2018年扬州中考数学卷

合集下载

5.14三角形综合题(第4部分)-2018年中考数学试题分类汇编(word解析版)

5.14三角形综合题(第4部分)-2018年中考数学试题分类汇编(word解析版)

第五部分图形的性质5.14 三角形综合题【一】知识点清单三角形综合题【二】分类试题汇编及参考答案与解析一、选择题1.(2018年湖北省孝感市-第10题-3分)如图,△ABC是等边三角形,△ABD是等腰直角三角形,∠BAD=90°,AE⊥BD于点E,连CD分别交AE,AB于点F,G,过点A作AH⊥CD交BD于点H.则下列结论:①∠ADC=15°;②AF=AG;③AH=DF;④△AFG∽△CBG;⑤AF=﹣1)EF.其中正确结论的个数为()A.5 B.4 C.3 D.2【知识考点】相似三角形的判定与性质;全等三角形的判定与性质;等边三角形的性质;等腰直角三角形.【思路分析】①由等边三角形与等腰直角三角形知△CAD是等腰三角形且顶角∠CAD=150°,据此可判断;②求出∠AFP和∠FAG度数,从而得出∠AGF度数,据此可判断;③证△ADF≌△BAH 即可判断;④由∠AFG=∠CBG=60°、∠AGF=∠CGB即可得证;⑤设PF=x,则AF=2x、AP= =x,设EF=a,由△ADF≌△BAH知BH=AF=2x,根据△ABE是等腰直角三角形之BE=AE=a+2x,据此得出EH=a,证△PAF∽△EAH得=,从而得出a与x的关系即可判断.【解答过程】解:∵△ABC为等边三角形,△ABD为等腰直角三角形,∴∠BAC=60°、∠BAD=90°、AC=AB=AD,∠ADB=∠ABD=45°,∴△CAD是等腰三角形,且顶角∠CAD=150°,∴∠ADC=15°,故①正确;∵AE⊥BD,即∠AED=90°,∴∠DAE=45°,∴∠AFG=∠ADC+∠DAE=60°,∠FAG=45°,∴∠AGF=75°,由∠AFG≠∠AGF知AF≠AG,故②错误;记AH与CD的交点为P,由AH⊥CD且∠AFG=60°知∠FAP=30°,则∠BAH=∠ADC=15°,在△ADF和△BAH中,∵,∴△ADF≌△BAH(ASA),∴DF=AH,故③正确;∵∠AFG=∠CBG=60°,∠AGF=∠CGB,∴△AFG∽△CBG,故④正确;在Rt△APF中,设PF=x,则AF=2x、AP==x,设EF=a,∵△ADF≌△BAH,∴BH=AF=2x,△ABE中,∵∠AEB=90°、∠ABE=45°,∴BE=AE=AF+EF=a+2x,∴EH=BE﹣BH=a+2x﹣2x=a,∵∠APF=∠AEH=90°,∠FAP=∠HAE,∴△PAF∽△EAH,∴=,即=,整理,得:2x2=(﹣1)ax,由x≠0得2x=(﹣1)a,即AF=(﹣1)EF,故⑤正确;故选:B.【总结归纳】本题主要考查相似三角形的判定与性质,解题的关键是掌握等腰三角形与等边三角形的性质、全等三角形与相似三角形的判定与性质等知识点.2.(2018年湖北省荆门市-第11题-3分)如图,等腰Rt△ABC中,斜边AB的长为2,O为AB的中点,P为AC边上的动点,OQ⊥OP交BC于点Q,M为PQ的中点,当点P从点A运动到点C时,点M所经过的路线长为()A B C.1 D.2【知识考点】轨迹;等腰直角三角形【思路分析】连接OC,作PE⊥AB于E,MH⊥AB于H,QF⊥AB于F,如图,利用等腰直角三角形的性质得AC=BC=,∠A=∠B=45°,OC⊥AB,OC=OA=OB=1,∠OCB=45°,再证明Rt△AOP≌△COQ得到AP=CQ,接着利用△APE和△BFQ都为等腰直角三角形得到PE=AP=CQ,QF=BQ,所以PE+QF=BC=1,然后证明MH为梯形PEFQ的中位线得到MH=,即可判定点M到AB的距离为,从而得到点M的运动路线为△ABC的中位线,最后利用三角形中位线性质得到点M所经过的路线长.【解答过程】解:连接OC,作PE⊥AB于E,MH⊥AB于H,QF⊥AB于F,如图,∵△ACB为到等腰直角三角形,∴AC=BC=AB=,∠A=∠B=45°,∵O为AB的中点,∴OC⊥AB,OC平分∠ACB,OC=OA=OB=1,∴∠OCB=45°,∵∠POQ=90°,∠COA=90°,∴∠AOP=∠COQ,在Rt△AOP和△COQ中,∴Rt△AOP≌△COQ,∴AP=CQ,易得△APE和△BFQ都为等腰直角三角形,∴PE=AP=CQ,QF=BQ,∴PE+QF=(CQ+BQ)=BC=×=1,∵M点为PQ的中点,∴MH为梯形PEFQ的中位线,∴MH=(PE+QF)=,即点M到AB的距离为,而CO=1,∴点M的运动路线为△ABC的中位线,∴当点P从点A运动到点C时,点M所经过的路线长=AB=1.故选:C.【总结归纳】本题考查了轨迹:通过计算确定动点在运动过程中不变的量,从而得到运动的轨迹.也考查了等腰直角三角形的性质.3.(2018年江苏省扬州市-第8题-3分)如图,点A在线段BD上,在BD的同侧做等腰Rt△ABC 和等腰Rt△ADE,CD与BE、AE分别交于点P,M.对于下列结论:①△BAE∽△CAD;②MP•MD=MA•ME;③2CB2=CP•CM.其中正确的是()A.①②③B.①C.①②D.②③【知识考点】相似三角形的判定与性质;全等三角形的判定与性质;等腰直角三角形.【思路分析】(1)由等腰Rt△ABC和等腰Rt△ADE三边份数关系可证;(2)通过等积式倒推可知,证明△PAM∽△EMD即可;(3)2CB2转化为AC2,证明△ACP∽△MCA,问题可证.【解答过程】解:由已知:AC=AB,AD=AE∴∵∠BAC=∠EAD∴∠BAE=∠CAD∴△BAE∽△CAD所以①正确∵△BAE∽△CAD∴∠BEA=∠CDA∵∠PME=∠AMD∴△PME∽△AMD∴∴MP•MD=MA•ME所以②正确∵∠BEA=∠CDA∠PME=∠AMD∴P、E、D、A四点共圆∴∠APD=∠EAD=90°∵∠CAE=180°﹣∠BAC﹣∠EAD=90°∴△CAP∽△CMA∴AC2=CP•CM∵AC=AB∴2CB2=CP•CM所以③正确故选:A.【总结归纳】本题考查了相似三角形的性质和判断.在等积式和比例式的证明中应注意应用倒推的方法寻找相似三角形进行证明,进而得到答案.二、填空题1.(2018年江苏省泰州市-第14题-3分)如图,四边形ABCD中,AC平分∠BAD,∠ACD=∠ABC=90°,E、F分别为AC、CD的中点,∠D=α,则∠BEF的度数为(用含α的式子表示).【知识考点】三角形中位线定理;角平分线的性质;直角三角形斜边上的中线.【思路分析】根据直角三角形的性质得到∠DAC=90°﹣α,根据角平分线的定义、三角形的外角的性质得到∠CEB=180°﹣2α,根据三角形中位线定理、平行线的性质得到∠CEF=∠D=α,结合图形计算即可.【解答过程】解:∵∠ACD=90°,∠D=α,∴∠DAC=90°﹣α,∵AC平分∠BAD,∴∠DAC=∠BAC=90°﹣α,∵∠ABC=90°,EAC的中点,∴BE=AE=EC,∴∠EAB=∠EBA=90°﹣α,∴∠CEB=180°﹣2α,∵E、F分别为AC、CD的中点,∴EF∥AD,∴∠CEF=∠D=α,∴∠BEF=180°﹣2α+90°﹣α=270°﹣3α,故答案为:270°﹣3α.【总结归纳】本题考查的是三角形中位线定理、直角三角形的性质、角平分线的定义,掌握三角形的中位线平行于第三边,并且等于第三边的一半是解题的关键.三、解答题1.(2018年湖北省荆门市-第19题-9分)如图,在Rt△ABC中,(M2,N2),∠BAC=30°,E为AB 边的中点,以BE为边作等边△BDE,连接AD,CD.(1)求证:△ADE≌△CDB;(2)若AC边上找一点H,使得BH+EH最小,并求出这个最小值.【知识考点】轴对称﹣最短路线问题;坐标与图形性质;全等三角形的判定与性质;等边三角形的性质【思路分析】(1)只要证明△DEB是等边三角形,再根据SAS即可证明;(2)如图,作点E关于直线AC点E',连接BE'交AC于点H.则点H即为符合条件的点.【解答过程】(1)证明:在Rt△ABC中,∠BAC=30°,E为AB边的中点,∴BC=EA,∠ABC=60°.∵△DEB为等边三角形,∴DB=DE,∠DEB=∠DBE=60°,∴∠DEA=120°,∠DBC=120°,∴∠DEA=∠DBC∴△ADE≌△CDB.(2)解:如图,作点E关于直线AC点E',连接BE'交AC于点H.则点H即为符合条件的点.由作图可知:EH=HE',AE'=AE,∠E'AC=∠BAC=30°.∴∠EAE'=60°,∴△EAE'为等边三角形,∴,∴∠AE'B=90°,在Rt△ABC中,∠BAC=30°,,∴,,∴,∴BH+EH的最小值为3.【总结归纳】本题考查轴对称最短问题、等边三角形的判定和性质、全等三角形的判定和性质等知识,解题的关键是学会利用轴对称解决最短问题,属于中考常考题型.2.(2018年湖北省江汉油田/潜江市/天门市/仙桃市-第24题-10分)问题:如图①,在Rt△ABC中,AB=AC,D为BC边上一点(不与点B,C重合),将线段AD绕点A逆时针旋转90°得到AE,连接EC,则线段BC,DC,EC之间满足的等量关系式为;探索:如图②,在Rt△ABC与Rt△ADE中,AB=AC,AD=AE,将△ADE绕点A旋转,使点D落在BC边上,试探索线段AD,BD,CD之间满足的等量关系,并证明你的结论;应用:如图③,在四边形ABCD中,∠ABC=∠ACB=∠ADC=45°.若BD=9,CD=3,求AD的长.【知识考点】三角形综合题.【思路分析】(1)证明△BAD≌△CAE,根据全等三角形的性质解答;(2)连接CE,根据全等三角形的性质得到BD=CE,∠ACE=∠B,得到∠DCE=90°,根据勾股定理计算即可;(3)作AE⊥AD,使AE=AD,连接CE,DE,证明△BAD≌△CAE,得到BD=CE=9,根据勾股定理计算即可.【解答过程】解:(1)BC=DC+EC,理由如下:∵∠BAC=∠DAE=90°,∴∠BAC﹣∠DAC=∠DAE﹣∠DAC,即∠BAD=∠CAE,在△BAD和△CAE中,,∴△BAD≌△CAE,∴BD=CE,∴BC=BD+CD=EC+CD,故答案为:BC=DC+EC;(2)BD2+CD2=2AD2,理由如下:连接CE,由(1)得,△BAD≌△CAE,∴BD=CE,∠ACE=∠B,∴∠DCE=90°,∴CE2+CD2=ED2,在Rt△ADE中,AD2+AE2=ED2,又AD=AE,∴BD2+CD2=2AD2;(3)作AE⊥AD,使AE=AD,连接CE,DE,∵∠BAC+∠CAD=∠DAE+∠CAD,即∠BAD=∠CAD′,在△BAD 与△CAE 中,,∴△BAD ≌△CAE (SAS ), ∴BD=CE=9,∵∠ADC=45°,∠EDA=45°, ∴∠EDC=90°, ∴DE==6,∵∠DAE=90°, ∴AD=AE=DE=6.