寿宁县高级中学2018-2019学年高二上学期数学期末模拟试卷含解析

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

寿宁县高级中学2018-2019学年高二上学期数学期末模拟试卷含解析 班级__________ 座号_____ 姓名__________ 分数__________
一、选择题
1. 定义运算:,,a a b
a b b a b ≤⎧*=⎨>⎩
.例如121*=,则函数()sin cos f x x x =*的值域为( )
A .22,22⎡⎤-⎢⎥⎣⎦
B .[]1,1-
C .2,12⎡⎤⎢⎥⎣⎦
D .21,2⎡⎤
-⎢⎥⎣⎦ 2. 已知{}n a 是等比数列,251
24
a a ==,,则公比q =( )
A .12-
B .-2
C .2
D .12
3. 向高为H 的水瓶中注水,注满为止.如果注水量V 与水深h 的函数关系如图,那么水瓶的形状是图中的( )
A .
B .
C .
D .
4. 一个骰子由1~6六个数字组成,请你根据图中三种状态所显示的数字,推出“”处的数字是( ) A .6 B .3 C .1 D .2
5. 如图,1111D C B A ABCD -为正方体,下面结论:① //BD 平面11D CB ;② BD AC ⊥1;③ ⊥1AC 平面11D CB .其中正确结论的个数是( )
A .
B .
C .
D . 6. 设命题p :,则
p 为( )
A .
B .
C .
D .
7. 数列1,﹣4,7,﹣10,13,…,的通项公式a n 为( ) A .2n ﹣1
B .﹣3n+2
C .(﹣1)n+1(3n ﹣2)
D .(﹣1)n+13n ﹣2
8. 如图,网格纸上小正方形的边长为1,粗线画出的是一正方体被截去一部分后所得几何体的三视图,则该几何体的表面积为( )
A .54
B .162
C .54+18
D .162+18
9. 已知f (x )在R 上是奇函数,且f (x+4)=f (x ),当x ∈(0,2)时,f (x )=2x 2,则f (7)=( ) A .﹣2 B .2 C .﹣98 D .98
10.函数f (x )=2x ﹣的零点个数为( ) A .0 B .1 C .2 D .3 11.已知向量与的夹角为60°,||=2,||=6,则2﹣在方向上的投影为( )
A .1
B .2
C .3
D .4
12.圆2
2
2
(2)x y r -+=(0r >)与双曲线2
2
13
y x -=的渐近线相切,则r 的值为( )
A B .2 C D .【命题意图】本题考查圆的一般方程、直线和圆的位置关系、双曲线的标准方程和简单几何性质等基础知识,意在考查基本运算能力.
13.设集合{|12}A x x =<<,{|}B x x a =<,若A B ⊆,则的取值范围是( ) A .{|2}a a ≤ B .{|1}a a ≤ C .{|1}a a ≥ D .{|2}a a ≥
14.已知正项数列{a n }的前n 项和为S n ,且2S n =a n +,则S 2015的值是( )
A .
B .
C .2015
D .
15.已知函数f (x )=x (1+a|x|).设关于x 的不等式f (x+a )<f (x )的解集为A ,若,则
实数a 的取值范围是( )
A .
B .
C .
D .
二、填空题
16.下列说法中,正确的是 .(填序号)
①若集合A={x|kx 2+4x+4=0}中只有一个元素,则k=1;
②在同一平面直角坐标系中,y=2x 与y=2﹣x 的图象关于y 轴对称; ③y=(
)﹣x
是增函数;
④定义在R 上的奇函数f (x )有f (x )•f (﹣x )≤0.
17.在(1+2x )10的展开式中,x 2项的系数为 (结果用数值表示).
18.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,sinA ,sinB ,sinC 依次成等比数列,c=2a 且•
=24,
则△ABC 的面积是 .
19.已知抛物线1C :x y 42
=的焦点为F ,点P 为抛物线上一点,且3||=PF ,双曲线2C :122
22=-b
y a x
(0>a ,0>b )的渐近线恰好过P 点,则双曲线2C 的离心率为 .
【命题意图】本题考查了双曲线、抛物线的标准方程,双曲线的渐近线,抛物线的定义,突出了基本运算和知识交汇,难度中等.
三、解答题
20.(本小题满分12分)
数列{}n b 满足:122n n b b +=+,1n n n b a a +=-,且122,4a a ==. (1)求数列{}n b 的通项公式; (2)求数列{}n a 的前项和n S .
21.(本小题满分12分)已知过抛物线2
:2(0)C y px p =>的焦点,
斜率为11A x y (,) 和22B x y (,)(12x x <)两点,且9
2
AB =. (I )求该抛物线C 的方程;
(II )如图所示,设O 为坐标原点,取C 上不同于O 的点S ,以OS 为直径作圆与C 相交另外一点R , 求该圆面积的最小值时点S 的坐标.
22.设函数.
(Ⅰ)求函数的最小正周期;
(Ⅱ)求函数在
上的最大值与最小值.
23.求下列函数的定义域,并用区间表示其结果.
(1)y=+

