动: 2v qvB m R
= 所以轨道半径为:1R m =⑦ 而且:2R
T v
π=
⑧ 由图根据几何关系可知:α粒子在磁场中偏转角60θ=︒,所以α粒子在磁场中的运动时
间1
6
t T =
⑨ 联立⑧⑨可得:7106
t s π
=
⨯-;
(4)α粒子的入射速度过圆心,由几何关系可知,出射速度方向也必然过圆心O ,几何关系如图: 60x
tan r
︒=
,所以1x m =,α粒子打在荧光屏上的M 点上方1m 处.
【点睛】
本题实质是考查带电粒子在电场和磁场中的运动,解决类似习题方法是洛伦兹力提供向心力,同时结合几何知识进行求解,同时画出图形是解题的关键.
12.如图所示,在竖直平面内有一直角坐标系xOy ,在直角坐标系中y 轴和x =L 之间有沿y 轴正方向的匀强电场,电场强度大小为E ,在电场的右侧以点(3L,0)为圆心、L 为半径的圆形区域内有垂直于坐标平面向里的匀强磁场,磁感应强度大小为B ,在y 轴上A 点(0,L )处
沿x 轴正方向射出一质量为m 、电荷量为q 的带负电的粒子,粒子经电场偏转后,沿半径方向射入磁场,并恰好竖直向下射出磁场,粒子的重力忽略不计,求:(结果可含根式)
(1)粒子的初速度大小; (2)匀强磁场的磁感应强度大小. 【答案】(1)5
2qEL
m (2)
2910229050mE
qL
- 【解析】 【详解】
(1)粒子射入电场中并在电场中发生偏转,由于能沿半径方向进入磁场,因此其处电场 后的轨迹如图所示,出电场后的速度方向的反向延长线交于在电场运动的水平位移的中点:
则由几何关系可知粒子在电场中的竖直位移y 满足
122L
y
L y L
=- 解得
15
y L =
竖直方向
212y a t
=
水中方向
0L t v =
在电场中根据牛顿第二定律
qE ma =
联立可以得到
0v =
(2)设粒子进磁场时的轨迹与磁场边界交点为C ,由于粒子出磁场时方向沿y 轴负方向,因此粒子在磁场中做圆周运动的圆心在2O 点,连接2O 和C 点,交x 轴与D 点,做2O F 垂直x 轴,垂直为F . 由几何关系
452L
CD L L
=
解得
2
5
CD L =
由于21O F O C L ==,故2O FD ∆与1O CD ∆全等,可以得到
21O D O D =

15O D L ==
因此粒子在磁场中做圆周运动的半径为
2R O D CD =+=
粒子出电场时速度沿y 轴负方向的分速度
y v ==
因此粒子进磁场时的速度为
v ==
粒子在磁场中做匀速圆周运动有
2
qvB m R
v =
解得
B =
=点睛:本题考查了粒子在电场与磁场中的运动,分析清楚 粒子运动过程、作出粒子运动轨迹是解题的前提与关键,应用类平抛运动规律、牛顿第二定律即可解题.
13.如图所示,直径分别为D 和2D 的同心圆处于同一竖直面内,O 为圆心,GH 为大圆的水平直径。

两圆之间的环形区域(Ⅰ区)和小圆内部(Ⅱ区)均存在垂直圆面向里的匀强磁
场.间距为d 的两平行金属极板间有一匀强电场,上极板开有一小孔.一质量为m 、电量
为+q 的粒子由小孔下方
2
d
处静止释放,加速后粒子以竖直向上的速度v 射出电场,由H 点紧靠大圆内侧射入磁场。