【总结归纳】本题考查的是全等三角形的判定和性质、勾股定理、以及旋转变换的性质,掌握全等三角形的判定定理和性质定理是解题的关键.3.(2018年湖南省岳阳市-第23题-10分)已知在Rt △ABC 中,∠BAC=90°,CD 为∠ACB 的平分线,将∠ACB 沿CD 所在的直线对折,使点B 落在点B′处,连结AB',BB',延长CD 交BB'于点E ,设∠ABC=2α(0°<α<45°).(1)如图1,若AB=AC ,求证:CD=2BE ;(2)如图2,若AB≠AC ,试求CD 与BE 的数量关系(用含α的式子表示);(3)如图3,将(2)中的线段BC 绕点C 逆时针旋转角(α+45°),得到线段FC ,连结EF 交BC 于点O ,设△COE 的面积为S 1,△COF 的面积为S 2,求12S S (用含α的式子表示). 【知识考点】几何变换综合题.【思路分析】(1)由翻折可知:BE=EB′,再利用全等三角形的性质证明CD=BB′即可; (2)如图2中,结论:CD=2•BE•tan2α.只要证明△BAB′∽△CAD ,可得==,推出=,可得CD=2•BE•tan2α;(3)首先证明∠ECF=90°,由∠BEC+∠ECF=180°,推出BB′∥CF,推出===sin(45°﹣α),由此即可解决问题;【解答过程】解:(1)如图1中,∵B、B′关于EC对称,∴BB′⊥EC,BE=EB′,∴∠DEB=∠DAC=90°,∵∠EDB=∠ADC,∴∠DBE=∠ACD,∵AB=AC,∠BAB′=∠DAC=90°,∴△BAB′≌CAD,∴CD=BB′=2BE.(2)如图2中,结论:CD=2•BE•tan2α.理由:由(1)可知:∠ABB′=∠ACD,∠BAB′=∠CAD=90°,∴△BAB′∽△CAD,∴==,∴=,∴CD=2•BE•tan2α.(3)如图3中,在Rt△ABC中,∠ACB=90°﹣2α,∵EC平分∠ACB,∴∠ECB=(90°﹣2α)=45°﹣α,∵∠BCF=45°+α,∴∠ECF=45°﹣α+45°+α=90°,∴∠BEC+∠ECF=180°,∴BB′∥CF,∴===sin(45°﹣α),∵=,∴=sin(45°﹣α).【总结归纳】本题考查几何变换综合题、等腰直角三角形的性质、全等三角形的判定和性质、相似三角形的判定和性质、平行线等分线段定理、锐角三角函数等知识,解题的关键是正确寻找全等三角形或相似三角形解决问题,属于中考压轴题.4.(2018年江苏省南通市-第26题-12分)如图,△ABC中,AB=6cm,AC=,BC=,点P以1cm/s的速度从点B出发沿边BA→AC运动到点C停止,运动时间为t s,点Q是线段BP 的中点.(1)若CP⊥AB时,求t的值;(2)若△BCQ是直角三角形时,求t的值;(3)设△CPQ的面积为S,求S与t的关系式,并写出t的取值范围.【知识考点】三角形综合题.【思路分析】(1)如图1中,作CH⊥AB于H.设BH=x,利用勾股定理构建方程求出x,当点P 与H重合时,CP⊥AB,此时t=2;(2)分两种情形求解即可解决问题;(3)分两种情形:①如图4中,当0<t≤6时,S=×PQ×CH;②如图5中,当6<t<6+4时,作BG⊥AC于G,QM⊥AC于M.求出QM即可解决问题;【解答过程】解:(1)如图1中,作CH⊥AB于H.设BH=x,∵CH⊥AB,∴∠CHB=∠CHB=90°,∴AC2﹣AH2=BC2﹣BH2,∴(4)2﹣(6﹣x)2=(2)2﹣x2,解得x=2,∴当点P与H重合时,CP⊥AB,此时t=2.(2)如图2中,当点Q与H重合时,BP=2BQ=4,此时t=4.如图3中,当CP=CB=2时,CQ⊥PB,此时t=6+(4﹣2)=6+4﹣2.(3)①如图4中,当0<t≤6时,S=×PQ×CH=×t×4=t.②如图5中,当6<t<6+4时,作BG⊥AC于G,QM⊥AC于M.易知BG=AG=3,CG=.MQ=BG=.∴S=×PC×QM=••(6+4﹣t)=+6﹣t.综上所述,s=.【总结归纳】本题考查三角形综合题、勾股定理、等腰三角形的判定和性质、三角形的面积等知识,解题的关键是灵活运用所学知识解决问题,学会用分类讨论的思想思考问题,属于中考压轴题.5.(2018年江苏省连云港市-第27题-14分)在数学兴趣小组活动中,小亮进行数学探究活动.△ABC 是边长为2的等边形,E是AC上一点,小亮以BE为边向BE的右侧作等边三角形BEF,连接CF.(1)如图1,当点E在线段AC上时,EF、BC相交于点D,小亮发现有两个三角形全等,请你找出来,并证明.(2)当点E在线段上运动时,点F也随着运动,若四边形ABFC AE的长.(3)如图2,当点E在AC的延长线上运动时,CF、BE相交于点D,请你探求△ECD的面积S1与△DBF的面积S2之间的数量关系.并说明理由.S 时,求AE的长.(4)如图2,当△ECD的面积16【知识考点】三角形综合题.【思路分析】(1)结论:△ABE≌△CBF.理由等边三角形的性质,根据SAS即可证明;(2)由△ABE≌△CBF,推出S△ABE=S△BCF,推出S四边形BECF=S△BEC+s△BCF=S△BCE+S△ABE=S△ABC=,由S四边形ABCF=,推出S△ABE=,再利用三角形的面积公式求出AE即可;(3)结论:S2﹣S1=.利用全等三角形的性质即可证明;(4)首先求出△BDF的面积,由CF∥AB,则△BDF的BF边上的高为,可得DF=,设CE=x,则2+x=CD+DF=CD+,推出CD=x﹣,由CD∥AB,可得=,即=,求出x即可;【解答过程】解:(1)结论:△ABE≌△CBF.理由:如图1中,∴∵△ABC,△BEF都是等边三角形,∴BA=BC,BE=BF,∠ABC=∠EBF,∴∠ABE=∠CBF,∴△ABE≌△CBF.(2)如图1中,∵△ABE≌△CBF,∴S△ABE=S△BCF,∴S四边形BECF=S△BEC+s△BCF=S△BCE+S△ABE=S△ABC=,∵S四边形ABCF=,∴S△ABE=,∴•AE•AB•siin60°=,∴AE=.(3)结论:S2﹣S1=.理由:如图2中,∵∵△ABC,△BEF都是等边三角形,∴BA=BC,BE=BF,∠ABC=∠EBF,∴∠ABE=∠CBF,∴△ABE≌△CBF,∴S△ABE=S△BCF,∵S△BCF﹣S△BCE=S2﹣S1,∴S2﹣S1=S△ABE﹣S△BCE=S△ABC=.(4)由(3)可知:S△BDF﹣S△ECD=,∵S△ECD=,∴S△BDF=,∵△ABE≌△CBF,∴AE=CF,∠BAE=∠BCF=60°,∴∠ABC=∠DCB,∴CF∥AB,则△BDF的BF边上的高为,可得DF=,设CE=x,则2+x=CD+DF=CD+,∴CD=x﹣,∵CD∥AB,∴=,即=,化简得:3x2﹣x﹣2=0,解得x=1或﹣(舍弃),∴CE=1,AE=3.【总结归纳】本题考查三角形综合题、全等三角形的判定和性质、平行线等分线段定理、解直角三角形等知识,解题的关键是正确寻找全等三角形解决问题,学会理由参数构建方程解决问题,属于中考压轴题.6.(2018年江苏省扬州市-第27题-12分)问题呈现如图1,在边长为1的正方形网格中,连接格点D,N和E,C,DN和EC相交于点P,求tan∠CPN 的值.方法归纳求一个锐角的三角函数值,我们往往需要找出(或构造出)一个直角三角形.观察发现问题中∠CPN 不在直角三角形中,我们常常利用网格画平行线等方法解决此类问题,比如连接格点M,N,可得MN∥EC,则∠DNM=∠CPN,连接DM,那么∠CPN就变换到Rt△DMN中.问题解决(1)直接写出图1中tan∠CPN的值为;(2)如图2,在边长为1的正方形网格中,AN与CM相交于点P,求cos∠CPN的值;思维拓展(3)如图3,AB⊥BC,AB=4BC,点M在AB上,且AM=BC,延长CB到N,使BN=2BC,连接AN交CM的延长线于点P,用上述方法构造网格求∠CPN的度数.【知识考点】三角形综合题.【思路分析】(1)连接格点M,N,可得MN∥EC,则∠DNM=∠CPN,连接DM,那么∠CPN就变换到Rt△DMN中.(2)如图2中,取格点D,连接CD,DM.那么∠CPN就变换到等腰Rt△DMC中.(3)利用网格,构造等腰直角三角形解决问题即可;【解答过程】解:(1)如图1中,∵EC∥MN,∴∠CPN=∠DNM,∴tan∠CPN=tan∠DNM,∵∠DMN=90°,∴tan∠CPN=tan∠DNM===2,故答案为2.(2)如图2中,取格点D,连接CD,DM.∵CD∥AN,∴∠CPN=∠DCM,∵△DCM是等腰直角三角形,∴∠DCM=∠D=45°,∴cos∠CPN=cos∠DCM=.(3)如图3中,如图取格点M,连接AN、MN.∵PC∥MN,∴∠CPN=∠ANM,∵AM=MN,∠AMN=90°,∴∠ANM=∠MAN=45°,∴∠CPN=45°.【总结归纳】本题考查三角形综合题、平行线的性质、勾股定理、直角三角形的判定和性质等知识,解题的关键是学会利用数形结合的思想解决问题,学会用转化的思想思考问题,属于中考压轴题.7.(2018年江苏省常州市-第27题-10分)(1)如图1,已知EK垂直平分BC,垂足为D,AB与EK相交于点F,连接CF.求证:∠AFE=∠CFD.(2)如图2,在Rt△GMN中,∠M=90°,P为MN的中点.①用直尺和圆规在GN边上求作点Q,使得∠GQM=∠PQN(保留作图痕迹,不要求写作法);②在①的条件下,如果∠G=60°,那么Q是GN的中点吗?为什么?【知识考点】线段垂直平分线的性质;直角三角形斜边上的中线;作图—复杂作图.【思路分析】(1)只要证明FC=FB即可解决问题;(2)①作点P关于GN的对称点P′,连接P′M交GN于Q,连接PQ,点Q即为所求.②结论:Q是GN的中点.想办法证明∠N=∠QMN=30°,∠G=∠GMQ=60°,可得QM=QN,QM=QG;【解答过程】(1)证明:如图1中,∵EK垂直平分线段BC,∴FC=FB,∴∠CFD=∠BFD,∵∠BFD=∠AFE,∴∠AFE=∠CFD.(2)①作点P关于GN的对称点P′,连接P′M交GN于Q,连接PQ,点Q即为所求.②结论:Q是GN的中点.理由:设PP′交GN于K.∵∠G=60°,∠GMN=90°,∴∠N=30°,∵PK⊥KN,∴PK=KP′=PN,∴PP′=PN=PM,∴∠P′=∠PMP′,∵∠NPK=∠P′+∠PMP′=60°,∴∠PMP′=30°,∴∠N=∠QMN=30°,∠G=∠GMQ=60°,∴QM=QN,QM=QG,∴QG=QN,∴Q是GN的中点.【总结归纳】本题考查作图﹣复杂作图、线段的垂直平分线的性质、直角三角形斜边中线的性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.。