(2)y=.
24.在锐角三角形ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,且2csinA=a .
(1)求角C 的大小;
(2)若c=2,a 2+b 2=6,求△ABC 的面积.
25.(本小题满分12分)
如图,多面体ABCDEF 中,四边形ABCD 为菱形,且60DAB ∠=,//EF
AC ,2AD =,
EA ED EF ===.
(1)求证:AD BE ⊥;
(2)若BE =-F BCD 的体积.
寿宁县高级中学2018-2019学年高二上学期数学期末模拟试卷含解析(参考答案) 一、选择题
1. 【答案】D 【解析】

点:1、分段函数的解析式;2、三角函数的最值及新定义问题.
2. 【答案】D 【解析】
试题分析:∵在等比数列}{a n 中,41,2a 52==a ,2
1,81q 253
=∴==∴q a a . 考点:等比数列的性质. 3. 【答案】B
【解析】解:如果水瓶形状是圆柱,V=πr 2
h ,r 不变,V 是h 的正比例函数,
其图象应该是过原点的直线,与已知图象不符.故D 错;
由已知函数图可以看出,随着高度h 的增加V 也增加,但随h 变大, 每单位高度的增加,体积V 的增加量变小,图象上升趋势变缓, 其原因只能是瓶子平行底的截面的半径由底到顶逐渐变小.故A 、C 错. 故选:B .
4. 【答案】A 【解析】
试题分析:根据与相邻的数是1,4,3,而与相邻的数有1,2,5,所以1,3,5是相邻的数,故“?”表示的数是,故选A .
考点:几何体的结构特征. 5. 【答案】D 【解析】
考点:1.线线,线面,面面平行关系;2.线线,线面,面面垂直关系.
【方法点睛】本题考查了立体几何中的命题,属于中档题型,多项选择题是容易出错的一个题,当考察线面平行时,需证明平面外的线与平面内的线平行,则线面平行,一般可构造平行四边形,或是构造三角形的中位线,可证明线线平行,再或是证明面面平行,则线面平行,一般需在选取一点,使直线与直线外一点构成平面证明面面平行,要证明线线垂直,可转化为证明线面垂直,需做辅助线,转化为线面垂直.
6.【答案】A
【解析】【知识点】全称量词与存在性量词
【试题解析】因为特称命题的否定是全称命题,p为:。

故答案为:A
7.【答案】C
【解析】解:通过观察前几项可以发现:数列中符号是正负交替,每一项的符号为(﹣1)n+1,绝对值为3n ﹣2,故通项公式a n=(﹣1)n+1(3n﹣2).
故选:C.
8.【答案】D
【解析】解:由已知中的三视图可得:该几何体是一个正方体截去一个三棱锥得到的组合体,
其表面有三个边长为6的正方形,三个直角边长为6的等腰直角三角形,和一个边长为6的等边三角形组
成,
故表面积S=3×6×6+3××6×6+×=162+18,
故选:D
9.【答案】A
【解析】解:因为f(x+4)=f(x),故函数的周期是4
所以f(7)=f(3)=f(﹣1),
又f(x)在R上是奇函数,
所以f(﹣1)=﹣f(1)=﹣2×12=﹣2,
故选A.
【点评】本题考查函数的奇偶性与周期性.
10.【答案】C
【解析】解:易知函数的定义域为{x|x ≠1}, ∵
>0,
∴函数在(﹣∞,1)和(1,+∞)上都是增函数,

<0,f (0)=1﹣(﹣2)=3>0,
故函数在区间(﹣4,0)上有一零点; 又f (2)=4﹣4=0,
∴函数在(1,+∞)上有一零点0, 综上可得函数有两个零点. 故选:C .
【点评】本题考查函数零点的判断.解题关键是掌握函数零点的判断方法.利用函数单调性确定在相应区间的零点的唯一性.属于中档题.
11.【答案】A
【解析】解:∵向量与的夹角为60°,||=2,||=6, ∴(2﹣)•=2