不计粒子的重力。

(1)求极板间电场强度的大小;
(2)若粒子运动轨迹与小圆相切,求Ⅰ区磁感应强度的大小; (3)若Ⅰ区、Ⅱ区磁感应强度的大小分别为2mv qD 、
4mv
qD
,粒子运动一段时间后再次经过H 点,求这段时间粒子运动的路程.
【答案】(1)2
mv qd
(2)4mv qD 或43mv qD (3)5.5πD
【解析】 【分析】 【详解】
(1)粒子在电场中,根据动能定理2
122
d Eq mv ⋅=,解得2mv E qd =
(2)若粒子的运动轨迹与小圆相切,则当内切时,半径为
/2
E R 由2
11
v qvB m r =,解得4mv B qD =
则当外切时,半径为
e R
由2
12
v qvB m r =,解得43mv B qD =
(2)若Ⅰ区域的磁感应强度为220932qB L m U =,则粒子运动的半径为00
10016819U U U ≤≤;Ⅱ
区域的磁感应强度为2012qU mv =,则粒子运动的半径为2
v qvB m r
=;
设粒子在Ⅰ区和Ⅱ区做圆周运动的周期分别为T 1、T 2,由运动公式可得:
1112R T v π=
;03
4
r L =
据题意分析,粒子两次与大圆相切的时间间隔内,运动轨迹如图所示,根据对称性可知,Ⅰ区两段圆弧所对的圆心角相同,设为1θ,Ⅱ区内圆弧所对圆心角为2θ,圆弧和大圆的两个切点与圆心O 连线间的夹角设为α,由几何关系可得:1120θ=;2180θ=;
60α=
粒子重复上述交替运动回到H 点,轨迹如图所示,设粒子在Ⅰ区和Ⅱ区做圆周运动的时间
分别为t 1、t 2,可得:r U ∝
;1056
U L U L
=
设粒子运动的路程为s ,由运动公式可知:s=v(t 1+t 2) 联立上述各式可得:s=5.5πD
14.现代科学仪器常利用电场磁场控制带电粒子的运动,如图所示,真空中存在着多层紧密
相邻的匀强电场和匀强磁场,宽度均为d 电场强度为E ,方向水平向左;垂直纸面向里磁场的磁感应强度为B 1,垂直纸面向外磁场的磁感应强度为B 2,电场磁场的边界互相平行且与电场方向垂直.一个质量为
、电荷量为的带正电粒子在第层电场左侧边界某处由静止
释放,粒子始终在电场、磁场中运动,不计粒子重力及运动时的电磁辐射.
(1)求粒子在第2层磁场中运动时速度2v的大小与轨迹半径2r;
(2)粒子从第n层磁场右侧边界穿出时,速度的方向与水平方向的夹角为nθ,试求sin nθ;(3)若粒子恰好不能从第n层磁场右侧边界穿出,试问在其他条件不变的情况下,也进入第n层磁场,但比荷较该粒子大的粒子能否穿出该层磁场右侧边界,请简要推理说明之
【答案】(1);(2);(3)见解析;
【解析】
(1)粒子在进入第2层磁场时,经两次电场加速,中间穿过磁场时洛伦兹力不做功,由动能定理,有:
解得:
粒子在第2层磁场中受到的洛伦兹力充当向心力,有:
联立解得:
(2)设粒子在第n层磁场中运动的速度为v n,轨迹半径为r n(下标表示粒子所在层数),
粒子进入到第n层磁场时,速度的方向与水平方向的夹角为,从第n层磁场右侧边界突出时速度方向与水平方向的夹角为,粒子在电场中运动时,垂直于电场线方向的速度分量不变,有:
由图根据几何关系可以得到:
联立可得:
由此可看出,,…,为一等差数列,公差为d,可得:
当n=1时,由下图可看出:
联立可解得:
(3)若粒子恰好不能从第n层磁场右侧边界穿出,则:

在其他条件不变的情况下,打印服务比荷更大的粒子,设其比荷为,假设通穿出第n 层磁场右侧边界,粒子穿出时速度方向与水平方向的夹角为,由于,则导致:
说明不存在,即原假设不成立,所以比荷较该粒子大的粒子不能穿出该层磁场右侧边界.
考点:带电粒子在电磁场中的运动
15.利用电场和磁场,可以将比荷不同的离子分开,这种方法在化学分析和原子核技术等领域有重要的应用.如图所示的矩形区域ACDG(AC 边足够长)中存在垂直于纸面的匀强磁场,A 处有一狭缝.离子源产生的离子,经静电场加速后穿过狭缝沿垂直于GA 边且垂直于磁场的方向射入磁场,运动到GA 边,被相应的收集器收集.整个装置内部为真空.已知被加速的两种正离子的质量分别是m 1和m 2(m 1>m 2),电荷量均为q .加速电场的电势差为U ,离子进入电场时的初速度可以忽略.不计重力,也不考虑离子间的相互作用.
(1)求质量为m 1的离子进入磁场时的速率v 1;
(2)当磁感应强度的大小为B 时,求两种离子在GA 边落点的间距s ;
(3)在前面的讨论中忽略了狭缝宽度的影响,实际装置中狭缝具有一定宽度.若狭缝过宽,可能使两束离子在GA 边上的落点区域交叠,导致两种离子无法完全分离.设磁感应强度大小可调,GA 边长为定值L ,狭缝宽度为d ,狭缝右边缘在A 处.离子可以从狭缝各处射入磁场,入射方向仍垂直于GA 边且垂直于磁场.为保证上述两种离子能落在GA 边上并被完全分离,求狭缝的最大宽度. 【答案】(112qU m 2122
8U
m m qB (3)d m 1212
2m m m m --L
【解析】
(1)动能定理 Uq =
1
2
m 1v 12 得:v 1=
1
2qU
m …① (2)由牛顿第二定律和轨道半径有:
qvB =2
mv R
,R = mv qB 利用①式得离子在磁场中的轨道半径为别为(如图一所示):。

相关文档
最新文档