江苏省扬州市2018年中考数学试卷及答案解析

江苏省扬州市2018年中考数学试卷及答案解析

2018年省市中考数学试卷一、选择题(本大题共有8小题,每小题3分,共24分.在每小题给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置上)1.(3分)﹣5的倒数是()A.﹣B.C.5 D.﹣52.(3分)使有意义的x的取值围是()A.x>3 B.x<3 C.x≥3 D.x≠33.(3分)如图所示的几何体的主视图是()A.B.C.D.4.(3分)下列说确的是()A.一组数据2,2,3,4,这组数据的中位数是2B.了解一批灯泡的使用寿命的情况,适合抽样调查C.小明的三次数学成绩是126分,130分,136分,则小明这三次成绩的平均数是131分D.某日最高气温是7℃,最低气温是﹣2℃,则改日气温的极差是5℃5.(3分)已知点A(x1,3),B(x2,6)都在反比例函数y=﹣的图象上,则下列关系式一定正确的是()A.x1<x2<0 B.x1<0<x2C.x2<x1<0 D.x2<0<x16.(3分)在平面直角坐标系的第二象限有一点M,点M到x轴的距离为3,到y轴的距离为4,则点M的坐标是()A.(3,﹣4)B.(4,﹣3)C.(﹣4,3)D.(﹣3,4)7.(3分)在Rt△ABC中,∠ACB=90°,CD⊥AB于D,CE平分∠ACD交AB 于E,则下列结论一定成立的是()A.BC=EC B.EC=BE C.BC=BE D.AE=EC8.(3分)如图,点A在线段BD上,在BD的同侧做等腰Rt△ABC和等腰Rt △ADE,CD与BE、AE分别交于点P,M.对于下列结论:①△BAE∽△CAD;②MP•MD=MA•ME;③2CB2=CP•CM.其中正确的是()A.①②③B.①C.①②D.②③二、填空题(本大题共有10小题,每小题3分,共30分.不需写出解答过程,请把答案直接填写在答题卡相应位置上)9.(3分)在人体血液中,红细胞直径约为0.00077cm,数据0.00077用科学记数法表示为.10.(3分)因式分解:18﹣2x2= .11.(3分)有4根细木棒,长度分别为2cm,3cm,4cm,5cm,从中任选3根,恰好能搭成一个三角形的概率是.12.(3分)若m是方程2x2﹣3x﹣1=0的一个根,则6m2﹣9m+2015的值为.13.(3分)用半径为10cm,圆心角为120°的扇形纸片围成一个圆锥的侧面,则这个圆锥的底面圆半径为cm.14.(3分)不等式组的解集为.15.(3分)如图,已知⊙O的半径为2,△ABC接于⊙O,∠ACB=135°,则AB= .16.(3分)关于x的方程mx2﹣2x+3=0有两个不相等的实数根,那么m的取值围是.17.(3分)如图,四边形OABC是矩形,点A的坐标为(8,0),点C的坐标为(0,4),把矩形OABC沿OB折叠,点C落在点D处,则点D的坐标为.18.(3分)如图,在等腰Rt△ABO,∠A=90°,点B的坐标为(0,2),若直线l:y=mx+m(m≠0)把△ABO分成面积相等的两部分,则m的值为.三、解答题(本大题共有10小题,共96分.请在答题卡指定区域作答,解答应写出文字说明、证明过程或演算步骤)19.(8分)计算或化简(1)()﹣1+||+tan60°(2)(2x+3)2﹣(2x+3)(2x﹣3)20.(8分)对于任意实数a,b,定义关于“⊗”的一种运算如下:a⊗b=2a+b.例如3⊗4=2×3+4=10.(1)求2⊗(﹣5)的值;(2)若x⊗(﹣y)=2,且2y⊗x=﹣1,求x+y的值.21.(8分)省第十九届运动会将于2018年9月在举行开幕式,某校为了了解学生“最喜爱的省运动会项目”的情况,随机抽取了部分学生进行问卷调查,规定每人从“篮球”、“羽毛球”、“自行车”、“游泳”和“其他”五个选项中必须选择且只能选择一个,并将调查结果绘制成如下两幅不完整的统计图表.最喜爱的省运会项目的人数调查统计表最喜爱的项目人数篮球20羽毛球9自行车10游泳a其他b合计根据以上信息,请回答下列问题:(1)这次调查的样本容量是,a+b .(2)扇形统计图中“自行车”对应的扇形的圆心角为.(3)若该校有1200名学生,估计该校最喜爱的省运会项目是篮球的学生人数.22.(8分)4相同的卡片分别写着数字﹣1、﹣3、4、6,将卡片的背面朝上,并洗匀.(1)从中任意抽取1,抽到的数字是奇数的概率是;(2)从中任意抽取1,并将所取卡片上的数字记作一次函数y=kx+b中的k;再从余下的卡片中任意抽取1,并将所取卡片上的数字记作一次函数y=kx+b中的b.利用画树状图或列表的方法,求这个一次函数的图象经过第一、二、四象限的概率.23.(10分)京沪铁路是我国东部沿海地区纵贯南北的交通大动脉,全长1462km,是我国最繁忙的铁路干线之一.如果从到的客车速度是货车速度的2倍,客车比货车少用6h,那么货车的速度是多少?(精确到0.1km/h)24.(10分)如图,在平行四边形ABCD中,DB=DA,点F是AB的中点,连接DF并延长,交CB的延长线于点E,连接AE.(1)求证:四边形AEBD是菱形;(2)若DC=,tan∠DCB=3,求菱形AEBD的面积.25.(10分)如图,在△ABC中,AB=AC,AO⊥BC于点O,OE⊥AB于点E,以点O为圆心,OE为半径作半圆,交AO于点F.(1)求证:AC是⊙O的切线;(2)若点F是A的中点,OE=3,求图中阴影部分的面积;(3)在(2)的条件下,点P是BC边上的动点,当PE+PF取最小值时,直接写出BP的长.26.(10分)“漆器”名扬天下,某网店专门销售某种品牌的漆器笔筒,成本为30元/件,每天销售y(件)与销售单价x(元)之间存在一次函数关系,如图所示.(1)求y与x之间的函数关系式;(2)如果规定每天漆器笔筒的销售量不低于240件,当销售单价为多少元时,每天获取的利润最大,最大利润是多少?(3)该网店店主热心公益事业,决定从每天的销售利润中捐出150元给希望工程,为了保证捐款后每天剩余利润不低于3600元,试确定该漆器笔筒销售单价的围.27.(12分)问题呈现如图1,在边长为1的正方形网格中,连接格点D,N和E,C,DN和EC相交于点P,求tan∠CPN的值.方法归纳求一个锐角的三角函数值,我们往往需要找出(或构造出)一个直角三角形.观察发现问题中∠CPN不在直角三角形中,我们常常利用网格画平行线等方法解决此类问题,比如连接格点M,N,可得MN∥EC,则∠DNM=∠CPN,连接DM,那么∠CPN就变换到Rt△DMN中.问题解决(1)直接写出图1中tan∠CPN的值为;(2)如图2,在边长为1的正方形网格中,AN与CM相交于点P,求cos∠CPN 的值;思维拓展(3)如图3,AB⊥BC,AB=4BC,点M在AB上,且AM=BC,延长CB到N,使BN=2BC,连接AN交CM的延长线于点P,用上述方法构造网格求∠CPN 的度数.28.(12分)如图1,四边形OABC是矩形,点A的坐标为(3,0),点C的坐标为(0,6),点P从点O出发,沿OA以每秒1个单位长度的速度向点A出发,同时点Q从点A出发,沿AB以每秒2个单位长度的速度向点B运动,当点P与点A重合时运动停止.设运动时间为t秒.(1)当t=2时,线段PQ的中点坐标为;(2)当△CBQ与△PAQ相似时,求t的值;(3)当t=1时,抛物线y=x2+bx+c经过P,Q两点,与y轴交于点M,抛物线的顶点为K,如图2所示,问该抛物线上是否存在点D,使∠MQD=∠MKQ?若存在,求出所有满足条件的D的坐标;若不存在,说明理由.2018年省市中考数学试卷参考答案与试题解析一、选择题(本大题共有8小题,每小题3分,共24分.在每小题给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置上)1.(3分)﹣5的倒数是()A.﹣B.C.5 D.﹣5【分析】依据倒数的定义求解即可.【解答】解:﹣5的倒数﹣.故选:A.【点评】本题主要考查的是倒数的定义,掌握倒数的定义是解题的关键.2.(3分)使有意义的x的取值围是()A.x>3 B.x<3 C.x≥3 D.x≠3【分析】根据被开方数是非负数,可得答案.【解答】解:由题意,得x﹣3≥0,解得x≥3,故选:C.【点评】本题考查了二次根式有意义的条件,利用得出不等式是解题关键.3.(3分)如图所示的几何体的主视图是()A.B.C.D.【分析】根据从正面看得到的图形是主视图,可得答案.【解答】解:从正面看第一层是两个小正方形,第二层左边一个小正方形,第三层左边一个小正方形,故选:B.【点评】本题考查了简单组合体的三视图,从正面看得到的图形是主视图.4.(3分)下列说确的是()A.一组数据2,2,3,4,这组数据的中位数是2B.了解一批灯泡的使用寿命的情况,适合抽样调查C.小明的三次数学成绩是126分,130分,136分,则小明这三次成绩的平均数是131分D.某日最高气温是7℃,最低气温是﹣2℃,则改日气温的极差是5℃【分析】直接利用中位数的定义以及抽样调查的意义和平均数的求法、极差的定义分别分析得出答案.【解答】解:A、一组数据2,2,3,4,这组数据的中位数是2.5,故此选项错误;B、了解一批灯泡的使用寿命的情况,适合抽样调查,正确;C、小明的三次数学成绩是126分,130分,136分,则小明这三次成绩的平均数是130分,故此选项错误;D、某日最高气温是7℃,最低气温是﹣2℃,则改日气温的极差是7﹣(﹣2)=9℃,故此选项错误;故选:B.【点评】此题主要考查了中位数、抽样调查的意义和平均数的求法、极差,正确把握相关定义是解题关键.5.(3分)已知点A(x1,3),B(x2,6)都在反比例函数y=﹣的图象上,则下列关系式一定正确的是()A.x1<x2<0 B.x1<0<x2C.x2<x1<0 D.x2<0<x1【分析】根据反比例函数的性质,可得答案.【解答】解:由题意,得k=﹣3,图象位于第二象限,或第四象限,在每一象限,y随x的增大而增大,∵3<6,∴x1<x2<0,故选:A.【点评】本题考查了反比例函数,利用反比例函数的性质是解题关键.6.(3分)在平面直角坐标系的第二象限有一点M,点M到x轴的距离为3,到y轴的距离为4,则点M的坐标是()A.(3,﹣4)B.(4,﹣3)C.(﹣4,3)D.(﹣3,4)【分析】根据地二象限点的坐标特征,可得答案.【解答】解:由题意,得x=﹣4,y=3,即M点的坐标是(﹣4,3),故选:C.【点评】本题考查了点的坐标,熟记点的坐标特征是解题关键.7.(3分)在Rt△ABC中,∠ACB=90°,CD⊥AB于D,CE平分∠ACD交AB 于E,则下列结论一定成立的是()A.BC=EC B.EC=BE C.BC=BE D.AE=EC【分析】根据同角的余角相等可得出∠BCD=∠A,根据角平分线的定义可得出∠ACE=∠DCE,再结合∠BEC=∠A+∠ACE、∠BCE=∠BCD+∠DCE即可得出∠BEC=∠BCE,利用等角对等边即可得出BC=BE,此题得解.【解答】解:∵∠ACB=90°,CD⊥AB,∴∠ACD+∠BCD=90°,∠ACD+∠A=90°,∴∠BCD=∠A.∵CE平分∠ACD,∴∠ACE=∠DCE.又∵∠BEC=∠A+∠ACE,∠BCE=∠BCD+∠DCE,∴∠BEC=∠BCE,∴BC=BE.故选:C.【点评】本题考查了直角三角形的性质、三角形外角的性质、余角、角平分线的定义以及等腰三角形的判定,通过角的计算找出∠BEC=∠BCE是解题的关键.8.(3分)如图,点A在线段BD上,在BD的同侧做等腰Rt△ABC和等腰Rt △ADE,CD与BE、AE分别交于点P,M.对于下列结论:①△BAE∽△CAD;②MP•MD=MA•ME;③2CB2=CP•CM.其中正确的是()A.①②③B.①C.①②D.②③【分析】(1)由等腰Rt△ABC和等腰Rt△ADE三边份数关系可证;(2)通过等积式倒推可知,证明△PAM∽△EMD即可;(3)2CB2转化为AC2,证明△ACP∽△MCA,问题可证.【解答】解:由已知:AC=AB,AD=AE∴∵∠BAC=∠EAD∴∠BAE=∠CAD∴△BAE∽△CAD所以①正确∵△BAE∽△CAD∴∠BEA=∠CDA∵∠PME=∠AMD∴△PME∽△AMD∴∴MP•MD=MA•ME所以②正确∵∠BEA=∠CDA∠PME=∠AMD∴P、E、D、A四点共圆∴∠APD=∠EAD=90°∵∠CAE=180°﹣∠BAC﹣∠EAD=90°∴△CAP∽△CMA∴AC2=CP•CM∵AC=AB∴2CB2=CP•CM所以③正确故选:A.【点评】本题考查了相似三角形的性质和判断.在等积式和比例式的证明中应注意应用倒推的方法寻找相似三角形进行证明,进而得到答案.二、填空题(本大题共有10小题,每小题3分,共30分.不需写出解答过程,请把答案直接填写在答题卡相应位置上)9.(3分)在人体血液中,红细胞直径约为0.00077cm,数据0.00077用科学记数法表示为7.7×10﹣4.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.00077=7.7×10﹣4,故答案为:7.7×10﹣4.【点评】本题主要考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.10.(3分)因式分解:18﹣2x2= 2(x+3)(3﹣x).【分析】原式提取2,再利用平方差公式分解即可.【解答】解:原式=2(9﹣x2)=2(x+3)(3﹣x),故答案为:2(x+3)(3﹣x)【点评】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.11.(3分)有4根细木棒,长度分别为2cm,3cm,4cm,5cm,从中任选3根,恰好能搭成一个三角形的概率是.【分析】根据题意,使用列举法可得从有4根细木棒中任取3根的总共情况数目以及能搭成一个三角形的情况数目,根据概率的计算方法,计算可得答案.【解答】解:根据题意,从有4根细木棒中任取3根,有2、3、4;3、4、5;2、3、5;2、4、5,共4种取法,而能搭成一个三角形的有2、3、4;3、4、5;2,4,5,3种;故其概率为:.【点评】本题考查概率的计算方法,使用列举法解题时,注意按一定顺序,做到不重不漏.用到的知识点为:概率=所求情况数与总情况数之比.12.(3分)若m是方程2x2﹣3x﹣1=0的一个根,则6m2﹣9m+2015的值为2018 .【分析】根据一元二次方程的解的定义即可求出答案.【解答】解:由题意可知:2m2﹣3m﹣1=0,∴2m2﹣3m=1∴原式=3(2m2﹣3m)+2015=2018故答案为:2018【点评】本题考查一元二次方程的解,解题的关键是正确理解一元二次方程的解的定义,本题属于基础题型.13.(3分)用半径为10cm,圆心角为120°的扇形纸片围成一个圆锥的侧面,则这个圆锥的底面圆半径为cm.【分析】圆锥的底面圆半径为r,根据圆锥的底面圆周长=扇形的弧长,列方程求解.【解答】解:设圆锥的底面圆半径为r,依题意,得2πr=,解得r=cm.故选:.【点评】本题考查了圆锥的计算.