=2×22﹣6×2×cos60°=2,
∴2﹣在方向上的投影为=

故选:A .
【点评】本题考查了平面向量数量积的定义与投影的计算问题,是基础题目.
12.【答案】C
13.【答案】D 【解析】
试题分析:∵A B ⊆,∴2a ≥.故选D . 考点:集合的包含关系. 14.【答案】D
【解析】解:∵2S n=a n+,∴,解得a1=1.
当n=2时,2(1+a2)=,化为=0,又a2>0,解得,
同理可得.
猜想.
验证:2S
=…+=,
n
==,
因此满足2S n=a n+,
∴.
∴S n=.
∴S2015=.
故选:D.
【点评】本题考查了猜想分析归纳得出数列的通项公式的方法、递推式的应用,考查了由特殊到一般的思想方法,考查了推理能力与计算能力,属于难题.
15.【答案】A
【解析】解:取a=﹣时,f(x)=﹣x|x|+x,
∵f(x+a)<f(x),
∴(x﹣)|x﹣|+1>x|x|,
(1)x<0时,解得﹣<x<0;
(2)0≤x≤时,解得0;
(3)x>时,解得,
综上知,a=﹣时,A=(﹣,),符合题意,排除B、D;
取a=1时,f(x)=x|x|+x,
∵f(x+a)<f(x),∴(x+1)|x+1|+1<x|x|,
(1)x<﹣1时,解得x>0,矛盾;
(2)﹣1≤x≤0,解得x<0,矛盾;
(3)x>0时,解得x<﹣1,矛盾;
综上,a=1,A=∅,不合题意,排除C,
故选A.
【点评】本题考查函数的单调性、二次函数的性质、不等式等知识,考查数形结合思想、分类讨论思想,考查学生分析解决问题的能力,注意排除法在解决选择题中的应用.
二、填空题
16.【答案】②④
【解析】解:①若集合A={x|kx2+4x+4=0}中只有一个元素,则k=1或k=0,故错误;
②在同一平面直角坐标系中,y=2x与y=2﹣x的图象关于y轴对称,故正确;
③y=()﹣x是减函数,故错误;
④定义在R上的奇函数f(x)有f(x)•f(﹣x)≤0,故正确.
故答案为:②④
【点评】本题以命题的真假判断与应用为载体,考查了集合,指数函数的,奇函数的图象和性质,难度中档.
17.【答案】180
【解析】解:由二项式定理的通项公式T r+1=C n r a n﹣r b r可设含x2项的项是T r+1=C7r(2x)r
可知r=2,所以系数为C102×4=180,
故答案为:180.
【点评】本题主要考查二项式定理中通项公式的应用,属于基础题型,难度系数0.9.一般地通项公式主要应用有求常数项,有理项,求系数,二项式系数等.
18.【答案】4.
【解析】解:∵sinA,sinB,sinC依次成等比数列,
∴sin2B=sinAsinC,由正弦定理可得:b2=ac,
∵c=2a,可得:b=a,
∴cosB===,可得:sinB==,
∵•=24,可得:accosB=ac=24,解得:ac=32,
∴S
△ABC=acsinB==4.
故答案为:4.
19.【答案】3
三、解答题
20.【答案】(1)122n n b +=-;(2)222(4)n n S n n +=-++.
【解析】
试题分析:(1)已知递推公式122n n b b +=+,求通项公式,一般把它进行变形构造出一个等比数列,由等比数列的通项公式可得n b ,变形形式为12()n n b x b x ++=+;(2)由(1)可知122(2)n n n n a a b n --==-≥,这是数列{}n a 的后项与前项的差,要求通项公式可用累加法,即由112()()n n n n n a a a a a ---=-+-
+ 211()a a a +-+求得.
试题解析:(1)112222(2)n n n n b b b b ++=+⇒+=+,∵1222
n n b b ++=+, 又121224b a a +=-+=,
∴2312(21)(2222)22222221n n n n a n n n +-=++++-+=-+=--.
∴22
4(12)(22)2(4)122n
n n
n n S n n +-+=-=-++-. 考点:数列的递推公式,等比数列的通项公式,等比数列的前项和.累加法求通项公式.
21.【答案】
【解析】【命题意图】本题考查抛物线标准方程、抛物线定义、直线和抛物线位置关系等基础知识,意在考查转化与化归和综合分析问题、解决问题的能力.

为12y y ≠,20y ≠,化简得12216y y y ⎛
⎫=-+ ⎪⎝⎭
,所以22212222222562563223264y y y y y =++≥⋅+=, 当且仅当2222
256y y =即22y =16,24y =?时等号成立. 圆的直径OS =42
22111116
y x y y ++=2211(8)644y +-=,因为21y ≥64,所以当21y =64即1y =±8时,min 85OS =,所以所求圆的面积的最小时,点S 的坐标为
168±(,). 22.【答案】
【解析】【知识点】三角函数的图像与性质恒等变换综合
【试题解析】(Ⅰ)因为

所以函数的最小正周期为.
(Ⅱ)由(Ⅰ),得.
因为,
所以,
所以.
所以.
且当时,取到最大值;
当时,取到最小值.
23.【答案】
【解析】解:(1)∵y=+,
∴,
解得x≥﹣2且x≠﹣2且x≠3,
∴函数y的定义域是(﹣2,3)∪(3,+∞);
(2)∵y=,
∴,
解得x≤4且x≠1且x≠3,
∴函数y的定义域是(﹣∞,1)∪(1,3)∪(3,4].
24.【答案】
【解析】(本小题满分10分)
解:(1)∵,
∴,…2分
在锐角△ABC中,,…3分
故sinA≠0,
∴,.…5分 (2)∵
,…6分 ∴
,即ab=2,…8分 ∴.…10分
【点评】本题主要考查了正弦定理,特殊角的三角函数值,余弦定理,三角形的面积公式在解三角形中的应用,考查了转化思想,属于基础题.
25.【答案】
【解析】【命题意图】本小题主要考查空间直线与直线、直线与平面的位置关系及几何体的体积等基础知识,考查空间想象能力、推理论证能力、运算求解能力,考查化归与转化思想等.
(2)在EAD △中,EA ED =,2AD =,。

相关文档
最新文档