圆锥的侧面展开图为扇形,计算要体现两个转化:1、圆锥的母线长为扇形的半径,2、圆锥的底面圆周长为扇形的弧长.14.(3分)不等式组的解集为﹣3<x≤.【分析】先求出每个不等式的解集,再根据口诀求出不等式组的解集即可.【解答】解:解不等式3x+1≥5x,得:x≤,解不等式>﹣2,得:x>﹣3,则不等式组的解集为﹣3<x≤,故答案为:﹣3<x≤.【点评】此题考查了一元一次不等式组的求法,其简便求法就是用口诀求解.求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解).15.(3分)如图,已知⊙O的半径为2,△ABC接于⊙O,∠ACB=135°,则AB= 2.【分析】根据圆接四边形对边互补和同弧所对的圆心角是圆周角的二倍,可以求得∠AOB的度数,然后根据勾股定理即可求得AB的长.【解答】解:连接AD、AE、OA、OB,∵⊙O的半径为2,△ABC接于⊙O,∠ACB=135°,∴∠ADB=45°,∴∠AOB=90°,∵OA=OB=2,∴AB=2,故答案为:2.【点评】本题考查三角形的外接圆和外心,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.16.(3分)关于x的方程mx2﹣2x+3=0有两个不相等的实数根,那么m的取值围是m<且m≠0 .【分析】根据一元二次方程的定义以及根的判别式的意义可得△=4﹣12m>0且m≠0,求出m的取值围即可.【解答】解:∵一元二次方程mx2﹣2x+3=0有两个不相等的实数根,∴△>0且m≠0,∴4﹣12m>0且m≠0,∴m<且m≠0,故答案为:m<且m≠0.【点评】本题考查了一元二次方程ax2+bx+c=0(a≠0,a,b,c为常数)根的判别式△=b2﹣4ac.当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.也考查了一元二次方程的定义.17.(3分)如图,四边形OABC是矩形,点A的坐标为(8,0),点C的坐标为(0,4),把矩形OABC沿OB折叠,点C落在点D处,则点D的坐标为(,﹣).【分析】由折叠的性质得到一对角相等,再由矩形对边平行得到一对错角相等,等量代换及等角对等边得到BE=OE,利用AAS得到三角形OED与三角形BEA 全等,由全等三角形对应边相等得到DE=AE,过D作DF垂直于OE,利用勾股定理及面积法求出DF与OF的长,即可确定出D坐标.【解答】解:由折叠得:∠CBO=∠DBO,∵矩形ABCO,∴BC∥OA,∴∠CBO=∠BOA,∴∠DBO=∠BOA,∴BE=OE,在△ODE和△BAE中,,∴△ODE≌△BAE(AAS),∴AE=DE,设DE=AE=x,则有OE=BE=8﹣x,在Rt△ODE中,根据勾股定理得:42+(8﹣x)2=x2,解得:x=5,即OE=5,DE=3,过D作DF⊥OA,∵S△OED=OD•DE=OE•DF,∴DF=,OF==,则D(,﹣).故答案为:(,﹣)【点评】此题考查了翻折变化(折叠问题),坐标与图形变换,以及矩形的性质,熟练掌握折叠的性质是解本题的关键.18.(3分)如图,在等腰Rt△ABO,∠A=90°,点B的坐标为(0,2),若直线l:y=mx+m(m≠0)把△ABO分成面积相等的两部分,则m的值为.【分析】根据题意作出合适的辅助线,然后根据题意即可列出相应的方程,从而可以求得m的值.【解答】解:∵y=mx+m=m(x+1),∴函数y=mx+m一定过点(﹣1,0),当x=0时,y=m,∴点C的坐标为(0,m),由题意可得,直线AB的解析式为y=﹣x+2,,得,∵直线l:y=mx+m(m≠0)把△ABO分成面积相等的两部分,∴,解得,m=或m=(舍去),故答案为:.【点评】本题考查一次函数图象上点的坐标特征、等腰直角三角形,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.三、解答题(本大题共有10小题,共96分.请在答题卡指定区域作答,解答应写出文字说明、证明过程或演算步骤)19.(8分)计算或化简(1)()﹣1+||+tan60°(2)(2x+3)2﹣(2x+3)(2x﹣3)【分析】(1)根据负整数幂、绝对值的运算法则和特殊三角函数值即可化简求值.(2)利用完全平方公式和平方差公式即可.【解答】解:(1)()﹣1+||+tan60°=2+(2﹣)+=2+2﹣+=4(2)(2x+3)2﹣(2x+3)(2x﹣3)=(2x)2+12x+9﹣[(2x2)﹣9]=(2x)2+12x+9﹣(2x)2+9=12x+18【点评】本题考查实数的混合运算和乘法公式,负整数指数幂的运算和相反数容易混淆,运用平方差公式计算时,关键要找相同项和相反项,其结果是相同项的平方减去相反项的平方.20.(8分)对于任意实数a,b,定义关于“⊗”的一种运算如下:a⊗b=2a+b.例如3⊗4=2×3+4=10.(1)求2⊗(﹣5)的值;(2)若x⊗(﹣y)=2,且2y⊗x=﹣1,求x+y的值.【分析】(1)依据关于“⊗”的一种运算:a⊗b=2a+b,即可得到2⊗(﹣5)的值;(2)依据x⊗(﹣y)=2,且2y⊗x=﹣1,可得方程组,即可得到x+y 的值.【解答】解:(1)∵a⊗b=2a+b,∴2⊗(﹣5)=2×2+(﹣5)=4﹣5=﹣1;(2)∵x⊗(﹣y)=2,且2y⊗x=﹣1,∴,解得,∴x+y=﹣=.【点评】本题主要考查解一元一次方程组以及有理数的混合运算的运用,根据题意列出方程组是解题的关键.21.(8分)省第十九届运动会将于2018年9月在举行开幕式,某校为了了解学生“最喜爱的省运动会项目”的情况,随机抽取了部分学生进行问卷调查,规定每人从“篮球”、“羽毛球”、“自行车”、“游泳”和“其他”五个选项中必须选择且只能选择一个,并将调查结果绘制成如下两幅不完整的统计图表.最喜爱的省运会项目的人数调查统计表最喜爱的项目人数篮球20羽毛球9自行车10游泳a其他b合计根据以上信息,请回答下列问题:(1)这次调查的样本容量是50 ,a+b 11 .(2)扇形统计图中“自行车”对应的扇形的圆心角为72°.(3)若该校有1200名学生,估计该校最喜爱的省运会项目是篮球的学生人数.【分析】(1)依据9÷18%,即可得到样本容量,进而得到a+b的值;(2)利用圆心角计算公式,即可得到“自行车”对应的扇形的圆心角;(3)依据最喜爱的省运会项目是篮球的学生所占的比例,即可估计该校最喜爱的省运会项目是篮球的学生人数.【解答】解:(1)样本容量是9÷18%=50,a+b=50﹣20﹣9﹣10=11,故答案为:50,11;(2)“自行车”对应的扇形的圆心角=×360°=72°,故答案为:72°;(3)该校最喜爱的省运会项目是篮球的学生人数为:1200×=480(人).【点评】本题考查的是统计表和扇形统计图的综合运用.读懂统计图,从不同的统计表和统计图中得到必要的信息是解决问题的关键.扇形统计图直接反映部分占总体的百分比大小.22.(8分)4相同的卡片分别写着数字﹣1、﹣3、4、6,将卡片的背面朝上,并洗匀.(1)从中任意抽取1,抽到的数字是奇数的概率是;(2)从中任意抽取1,并将所取卡片上的数字记作一次函数y=kx+b中的k;再从余下的卡片中任意抽取1,并将所取卡片上的数字记作一次函数y=kx+b中的b.利用画树状图或列表的方法,求这个一次函数的图象经过第一、二、四象限的概率.【分析】(1)直接利用概率公式求解;(2)画树状图展示所有12种等可能的结果数,利用一次获胜的性质,找出k<0,b>0的结果数,然后根据概率公式求解.【解答】解:(1)从中任意抽取1,抽到的数字是奇数的概率=;故答案为;(2)画树状图为:共有12种等可能的结果数,其中k<0,b>0有4种结果,所以这个一次函数的图象经过第一、二、四象限的概率==.【点评】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.也考查了一次函数的性质.23.(10分)京沪铁路是我国东部沿海地区纵贯南北的交通大动脉,全长1462km,是我国最繁忙的铁路干线之一.如果从到的客车速度是货车速度的2倍,客车比货车少用6h,那么货车的速度是多少?(精确到0.1km/h)【分析】设货车的速度是x千米/小时,则客车的速度是2x千米/小时,根据时间=路程÷速度结合客车比货车少用6小时,即可得出关于x的分式方程,解之经检验后即可得出结论.【解答】解:设货车的速度是x千米/小时,则客车的速度是2x千米/小时,根据题意得:﹣=6,解得:x=121≈121.8.答:货车的速度约是121.8千米/小时.【点评】本题考查了分式方程的应用,找准等量关系,正确列出分式方程是解题的关键.24.(10分)如图,在平行四边形ABCD中,DB=DA,点F是AB的中点,连接DF并延长,交CB的延长线于点E,连接AE.(1)求证:四边形AEBD是菱形;(2)若DC=,tan∠DCB=3,求菱形AEBD的面积.【分析】(1)由△AFD≌△BFE,推出AD=BE,可知四边形AEBD是平行四边形,再根据BD=AD可得结论;(2)解直角三角形求出EF的长即可解决问题;【解答】(1)证明:∵四边形ABCD是平行四边形,∴AD∥CE,∴∠DAF=∠EBF,∵∠AFD=∠EFB,AF=FB,∴△AFD≌△BFE,∴AD=EB,∵AD∥EB,∴四边形AEBD是平行四边形,∵BD=AD,∴四边形AEBD是菱形.(2)解:∵四边形ABCD是平行四边形,∴CD=AB=,AB∥CD,∴∠ABE=∠DCB,∴tan∠ABE=tan∠DCB=3,∵四边形AEBD是菱形,∴AB⊥DE,AF=FB,EF=DF,∴tan∠ABE==3,∵BF=,∴EF=,∴DE=3,∴S菱形AEBD=•AB•DE=•3=15.【点评】本题考查平行四边形的判定和性质、菱形的判定和性质、全等三角形的判定和性质等知识,解题的关键是正确寻找全等三角形解决问题,属于中考常考题型.25.(10分)如图,在△ABC中,AB=AC,AO⊥BC于点O,OE⊥AB于点E,以点O为圆心,OE为半径作半圆,交AO于点F.(1)求证:AC是⊙O的切线;(2)若点F是A的中点,OE=3,求图中阴影部分的面积;(3)在(2)的条件下,点P是BC边上的动点,当PE+PF取最小值时,直接写出BP的长.【分析】(1)作OH⊥AC于H,如图,利用等腰三角形的性质得AO平分∠BAC,再根据角平分线性质得OH=OE,然后根据切线的判定定理得到结论;(2)先确定∠OAE=30°,∠AOE=60°,再计算出AE=3,然后根据扇形面积公式,利用图中阴影部分的面积=S△AOE﹣S扇形EOF进行计算;(3)作F点关于BC的对称点F′,连接EF′交BC于P,如图,利用两点之间线段最短得到此时EP+FP最小,通过证明∠F′=∠EAF′得到PE+PF最小值为3,然后计算出OP和OB得到此时PB的长.【解答】(1)证明:作OH⊥AC于H,如图,∵AB=AC,AO⊥BC于点O,∴AO平分∠BAC,∵OE⊥AB,OH⊥AC,∴OH=OE,∴AC是⊙O的切线;(2)解:∵点F是AO的中点,∴AO=2OF=3,而OE=3,∴∠OAE=30°,∠AOE=60°,∴AE=OE=3,∴图中阴影部分的面积=S△AOE﹣S扇形EOF=×3×3﹣=;(3)解:作F点关于BC的对称点F′,连接EF′交BC于P,如图,∵PF=PF′,∴PE+PF=PE+PF′=EF′,此时EP+FP最小,∵OF′=OF=OE,∴∠F′=∠OEF′,而∠AOE=∠F′+∠OEF′=60°,∴∠F′=30°,∴∠F′=∠EAF′,∴EF′=EA=3,即PE+PF最小值为3,在Rt△OPF′中,OP=OF′=,在Rt△ABO中,OB=OA=×6=2,∴BP=2﹣=,即当PE+PF取最小值时,BP的长为.【点评】本题考查了切线的判定与性质:经过半径的外端且垂直于这条半径的直线是圆的切线;圆的切线垂直于经过切点的半径.判定切线时“连圆心和直线与圆的公共点”或“过圆心作这条直线的垂线”.也考查了等腰三角形的性质和最短路径问题.26.(10分)“漆器”名扬天下,某网店专门销售某种品牌的漆器笔筒,成本为30元/件,每天销售y(件)与销售单价x(元)之间存在一次函数关系,如图所示.(1)求y与x之间的函数关系式;(2)如果规定每天漆器笔筒的销售量不低于240件,当销售单价为多少元时,每天获取的利润最大,最大利润是多少?(3)该网店店主热心公益事业,决定从每天的销售利润中捐出150元给希望工程,为了保证捐款后每天剩余利润不低于3600元,试确定该漆器笔筒销售单价的围.【分析】(1)可用待定系数法来确定y与x之间的函数关系式;(2)根据利润=销售量×单件的利润,然后将(1)中的函数式代入其中,求出利润和销售单件之间的关系式,然后根据其性质来判断出最大利润;(3)首先得出w与x的函数关系式,进而利用所获利润等于3600元时,对应x的值,根据增减性,求出x的取值围.【解答】解:(1)由题意得:,解得:.故y与x之间的函数关系式为:y=﹣10x+700,(2)由题意,得﹣10x+700≥240,解得x≤46,设利润为w=(x﹣30)•y=(x﹣30)(﹣10x+700),w=﹣10x2+1000x﹣21000=﹣10(x﹣50)2+4000,∵﹣10<0,∴x<50时,w随x的增大而增大,∴x=46时,w大=﹣10(46﹣50)2+4000=3840,答:当销售单价为46元时,每天获取的利润最大,最大利润是3840元;(3)w﹣150=﹣10x2+1000x﹣21000﹣150=3600,﹣10(x﹣50)2=﹣250,x﹣50=±5,x1=55,x2=45,如图所示,由图象得:当45≤x≤55时,捐款后每天剩余利润不低于3600元.【点评】此题主要考查了二次函数的应用、一次函数的应用和一元二次方程的应用,利用函数增减性得出最值是解题关键,能从实际问题中抽象出二次函数模型是解答本题的重点和难点.27.(12分)问题呈现如图1,在边长为1的正方形网格中,连接格点D,N和E,C,DN和EC相交于点P,求tan∠CPN的值.方法归纳求一个锐角的三角函数值,我们往往需要找出(或构造出)一个直角三角形.观察发现问题中∠CPN不在直角三角形中,我们常常利用网格画平行线等方法解决此类问题,比如连接格点M,N,可得MN∥EC,则∠DNM=∠CPN,连接DM,那么∠CPN就变换到Rt△DMN中.问题解决(1)直接写出图1中tan∠CPN的值为 2 ;(2)如图2,在边长为1的正方形网格中,AN与CM相交于点P,求cos∠CPN 的值;思维拓展(3)如图3,AB⊥BC,AB=4BC,点M在AB上,且AM=BC,延长CB到N,使BN=2BC,连接AN交CM的延长线于点P,用上述方法构造网格求∠CPN 的度数.【分析】(1)连接格点M,N,可得MN∥EC,则∠DNM=∠CPN,连接DM,那么∠CPN就变换到Rt△DMN中.(2)如图2中,取格点D,连接CD,DM.那么∠CPN就变换到等腰Rt△DMC 中.(3)利用网格,构造等腰直角三角形解决问题即可;【解答】解:(1)如图1中,∵EC∥MN,∴∠CPN=∠DNM,∴tan∠CPN=tan∠DNM,∵∠DMN=90°,。

备考2023年中考数学二轮复习-图形的变换_锐角三角函数_解直角三角形的应用-综合题专训及答案

备考2023年中考数学二轮复习-图形的变换_锐角三角函数_解直角三角形的应用-综合题专训及答案

备考2023年中考数学二轮复习-图形的变换_锐角三角函数_解直角三角形的应用-综合题专训及答案解直角三角形的应用综合题专训1、(2018扬州.中考模拟) 有一只拉杆式旅行箱(图1),其侧面示意图如图2所示.已知箱体长AB=50cm,拉杆的伸长距离最大时可达35cm,点A,B,C在同一条直线上.在箱体底端装有圆形的滚轮⊙A,⊙A与水平地面MN相切于点D.在拉杆伸长至最大的情况下,当点B距离水平地面38cm时,点C到水平地面的距离CE为59cm.设AF∥MN.(1)求⊙A的半径长;(2)当人的手自然下垂拉旅行箱时,人感到较为舒服.某人将手自然下垂在C 端拉旅行箱时,CE为80cm,=64°.求此时拉杆BC的伸长距离.(精确到1cm,参考数据:,,)2、(2017南京.中考模拟) 如图,为了测出某塔CD的高度,在塔前的平地上选择一点A,用测角仪测得塔顶D的仰角为30°,在A、C之间选择一点B(A、B、C三点在同一直线上).用测角仪测得塔顶D的仰角为75°,且AB间的距离为40m.(1)求点B到AD的距离;(2)求塔高CD(结果用根号表示).3、(2018嘉兴.中考模拟) 已知:如图,AB为⊙O的直径,C是BA延长线上一点,CP切⊙O于P,弦PD⊥AB于E,过点B作BQ⊥CP于Q,交⊙O于H.(1)如图1,求证:PQ=PE;(2)如图2,G是圆上一点,∠GAB=30 ,连接AG交PD于F,连接BF,tan∠BFE= ,求∠C的度数;(3)如图3,在(2)的条件下,PD=6 ,连接QG交BC于点M,求QM的长.4、(2019金华.中考真卷) 如图,在OABC,以O为图心,OA为半径的圆与C相切于点B,与OC相交于点D.(1)求的度数。

(2)如图,点E在⊙O上,连结CE与⊙O交于点F。

若EF=AB,求∠OCE的度数.5、(2019包河.中考模拟) 如图,AB是⊙O的直径,点C在⊙O上,EO⊥AB,垂足为O,EO交AC于E,过点C作⊙O的切线CD交AB的延长线于点D.(1)求证:∠AEO+∠BCD=90°;(2)若AC=CD=3,求⊙O的半径。

各地2018年中考数学试卷等腰三角形(word,含解析)

各地2018年中考数学试卷等腰三角形(word,含解析)

等腰三角形一、选择题1.(2018•ft东枣庄•3 分)如图是由 8 个全等的矩形组成的大正方形,线段 AB 的端点都在小矩形的顶点上,如果点 P 是某个小矩形的顶点,连接 PA、PB,那么使△ABP 为等腰直角三角形的点 P 的个数是()A.2 个 B.3 个 C.4 个 D.5 个【分析】根据等腰直角三角形的判定即可得到结论.【解答】解:如图所示,使△ABP 为等腰直角三角形的点 P 的个数是 3,故选:B.【点评】本题考查了等腰直角三角形的判定,正确的找出符合条件的点 P 是解题的关键. 2 (2018•ft东枣庄•3分)如图,在Rt△ABC中,∠ACB=90°,CD⊥AB,垂足为D,AF 平分∠CAB,交CD 于点E,交CB 于点F.若AC=3,AB=5,则CE 的长为()A.B.C.D.【分析】根据三角形的内角和定理得出∠CAF+∠C FA=90°,∠FAD+∠AE D=90°,根据角平分线和对顶角相等得出∠CE F=∠CFE,即可得出 EC=FC,再利用相似三角形的判定与性质得出答案.【解答】解:过点F 作FG⊥AB于点G,∵∠ACB=90°,CD⊥AB,∴∠CDA=90°,∴∠CAF+∠CFA=90°,∠FAD+∠AED=90°,∵AF平分∠CAB,∴∠CAF=∠FAD,∴∠CFA=∠AED=∠CEF,∴CE=CF,∵AF平分∠CAB,∠ACF=∠AGF=90°,∴FC=FG,∵∠B=∠B,∠FGB=∠ACB=90°,∴△BFG∽△BAC,∴=,∵AC=3,AB=5,∠ACB=90°,∴BC=4,∴=,∵FC=FG,∴=,解得:FC=,即CE 的长为.故选:A.【点评】本题考查了直角三角形性质、等腰三角形的性质和判定,三角形的内角和定理以及相似三角形的判定与性质等知识,关键是推出∠C EF=∠CF E.3.(2018•ft东淄博•4 分)如图,P 为等边三角形 ABC 内的一点,且 P 到三个顶点 A,B,C的距离分别为3,4,5,则△ABC的面积为()A. B.D.【考点】R2:旋转的性质;KK:等边三角形的性质;KS:勾股定理的逆定理.【分析】将△BPC绕点B 逆时针旋转60°得△BEA,根据旋转的性质得BE=BP=4,AE=PC=5,∠PBE=60°,则△BPE 为等边三角形,得到 PE=PB=4,∠BPE=60°,在△AEP 中,AE=5,延长 BP,作AF⊥BP 于点 FAP=3,PE=4,根据勾股定理的逆定理可得到△APE 为直角三角形,且∠APE=90°,即可得到∠APB的度数,在直角△APF中利用三角函数求得 AF 和 PF 的长,则在直角△ABF 中利用勾股定理求得 AB 的长,进而求得三角形 ABC 的面积.【解答】解:∵△ABC为等边三角形,∴BA=BC,可将△BPC绕点B 逆时针旋转60°得△BEA,连EP,且延长BP,作AF⊥BP于点F.如图,∴BE=BP=4,AE=PC=5,∠PBE=60°,∴△BPE为等边三角形,∴PE=PB=4,∠BPE=60°,在△AEP中,AE=5,AP=3,PE=4,∴AE2=PE2+PA2,∴△APE为直角三角形,且∠APE=90°,∴∠APB=90°+60°=150°.∴∠APF=30°,∴在直角△APF AP=,PF=AP=.∴在直角△ABF)2+()2=25+12 .则△ABC •AB2=•(25+12 .故选:A.【点评】本题考查了等边三角形的判定与性质、勾股定理的逆定理以及旋转的性质:旋转前后的两个图形全等,对应点与旋转中心的连线段的夹角等于旋转角,对应点到旋转中心的距离相等.4.(2018•江苏扬州•3 分)如图,点 A 在线段 BD 上,在 BD 的同侧做等腰Rt△ABC 和等腰Rt△ADE,CD 与BE、AE 分别交于点P,M.对于下列结论:①△BAE∽△CAD;②MP•MD=MA•ME;③2CB2=CP•CM.其中正确的是()A.①②③ B.① C.①② D.②③【分析】(1)由等腰Rt△ABC 和等腰Rt△ADE 三边份数关系可证;(2)通过等积式倒推可知,证明△PAM∽△EMD即可;(3)2CB2 转化为A C2,证明△ACP∽△MCA,问题可证.【解答】解:由已知:AC=AB,AD=AE∴∵∠BAC=∠EAD∴∠BAE=∠CAD∴△BAE∽△CAD所以①正确∵△BAE∽△CAD∴∠BEA=∠CDA∵∠PME=∠AMD∴△PME∽△AMD∴∴MP•MD=MA•ME所以②正确∵∠BEA=∠CDA∠PME=∠AMD∴P、E、D、A 四点共圆∴∠APD=∠EAD=90°∵∠CAE=180°﹣∠BAC﹣∠EAD=90°∴△CAP∽△CMA∴AC2=CP•CM∵AC=AB∴2CB2=CP•CM所以③正确故选:A.【点评】本题考查了相似三角形的性质和判断.在等积式和比例式的证明中应注意应用倒推的方法寻找相似三角形进行证明,进而得到答案.5.(2018·湖南省常德·3 分)如图,已知BD 是△A BC 的角平分线,ED 是BC 的垂直平分线,∠BAC=90°,AD=3,则CE 的长为()A.6 B.5 C.4 D.3【分析】根据线段垂直平分线的性质得到DB=DC,根据角平分线的定义、三角形内角和定理求出∠C=∠DBC=∠A BD=30°,根据直角三角形的性质解答.【解答】解:∵ED是BC 的垂直平分线,∴DB=DC,∴∠C=∠DBC,∵BD是△ABC的角平分线,∴∠ABD=∠DBC,∴∠C=∠DBC=∠ABD=30°,∴BD=2AD=6,∴CE=CD×cos∠C=3,故选:D.【点评】本题考查的是线段垂直平分线的性质、直角三角形的性质,掌握线段垂直平分线上的点到线段两端点的距离相等是解题的关键.6. (2018·台湾·分)如图,锐角三角形 ABC 中,BC>AB>AC,甲、乙两人想找一点 P,使得∠BPC与∠A互补,其作法分别如下:(甲)以A 为圆心,AC 长为半径画弧交AB 于P 点,则P 即为所求;(乙)作过 B 点且与AB 垂直的直线l,作过C 点且与 AC 垂直的直线,交l 于 P 点,则 P 即为所求对于甲、乙两人的作法,下列叙述何者正确?()A.两人皆正确B.两人皆错误C.甲正确,乙错误D.甲错误,乙正确【分析】甲:根据作图可得 AC=AP,利用等边对等角得:∠APC=∠ACP,由平角的定义可知:∠BPC+∠APC=180°,根据等量代换可作判断;乙:根据四边形的内角和可得:∠BPC+∠A=180°.【解答】解:甲:如图1,∵AC=AP,∴∠APC=∠ACP,∵∠BPC+∠APC=180°∴∠BPC+∠ACP=180°,∴甲错误;乙:如图2,∵AB⊥PB,AC⊥PC,∴∠ABP=∠ACP=90°,∴∠BPC+∠A=180°,∴乙正确,故选:D.【点评】本题考查了垂线的定义、四边形的内角和定理、等腰三角形的性质,正确的理解题意是解题的关键.7.(2018•湖北荆门•3 分)如图,等腰Rt△ABC 中,斜边AB 的长为2,O 为AB 的中点,P 为AC 边上的动点,OQ⊥OP交BC 于点Q,M 为PQ 的中点,当点P 从点A 运动到点 C 时,点M所经过的路线长为()A.B.C.1 D.2【分析】连接 OC,作PE⊥AB 于 E,MH⊥AB 于 H,QF⊥AB 于 F,如图,利用等腰直角三角形的性质得,∠A=∠B=45°,OC⊥AB,OC=OA=OB=1,∠OCB=45°,再证明Rt△AOP≌△COQ得到AP=CQ,接着利用△APE和△BFQ都为等腰直角三角形得到AP=CQ,QF=BQ,所以BC=1,然后证明MH 为梯形PEFQ 的中位线得到,即可判定点M 到AB 的距离为,从而得到点 M 的运动路线为△ABC 的中位线,最后利用三角形中位线性质得到点 M 所经过的路线长.【解答】解:连接OC,作PE⊥AB于E,MH⊥AB于H,QF⊥AB于F,如图,∵△ACB为到等腰直角三角形,∴AC=BC=AB= ,∠A=∠B=45°,∵O为AB 的中点,∴OC⊥AB,OC 平分∠ACB,OC=OA=OB=1,∴∠OCB=45°,∵∠POQ=90°,∠COA=90°,∴∠AOP=∠COQ,在Rt△AOP和△COQ中,∴Rt△AOP≌△COQ,∴AP=CQ,易得△APE和△BFQ都为等腰直角三角形,∴PE=AP=CQ,QF=BQ,∴PE+QF=(CQ+BQ)=BC=×=1,∵M点为PQ 的中点,∴MH为梯形PEFQ 的中位线,∴MH=(PE+QF)=,即点M到AB ,而 CO=1,∴点M 的运动路线为△ABC的中位线,∴当点P 从点A 运动到点C 时,点M AB=1.故选:C.【点评】本题考查了轨迹:通过计算确定动点在运动过程中不变的量,从而得到运动的轨迹.也考查了等腰直角三角形的性质.8.(2018•河北•3分)已知:如图 4,点P在线段AB外,且PA =PB.求证:点P在线段AB的垂直平分线上.在证明该结论时,需添加辅助线,则作法不.正确的是()A.作∠APB的平分线PC交AB于点CB.过点P作PC ⊥AB于点C且AC =BCC.取AB中点C,连接PCD.过点P作PC ⊥AB,垂足为C9.(2018 四川省绵阳市)如图,△ACB和△ECD都是等腰直角三角形,CA=CB,CE=CD,△ACB 的顶点 A 在△ECD 的斜边 DE 上,若 AE= ,AD= ,则两个三角形重叠部分的面积为()A.B.C.D.【答案】D【考点】三角形的面积,全等三角形的判定与性质,勾股定理,相似三角形的判定与性质,等腰直角三角形【解析】【解答】解:连接BD,作C H⊥DE,∵△ACB和△ECD都是等腰直角三角形,∴∠ACB=∠ECD=90°,∠ADC=∠C AB=45°,即∠A CD+∠DCB=∠A CD+∠A CE=90°,∴∠DCB=∠ACE,在△DCB和△ECA中,,∴△DCB≌△ECA,∴DB=EA=,∠CDB=∠E=45°,∴∠CDB+∠ADC=∠ADB=90°,在Rt△ABD中,∴AB= =2 ,在Rt△ABC中,∴2AC2=AB2=8,∴AC=BC=2,在Rt△ECD中,∴2CD2=DE2= ,∴CD=CE=+1,∵∠ACO=∠DCA,∠CAO=∠CDA,∴△CAO∽△CDA,∴:= = =4-2 ,又∵= CE = DE·CH,∴CH== ,∴= AD·CH=×× = ,∴=(4-2 )×=3- .即两个三角形重叠部分的面积为3- .故答案为:D.【分析】解:连接 BD,作CH⊥DE,根据等腰直角三角形的性质可得∠ACB=∠ECD=90°,∠ADC=∠CAB=45°,再由同角的余角相等可得∠DCB=∠ACE;由 SAS 得△DCB≌△ECA,根据全等三角形的性质知 DB=EA= ,∠CDB=∠E=45°,从而得∠ADB=90°,在Rt△ABD中,根据勾股定理得AB=2 ,同理可得AC=BC=2,CD=CE= +1;由相似三角形的判定得△CAO∽△CDA,根据相似三角形的性质:面积比等于相似比的平方从而得出两个三角形重叠部分的面积.二.填空题1.(2018 四川省泸州市 3 分)如图,等腰△A BC 的底边 BC=20,面积为 120,点 F 在边BC上,且 BF=3FC,EG 是腰 AC 的垂直平分线,若点 D 在 EG 上运动,则△CDF 周长的最小值为 18 .【分析】如图作A H⊥BC 于H,连接AD.由EG 垂直平分线段AC,推出DA=DC,推出DF+DC=AD+DF,可得当A、D、F 共线时,DF+DC 的值最小,最小值就是线段AF 的长;【解答】解:如图作AH⊥BC于H,连接AD.∵EG垂直平分线段AC,∴DA=DC,∴DF+DC=AD+DF,∴当A、D、F 共线时,DF+DC 的值最小,最小值就是线段AF 的长,∵•BC•AH=120,∴AH=12,∵AB=AC,AH⊥BC,∴BH=CH=10,∵BF=3FC,∴CF=FH=5,∴AF===13,∴DF+DC的最小值为13.∴△CDF 周长的最小值为 13+5=18;故答案为18.【点评】本题考查轴对称﹣最短问题、线段的垂直平分线的性质、等腰三角形的性质等知识,解题的关键是学会利用轴对称,解决最短问题,属于中考常考题型.2.(2018•广西桂林•3 分)如图,在Δ ABC 中,∠A=36°,AB=AC,BD 平分∠ABC,则图中等腰三角形的个数是【答案】3详解:∵AB=AC,∴△ABC是等腰三角形.∵∠A=36°,∴∠C=∠ABC=72°.BD 平分∠ABC交AC 于D,∴∠ABD=∠DBC=36°,∵∠A=∠ABD=36°,∴△ABD是等腰三角形.∠BDC=∠A+∠ABD=36°+36°=72°=∠C,∴△BDC是等腰三角形.∴共有3 个等腰三角形.故答案为:3.点睛:本题考查了等腰三角形的判定与性质及三角形内角和定理;求得角的度数是正确解答本题的关键.3.(2018·新疆生产建设兵团·5分)如图,△ABC是⊙O的内接正三角形,⊙O的半径为2,则图中阴影部的面积是.【分析】根据等边三角形性质及圆周角定理可得扇形对应的圆心角度数,再根据扇形面积公式计算即可.【解答】解:∵△ABC是等边三角形,∴∠C=60°,根据圆周角定理可得∠AOB=2∠C=120°,∴阴影部分的面积是=π,故答案为:【点评】本题主要考查扇形面积的计算和圆周角定理,根据等边三角形性质和圆周角定理求得圆心角度数是解题的关键.4.(2018·四川宜宾·3分)刘徽是中国古代卓越的数学家之一,他在《九章算术》中提出了“割圆术”,即用内接或外切正多边形逐步逼近圆来近似计算圆的面积,设圆O 的半径为1,若用圆O 的外切正六边形的面积来近似估计圆O 的面积,则S= 2 .(结果保留根号)【考点】MM:正多边形和圆;1O:数学常识.【分析】根据正多边形的定义可得出△ABO 为等边三角形,根据等边三角形的性质结合 OM 的长度可求出AB 的长度,再利用三角形的面积公式即可求出S 的值.【解答】解:依照题意画出图象,如图所示.∵六边形ABCDEF 为正六边形,∴△ABO为等边三角形,∵⊙O的半径为1,∴OM=1,∴BM=AM=,∴AB=,∴S=6S△ABO=6× × ×1=2 ., ,故答案为:2.【点评】本题考查了正多边形和圆、三角形的面积以及数学常识,根据等边三角形的性质求出正六边形的边长是解题的关键.5. (2018·天津·3 分)如图,在边长为 4 中,,分别为的中点 于点,为的中点,连接,则的长为.【答案】【解析】分析:连接 DE ,根据题意可得 Δ DEG 是直角三角形,然后根据勾股定理即可求解 DG 的长. 详解:连接 DE ,∵D、E 分别是 AB 、BC 的中点, ∴DE∥AC,DE=AC∵Δ ABC 是等边三角形,且 BC=4 ∴∠DEB=60°,DE=2 ∵EF⊥AC,∠C=60°,EC=2 ∴∠FEC=30°,EF=∴∠DEG=180°-60°-30°=90°∵G是EF 的中点,∴EG=.在RtΔ DEG 中,DG=故答案为:.点睛:本题主要考查了等边三角形的性质,勾股定理以及三角形中位线性质定理,记住和熟练运用性质是解题的关键.6.(2018·湖北省武汉· 3 分)如图.在△A BC 中,∠ACB=60°,AC=1,D 是边AB 的中点,E 是边BC 上一点.若DE 平分△ABC的周长,则DE 的长是.【分析】延长 BC 至 M,使 CM=CA,连接 AM,作CN⊥AM 于 N,根据题意得到 ME=EB,根据三角形中位线定理得到AM,根据等腰三角形的性质求出∠ACN,根据正弦的概念求出 AN,计算即可.【解答】解:延长BC 至M,使CM=CA,连接AM,作CN⊥AM于N,∵DE平分△ABC的周长,∴ME=EB,又AD=DB,∴DE=AM,DE∥AM,∵∠ACB=60°,∴∠ACM=120°,∵CM=CA,∴∠ACN=60°,AN=MN,∴AN=A C•s in∠ACN=,∴AM=,∴DE=,故答案为:.【点评】本题考查的是三角形中位线定理、等腰三角形的性质、解直角三角形,掌握三角形中位线定理、正确作出辅助性是解题的关键.7.(2018•北京•2 分) 右图所示的网格是正方形网格,∠BAC∠DAE .(填“ >”,“ =”或“ <”) 【答案】>【解析】如下图所示,△AFG 是等腰直角三角形,∴ ∠FAG = ∠BAC = 45︒,∴ ∠BAC >∠DAE .另:此题也可直接测量得到结果.【考点】等腰直角三角形8. (2018•江苏盐城•3 分)如图,在直角 中,,,,、分别为边 、上的两个动点,若要使 是等腰三角形且是直角三角形,则.16.【答案】 或G EBD FCAEBDCA【考点】等腰三角形的判定与性质,相似三角形的判定与性质【解析】【解答】解:当△BPQ 是直角三角形时,有两种情况:∠B PQ=90 度,∠BQP=90 度。

2018年扬州市中考数学试卷及答案,选择题详细解析

2018年扬州市中考数学试卷及答案,选择题详细解析

2018年扬州市中考数学试卷及答案,选择题详细解析
本卷选择题部分共8小题,考查的知识点有18个,其中6道容易题,1道中等题,1道难题。

下面我们就来具体地看一看。

前3题考查的知识点有倒数(包括相反数、负倒数)、二次根式、一元一次不等式和三视图。

其中二次根式的被开方数必须是非负数,二次根式才有意义;几何体的三视图也只考了个主视图,所以都比较简单。

第4题四个选项分别考查了数据分析中的中位数、抽样调查、平均数和极差几个知识点,关键是检验学生对基本概念的掌握是否牢固,难度不大。

对于求一组数据的中位数,首先要将这组数据从小到大排序,然后搞清这组数据的个数是奇数还是偶数,再区别对待来求解。

5、6两题考查的是反比例函数的增减性以及平面直角坐标系中不
同象限内点的坐标的符号特征,需要注意的是不要将横坐标和纵坐标搞反了。

第7题考查的知识点有直角三角形的性质、角平分线的性质、三角形的一个外角等于和它不相邻的两个内角的和这几个知识点,稍微有点难度,属于中等题。

第8题考查的知识点较多,有等腰直角三角形、三角形相似的判定、相似三角形的性质、四点共圆的判定、圆的性质等,一题三个选项都要认真思考,不亚于比较复杂的解答题,所以本题难度还是可以的,属于选择题中的压轴题。

第一个选项主要通过等腰直角三角形边角之间的关系,进行三角形相似的判定;第二个选项则综合了三角形相似的判定和相似三角形的性质进行证明;第三个选项在相似三角形的性质的基础上结合了圆的有关知识,难度有所增大。

2018年江苏省扬州市中考数学试卷(含答案)

2018年江苏省扬州市中考数学试卷(含答案)

江苏省扬州市2018年中考数学试卷参考答案与试卷解读一、选择题<共8小题,每小题3分,满分24分))3.<3分)<2018•扬州)若反比例函数y=<k≠0)的图象经过点P<﹣2,3),则该函数的图象的点是< )b5E2RGbCAPy=x的值是都相切,则阴影部分的面积与下列各数最接近的是< )p1EanqFDPw,点M,N在边OB上,PM=PN,若MN=2,则OM=< )DXDiTa9E3d中,cos60°==,∴MD=ND=MN=1,8.<3分)<2018•扬州)如图,在四边形ABCD 中,AB=AD=6,AB ⊥BC ,AD ⊥CD ,∠BAD=60°,点M 、N 分别在AB 、AD 边上,若AM :MB=AN :ND=1:2,则tan ∠MCN=< )RTCrpUDGiTA .B .C .D .﹣2 考点: 全等三角形的判定与性质;三角形的面积;角平分线的性质;含30度角的直角三角形;勾股定理专题:计算题.分析: 连接AC ,通过三角形全等,求得∠BAC=30°,从而求得BC 的长,然后根据勾股定理求得CM 的长,连接MN ,过M 点作ME ⊥ON 于E ,则△MNA 是等边三角形求得MN=2,设NF=x ,表示出CF ,根据勾股定理即可求得MF ,然后求得tan ∠MCN .解答: 解:∵AB=AD=6,AM :MB=AN :ND=1:2,∴AM=AN=2,BM=DN=4,连接MN ,连接AC ,∵AB ⊥BC ,AD ⊥CD ,∠BAD=60°在Rt △ABC 与Rt △ADC 中,,∴Rt △ABC ≌Rt △ADC<LH )∴∠BAC=∠DAC=∠BAD=30°,MC=NC ,∴BC=AC ,∴AC2=BC2+AB2,即<2BC )2=BC2+AB2,3BC2=AB2,∴BC=2,在Rt △BMC 中,CM===2.∵AN=AM ,∠MAN=60°,∴△MAN 是等边三角形,∴MN=AM=AN=2,CE=2x2=<2x=EC=2﹣==,MCN==9.<3分)<2018•扬州)据统计,参加今年扬州市初中毕业、升学统一考试的学,则它的<单元:cm)可以得出该长方体的体积是18 cm3.xHAQX74J0X考点:由三视图判断几何体.分析:首先确定该几何体为立方体,并说出其尺寸,直接计算其体积即可.解答:解:观察其视图知:该几何体为立方体,且立方体的长为3,宽为2,高为3,故其体积为:3×3×2=18,故答案为:18.点评:本题考查了由三视图判断几何体,牢记立方体的体积计算方法是解答本题的关键.制出一个未完成的扇形统计图,若该校共有学生700人,则据此估计步行的有280 人.LDAYtRyKfE考点:用样本估计总体;扇形统计图.分析:先求出步行的学生所占的百分比,再用学生总数乘以步行学生所占的百分比即可估计全校步行上学的学生人数.解答:解:∵骑车的学生所占的百分比是×100%=35%,∴步行的学生所占的百分比是1﹣10%﹣15%﹣35%=40%,∴若该校共有学生700人,则据此估计步行的有700×40%=280<人).故答案为:280.点评:本题考查了扇形统计图及用样本估计总数的知识,解题的关键是从统计图中得出步行上学学生所占的百分比.中的∠1= 67.5°.Zzz6ZB2Ltk考点:等腰梯形的性质;多边形内角与外角分首先求得正八边形的内角的度数,则∠1的度数是正八边形的则∠1=×135°=67.5°.DE折叠,使点A落在边BC上的点F处,若A、F两点间的距离是8cm,则△ABC的面积为40 cm3.dvzfvkwMI1∴S△ABC=BC×AF=×10×8=40cm2.AB、AC于点D、E,连结OD、OE,若∠A=65°,则∠DOE= 50°.rqyn14ZNXI析:倍,然后利用三角形的内角和求得∠BOD+∠EOC,然后利用平角的性质求得即可.解答:解:∵∠A=65°,∴∠B+∠C=180°﹣65°=115°,∴∠BDO=∠DBO,∠OEC=∠OCE,∴∠BDO+∠DBO+∠OEC+∠OCE=2×115°=230°,∴∠BOD+∠EOC=2×180°﹣230°=130°,∴∠DOE=180°﹣130°=50°,故答案为:50°.点评:本题考查了圆的认识及三角形的内角和定理等知识,难度不大.<1,0)且平行于y轴的直线,若点P<4,0)在该抛物线上,则4a﹣2b+c的值为0 .EmxvxOtOco考点:抛物线与x轴的交点分析:依据抛物线的对称性求得与x轴的另一个交点,代入解读式即可.解答:解:设抛物线与x轴的另一个交点是Q,∵抛物线的对称轴是过点<1,0),与x轴的一个交点是P<4,0),∴与x轴的另一个交点Q<﹣2,0),把<﹣2,0)代入解读式得:0=4a﹣2b+c,∴4a﹣2b+c=0,故答案为:0.点评:本题考查了抛物线的对称性,知道与x轴的一个交点和对称轴,能够表示出与x轴的另一个交点,求得另一个交点坐标是本题的关键.考点:因式分解的应用;一元二次方程的解;根与系数的关系专题:计算题.分根据一元二次方程解的定义得到a2﹣a﹣3=0,b2﹣b﹣3=0,即析:a2=a+3,b2=b+3,则2a3+b2+3a2﹣11a﹣b+5=2a<a+3)+b+3+3<a+3)﹣11a﹣b+5,整理得2a2﹣2a+17,然后再把a2=a+3代入后合并即可.解答:解:∵a,b是方程x2﹣x﹣3=0的两个根,∴a2﹣a﹣3=0,b2﹣b﹣3=0,即a2=a+3,b2=b+3,∴2a3+b2+3a2﹣11a﹣b+5=2a<a+3)+b+3+3<a+3)﹣11a﹣b+5 =2a2﹣2a+17=2<a+3)﹣2a+17=2a+6﹣2a+17=23.故答案为23.点评:本题考查了因式分解的运用:利用因式分解解决求值问题;利用因式分解解决证明问题;利用因式分解简化计算问题.也考查了一元二次方程解的定义.的一列数,若a1+a2+…+a2018=69,<a1+1)2+<a2+1)2+…+<a2018+1)2=4001,考点:规律型:数字的变化类.分析:首先根据<a1+1)2+<a2+1)2+…+<a2018+1)2得到a12+a22+…+a20182+2152,然后设有x个1,y个﹣1,z个0,得到方程组,解方程组即可确定正确的答案.解答:解:<a1+1)2+<a2+1)2+…+<a2018+1)2=a12+a22+…+a20182+2<a1+a2+…+a2018)+2018 =a12+a22+…+a20182+2×69+2018=a12+a22+…+a20182+2152,设有x个1,y个﹣1,z个0∴,化简得x﹣y=69,x+y=1849解得x=959,y=890,z=165∴有959个1,890个﹣1,165个0,故答案为:165.点评:本题考查了数字的变化类问题,解题的关键是对给出的式子进行正确的变形,难度较大.19.<8分)<2018•扬州)<1)计算:<3.14﹣π)0+<﹣)﹣2﹣2sin30°;<2)化简:﹣÷.考实数的运算;分式的混合运算;零指数幂;负整数指数幂;特式的减法法则计算即可得到结果.﹣•=﹣=.20.<8分)<2018•扬州)已知关于x的方程<k﹣1)x2﹣<k﹣1)x+=0有两个相x+)10<2)计算乙队的平均成绩和方差;分析:<1)根据中位数的定义求出最中间两个数的平均数;根据众数的定义找出出现次数最多的数即可;<2)先求出乙队的平均成绩,再根据方差公式进行计算;<3)先比较出甲队和乙队的方差,再根据方差的意义即可得出答案.解答:解:<1)把甲队的成绩从小到大排列为:7,7,8,9,9,10,10,10,10,10,最中间两个数的平均数是<9+10)÷2=9.5<分),则中位数是9.5分;10出现了4次,出现的次数最多,则乙队成绩的众数是10分;故答案为:9.5,10;<2)乙队的平均成绩是:<10×4+8×2+7+9×3)=9,则方差是:[4×<10﹣9)2+2×<8﹣9)2+<7﹣9)2+3×<9﹣9)2]=1;<3)∵甲队成绩的方差是1.4,乙队成绩的方差是1,∴成绩较为整齐的是乙队;故答案为:乙.点评:本题考查方差、中位数和众数:中位数是将一组数据从小到大<或从大到小)重新排列后,最中间的那个数<或最中间两个数的平均数),一般地设n个数据,x1,x2,…xn的平均数为,则方差S2=[<x1﹣)2+<x2﹣)2+…+<xn﹣)2],它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.数量充足,某同学去该店购买饮料,每种饮料被选中的可能性相同.M2ub6vSTnP <1)若他去买一瓶饮料,则他买到奶汁的概率是;<2)若他两次去买饮料,每次买一瓶,且两次所买饮料品种不同,请用树状图或考点:列表法与树状图法;概率公式分析:<1)由商店只有雪碧、可乐、果汁、奶汁四种饮料,每种饮料数量充足,某同学去该店购买饮料,每种饮料被选中的可能性相同,直接利用概率公式求解即可求得答案;<2)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与他恰好买到雪碧和奶汁的情况,再利用概率公式即可求得答案.解答:解:<1)∵商店只有雪碧、可乐、果汁、奶汁四种饮料,每种饮料数量充足,某同学去该店购买饮料,每种饮料被选中的可能性相同,∴他去买一瓶饮料,则他买到奶汁的概率是:;故答案为:;∴他恰好买到雪碧和奶汁的概率为:=.ABC绕点B顺时针旋转90°至△DBE后,再把△ABC沿射线平移至△FEG,DF、FG相交于点H.eUts8ZQVRd<1)判断线段DE、FG的位置关系,并说明理由;<2)连结CG,求证:四边形CBEG是正方形.∴∠BCG+∠CBE=90°,∴∠BCG=90°,∴四边形BCGE是矩形,∵CB=BE,∴四边形CBEG是正方形.点评:此题主要考查了图形的旋转和平移,关键是掌握新图形中的每一点,都是由原图形中的某一点移动后得到的,这两个点是对应点.连接各组对应点的线段平行且相等.任务,该厂实际每天制作的件数比原来每天多50%,结果提前10天完成任务.原考点:分式方程的应用.分析:设原来每天制作x件,根据原来用的时间﹣现在用的时间=10,列出方程,求出x的值,再进行检验即可.解答:解:设原来每天制作x件,根据题意得:﹣=10,解得:x=16,经检验x=16是原方程的解,答:原来每天制作16件.点评:此题考查了分式方程的应用,分析题意,找到合适的等量关系是解决问题的关键,本题的等量关系是原来用的时间﹣现在用的时间=10.D,与直角边AC相交于E、F两点,连结DE,已知∠B=30°,⊙O的半径为12,弧DE的长度为4π.GMsIasNXkA<1)求证:DE∥BC;<2)若AF=CE,求线段BC的长度.。

2018年江苏省扬州市江都区中考数学模拟试卷(4月份)--有答案

2018年江苏省扬州市江都区中考数学模拟试卷(4月份)--有答案

2018 年江苏省扬州市江都区中考数学模拟试卷(4 月份)一.选择题(共 8 小题,满分 24 分)1. ﹣3的倒数是()A .3B .C .﹣D .﹣32.下列图形中,既是中心对称,又是轴对称的是()A. B . C . D .3. 下列计算中,正确的是( )A .(2a )3=2a 3B .a 3+a 2=a 5C .a 8÷a 4=a 2D .(a 2)3=a 64. 如图所示几何体的主视图是()A.B .C .D .5. 某小组8名同学在一周内参加家务劳动的时间如下表所示,关于“劳动时间”的这组数据,以下说法正确的是( )A .中位数是4,众数是4 B .中位数是3.5,众数是4C .平均数是3.5,众数是4D .平均数是4,众数是3.5 6.如图,⊙O中,弦AB 、CD 相交于点P ,若∠A=30°,∠APD=70°,则∠B等 于()劳动时间(小时)3 3.54 4.5 人数1132A.30°B.35°C.40°D.50°7.已知一次函数y=kx+b的大致图象如图所示,则关于x的一元二次方程x2﹣2x+kb+1=0的根的情况是()A.有两个不相等的实数根B.没有实数根C.有两个相等的实数根D.有一个根是08.将抛物线y=x2﹣6x+21向左平移2个单位后,得到新抛物线的解析式为()A.y=(x﹣8)2+5 B.y=(x﹣4)2+5C.y=(x﹣8)2+3 D.y=(x﹣4)2+3二.填空题(共 10 小题,满分 30 分,每小题 3 分)9..亚洲陆地面积约为4400万平方千米,将44000000用科学记数法表示为.10.在函数中,自变量x的取值范围是.11.若一个多边形的内角和是其外角和的3倍,则这个多边形的边数是.12.若两个关于x,y的二元一次方程组与有相同的解,则mn的值为.13.如图,已知圆锥的母线SA的长为4,底面半径OA的长为2,则圆锥的侧面积等于.14.如图,已知AE∥BD,∠1=130°,∠2=28°,则∠C的度数为.15.如图,直角△ABC中,AC=3,BC=4,AB=5,则内部五个小直角三角形的周长为.16.如图,四边形OABC是矩形,四边形ADEF是正方形,点A、D在x轴的负半轴上,点C在y轴的正半轴上,点F在AB上,点B、E在反比例函数y=(k 为常数,k≠0)的图象上,正方形ADEF的面积为4,且BF=2AF,则k值为.17.如图,⊙C经过原点且与两坐标轴分别交于点A与点B,点B的坐标为(﹣,0),M是圆上一点,∠BMO=120°.⊙C圆心C的坐标是.18.如图,线段AB的长为4,C为AB上一个动点,分别以AC、BC为斜边在AB 的同侧作两个等腰直角三角形ACD和BCE,连结DE,则DE长的最小值是.三.解答题(共 10 小题,满分 96 分)19.(8分)(1)计算:﹣22+| ﹣4|+()﹣1+2tan60°(2)求不等式组的解集. 20.(8分)先化简,再求值:,其中a是方程a2+a﹣6=0 的解.21.(8分)“足球运球”是中考体育必考项目之一.兰州市某学校为了解今年九年级学生足球运球的掌握情况,随机抽取部分九年级学生足球运球的测试成绩作为一个样本,按A,B,C,D四个等级进行统计,制成了如下不完整的统计图.(说明:A级:8分﹣10分,B级:7分﹣7.9分,C级:6分﹣6.9分,D级:1分﹣5.9分)根据所给信息,解答以下问题:(1)在扇形统计图中,C对应的扇形的圆心角是度;(2)补全条形统计图;(3)所抽取学生的足球运球测试成绩的中位数会落在等级;(4)该校九年级有300名学生,请估计足球运球测试成绩达到A级的学生有多少人?22.(8分)如图,在一个可以自由转动的转盘中,指针位置固定,三个扇形的面积都相等,且分别标有数字1,2,3.(1)小明转动转盘一次,当转盘停止转动时,指针所指扇形中的数字是奇数的概率为;(2)小明先转动转盘一次,当转盘停止转动时,记录下指针所指扇形中的数字;接着再转动转盘一次,当转盘停止转动时,再次记录下指针所指扇形中的数字,求这两个数字之和是3的倍数的概率(用画树状图或列表等方法求解).23.(10分)在某校举办的2012年秋季运动会结束之后,学校需要为参加运动会的同学们发纪念品.小王负责到某商场买某种纪念品,该商场规定:一次性购买该纪念品200个以上可以按折扣价出售;购买200个以下(包括200 个)只能按原价出售.小王若按照原计划的数量购买纪念品,只能按原价付款,共需要1050元;若多买35个,则按折扣价付款,恰好共需1050元.设小王按原计划购买纪念品x个.(1)求x的范围;(2)如果按原价购买5个纪念品与按打折价购买6个纪念品的钱数相同,那么小王原计划购买多少个纪念品?24.(10分)在如图的正方形网格中,每一个小正方形的边长均为1.格点三角形ABC(顶点是网格线交点的三角形)的顶点A、C的坐标分别是(﹣2,0),(﹣3,3).(1)请在图中的网格平面内建立平面直角坐标系,写出点B的坐标;(2)把△ABC绕坐标原点O顺时针旋转90°得到△A1B1C1,画出△A1B1C1,写出点B1的坐标;(3)以坐标原点O为位似中心,相似比为2,把△A1B1C1放大为原来的2倍,得到△A2B2C2画出△A2B2C2,使它与△AB1C1在位似中心的同侧;(4)请在x轴上求作一点P,使△PBB1的周长最小,并写出点P的坐标.25.(10分)如图,AB为⊙O的直径,点C,D在⊙O上,且点C是的中点,过点C作AD的垂线EF交直线AD于点E.(1)求证:EF是⊙O的切线;(2)连接BC,若AB=5,BC=3,求线段AE的长.26.(10分)已知抛物线y=﹣x2﹣4x+c经过点A(2,0).(1)求抛物线的解析式和顶点坐标;(2)若点B(m,n)是抛物线上的一动点,点B关于原点的对称点为C.①若 B、C 都在抛物线上,求 m 的值;②若点 C 在第四象限,当 AC2 的值最小时,求 m 的值.27.(12分)如图1,在正方形ABCD中,P是对角线BD上的一点,点E在AD的延长线上,且PA=PE,PE交CD于F.(1)证明:PC=PE;(2)求∠CPE的度数;(3)如图2,把正方形ABCD改为菱形ABCD,其他条件不变,当∠ABC=120°时,连接CE,试探究线段AP与线段CE的数量关系,并说明理由.28.(12分)如图1,在平面直角坐标系中,一次函数y=﹣2x+8的图象与x轴,y轴分别交于点A,点C,过点A作AB⊥x轴,垂足为点A,过点C作CB⊥y 轴,垂足为点C,两条垂线相交于点B.(1)线段AB,BC,AC的长分别为AB= ,BC= ,AC= ;(2)折叠图1中的△ABC,使点A与点C重合,再将折叠后的图形展开,折痕DE 交 AB 于点 D,交 AC 于点 E,连接 CD,如图 2.请从下列A、B两题中任选一题作答,我选择题.A:①求线段 AD 的长;②在y轴上,是否存在点P,使得△APD为等腰三角形?若存在,请直接写出符合条件的所有点P的坐标;若不存在,请说明理由.B:①求线段 DE 的长;②在坐标平面内,是否存在点P(除点B外),使得以点A,P,C为顶点的三角形与△ABC全等?若存在,请直接写出所有符合条件的点P的坐标;若不存在,请说明理由.参考答案一.选择题1.解:∵﹣3×(﹣)=1,∴﹣3的倒数是﹣.故选:C.2.解:A、是中心对称图形,不是轴对称图形,故本选项错误;B、不是中心对称图形,也不是轴对称图形,故本选项错误;C、既是中心对称图形,又是轴对称图形,故本选项正确;D、不是中心对称图形,是轴对称图形,故本选项错误.故选:C.3.解:A、(2a)3=8a3,故本选项错误;B、a3+a2 不能合并,故本选项错误;C、a8÷a4=a4,故本选项错误;D、(a2)3=a6,故本选项正确;故选:D.4.解:几何体的主视图为,故选:B.5.解:这组数据中4出现的次数最多,众数为4,∵共有 7 个人,∴第4个人的劳动时间为中位数,所以中位数为4,故选:A.6.解:∵∠APD是△APC的外角,∴∠APD=∠C+∠A;∵∠A=30°,∠APD=70°,∴∠C=∠APD﹣∠A=40°;∴∠B=∠C=40°;故选:C.7.解:根据图象可得k>0,b<0,所以kb<0,因为△=(﹣2)2﹣4(kb+1)=4﹣4kb﹣4=﹣4kb,所以△>0,所以方程有两个不相等的实数根.故选:A.8.解:y=x2﹣6x+21=(x2﹣12x)+21=[(x﹣6)2﹣36]+21=(x﹣6)2+3,故y=(x﹣6)2+3,向左平移2个单位后,得到新抛物线的解析式为:y=(x﹣4)2+3.故选:D.二.填空题(共 10 小题,满分 30 分,每小题 3 分)9.解:44000000=4.4×107,故答案为:4.4×107.10.解:根据二次根式有意义,分式有意义得:1﹣x≥0且x+2≠0,解得:x≤1且x≠﹣2.故答案为:x≤1 且x≠﹣2.11.解:设多边形的边数为n,根据题意,得(n﹣2)•180=3×360,解得 n=8.则这个多边形的边数是八.12.解:联立得:,①×2+②,得:10x=20,解得:x=2,将x=2代入①,得:6﹣y=6,解得:y=0,则,将x=2、y=0代入,得:,解得:,则 mn=6,故答案为:6.13.解:侧面积=4×4π÷2=8π.故答案为8π.14.解:∵AE∥BD,∠1=1 30°,∠2=28°,∴∠CBD=∠1=130°,∠CDB=∠2=28°,∴∠C=180°﹣∠CBD﹣∠CDB=180°﹣130°﹣28°=22°.故答案为:22°15.解:由图形可以看出:内部小三角形直角边是大三角形直角边平移得到的,故内部五个小直角三角形的周长为AC+BC+AB=12.故答案为:12.16.解:∵正方形ADEF的面积为4,∴正方形 ADEF 的边长为 2,∴BF=2AF=4,AB=AF+BF=2+4=6.设B点坐标为(t,6),则E点坐标(t﹣2,2),∵点B、E在反比例函数y=的图象上,∴k=6t=2(t﹣2),解得t=﹣1,k=﹣6.故答案为﹣6.17.解:连接AB,OC,∵∠AOB=90°,∴AB 为⊙C 的直径,∵∠BMO=120°,∴∠BAO=60°,∴∠BCO=2∠BAO=120°,过C作CD⊥OB于D,则OD=OB,∠DCB=∠DCO=60°,∵B(﹣,0),∴BD=OD=在Rt△COD中.CD=OD•tan30°=,∴C(﹣,),故答案为:C(﹣,).18.解:设AC=x,BC=4﹣x,∵△CDA,△BCE 均为等腰直角三角形,∴CD=x,CE=(4﹣x),∵∠ACD=45°,∠BCE=45°,∴∠DCE=90°,∴DE2=CD2+CE2= x2+(4﹣x)2=x2﹣4x+8=(x﹣2)2+4,∵根据二次函数的最值,∴当x取2时,DE取最小值,最小值为:2.故答案为:220.解:= =三.解答题(共 10 小题,满分 96 分) 19.解:(1)原式=﹣4+4﹣2+3+2=3;(2)由①得:x <3;由②得:x≥﹣1;所以不等式组的解集是:﹣1≤x<3.= =,由 a 2+a ﹣6=0,得 a=﹣3 或 a=2, ∵a﹣2≠0, ∴a≠2, ∴a=﹣3,当 a=﹣3 时,原式 = = . 21.解:(1)∵总人数为18÷45%=40人,∴C 等级人数为 40﹣(4+18+5)=13 人, 则C 对应的扇形的圆心角是360°×=117°,故答案为:117;(2) 补全条形图如下:(3)因为共有40个数据,其中位数是第20、21个数据的平均数,而第20、21 个数据均落在B 等级,所以所抽取学生的足球运球测试成绩的中位数会落在B等级,故答案为:B.(4)估计足球运球测试成绩达到A级的学生有300×=30人.22.解:(1)∵在标有数字1、2、3的3个转盘中,奇数的有1、3这2个,∴指针所指扇形中的数字是奇数的概率为,故答案为:;(2)列表如下:由表可知,所有等可能的情况数为9种,其中这两个数字之和是3的倍数的有3 种,所以这两个数字之和是3的倍数的概率为=.23.解:(1)根据题意得:0<x≤200,且x∈N;(2)设小王原计划购买x个纪念品,根据题意得:×5=×6,整理得:5x+175=6x,解得:x=175,经检验x=175是分式方程的解,且满足题意,则小王原计划购买175个纪念品.24.解:(1)如图所示,点B的坐标为(﹣4,1);(2)如图,△A1B1C1即为所求,点B1的坐标(1,4);(3)如图,△A2B2C2即为所求;(4)如图,作点B关于x轴的对称点B',连接B'B1,交x轴于点P,则点P即为所求,P(﹣3,0).25.(1)证明:连接OC,∵OA=OC,∴∠OCA=∠BAC,∵点C是的中点,∴∠EAC=∠BAC,∴∠EAC=∠OCA,∴OC∥AE,∵AE⊥EF,∴OC⊥EF,即 EF 是⊙O 的切线;(2)解:∵AB 为⊙O 的直径,∴∠BCA=90°,∴AC==4,∵∠EAC=∠BAC,∠AEC=∠ACB=90°, ∴△AEC∽△ACB,26.解:(1)∵抛物线y=﹣x 2﹣4x+c 经过点A (2,0), ∴﹣4﹣8+c=0,即 c=12,∴抛物线解析式为y=﹣x 2﹣4x+12=﹣(x+2)2+16,则顶点坐标为(﹣2,16);(2)①由 B (m ,n )在抛物线上可得:﹣m 2﹣4m+12=n , ∵点 B 关于原点的对称点为 C , ∴C(﹣m ,﹣n ), ∵C 落在抛物线上,∴﹣m 2+4m+12=﹣n ,即 m 2﹣4m ﹣12=n ,解得:﹣m 2+4m+12=m 2﹣4m ﹣12, 解得:m=2或m=﹣2;②∵点 C (﹣m ,﹣n )在第四象限, ∴﹣m >0,﹣n <0,即 m <0,n >0, ∵抛物线顶点坐标为(﹣2,16), ∴0<n≤16,∵ 点 B 在抛物线上, ∴﹣m 2﹣4m+12=n , ∴m 2+4m=﹣n+12,∵A(2,0),C (﹣m ,﹣n ),∴AC 2=(﹣m ﹣2)2+(﹣n )2=m 2+4m+4+n 2=n 2﹣n+16=(n ﹣)2+ ,∴ = , ∴AE== .当 n= 时,AC2 有最小值,∴﹣m2﹣4m+12= ,解得:m=,∵m<0,∴m=不合题意,舍去,则m的值为.27.(1)证明:在正方形ABCD中,AB=BC,∠ABP=∠CBP=45°,在△ABP和△CBP中,,∴△ABP≌△CBP(SAS),∴PA=PC,∵PA=PE,∴PC=PE;(2)由(1)知,△ABP≌△CBP,∴∠BAP=∠BCP,∴∠DAP=∠DCP,∵PA=PE,∴∠DAP=∠E,∴∠DCP=∠E,∵∠CFP=∠EFD(对顶角相等),∴180°﹣∠PFC﹣∠PCF=180°﹣∠DFE﹣∠E,即∠CPF=∠EDF=90°;(3)在菱形ABCD中,AB=BC,∠ABP=∠CBP,在△ABP和△CBP中,,∴△ABP≌△CBP(SAS),∴PA=PC,∠BAP=∠BCP,∴∠DAP=∠DCP,∵PA=PE,∴PC=PE,∵PA=PE,∴∠DAP=∠E,∴∠DCP=∠E,∵∠CFP=∠EFD,∴∠CPF=∠EDF∵∠ABC=∠ADC=120°,∴∠CPF=∠EDF=180°﹣∠ADC=60°,∴△EPC 是等边三角形,∴PC=CE,∴AP=CE;28.解:(1)∵一次函数y=﹣2x+8的图象与x轴,y轴分别交于点A,点C,∴A(4,0),C(0,8),∴OA=4,OC=8,∵AB⊥x 轴,CB⊥y 轴,∠AOC=90°,∴四边形 OABC 是矩形,∴AB=OC=8,BC=OA=4,在Rt△ABC中,根据勾股定理得,AC==4,故答案为:8,4,4;(2)A、①由(1)知,BC=4,AB=8,由折叠知,CD=AD,在Rt△BCD中,BD =AB﹣AD=8﹣AD,根据勾股定理得,CD2=BC2+BD2,即:AD2=16+(8﹣AD)2,∴AD=5,②由①知,D(4,5),设P(0,y),∵A(4,0),∴AP2=16+y2,DP2=16+(y﹣5)2,∵△APD 为等腰三角形,∴Ⅰ、AP=AD,∴16+y2=25,∴y=±3,∴P(0,3)或(0,﹣3)Ⅱ、AP=DP,∴16+y2=16+(y﹣5)2,∴y=,∴P(0,),Ⅲ、AD=DP,25=16+(y﹣5)2,∴y=2 或 8,∴P(0,2)或(0,8).B、①、由A①知,AD=5,由折叠知,AE=AC=2 ,DE⊥AC于E,在Rt△ADE中,DE==,②、∵以点 A,P,C 为顶点的三角形与△ABC 全等,∴△APC≌△ABC,或△CPA≌△ABC,∴∠APC=∠ABC=90°,∵四边形OABC是矩形,∴△ACO≌△CAB,此时,符合条件,点P和点O重合,即:P(0,0),如图 3,过点O作ON⊥AC于N,易证,△AON∽△ACO,∴∴AN= ,∴ ,,过点 N 作 NH⊥OA, ∴NH∥OA, ∴△ANH∽△ACO, ∴, ∴,∴NH=,AH=, ∴OH=, ∴N(,),而点 P 2 与点 O 关于 AC 对称, ∴P 2(,),同理:点B 关于AC 的对称点P 1,同上的方法得,P 1(﹣,),即:满足条件的点P 的坐标为:(0,0),(, ),(﹣ , ).。

2018年全国各地中考数学压轴题汇编:几何综合(江苏专版)(解析卷)

2018年全国各地中考数学压轴题汇编:几何综合(江苏专版)(解析卷)

2018年全国各地中考数学压轴题汇编(江苏专版)几何综合参考答案与试题解析一.解答题(共18小题)1.(2018•无锡)如图,四边形ABCD内接于⊙O,AB=17,CD=10,∠A=90°,cosB=,求AD的长.解:∵四边形ABCD内接于⊙O,∠A=90°,∴∠C=180°﹣∠A=90°,∠ABC+∠ADC=180°.作AE⊥BC于E,DF⊥AE于F,则CDFE是矩形,EF=CD=10.在Rt△AEB中,∵∠AEB=90°,AB=17,cos∠ABC=,∴BE=AB•cos∠ABE=,∴AE==,∴AF=AE﹣EF=﹣10=.∵∠ABC+∠ADC=180°,∠CDF=90°,∴∠ABC+∠ADF=90°,∵cos∠ABC=,∴sin∠ADF=cos∠ABC=.在Rt△ADF中,∵∠AFD=90°,sin∠ADF=,∴AD===6.2.(2018•南京)如图,在四边形ABCD中,BC=CD,∠C=2∠BAD.O是四边形ABCD 内一点,且OA=OB=OD.求证:(1)∠BOD=∠C;(2)四边形OBCD是菱形.证明:(1)延长OA到E,∵OA=OB,∴∠ABO=∠BAO,又∠BOE=∠ABO+∠BAO,∴∠BOE=2∠BAO,同理∠DOE=2∠DAO,∴∠BOE+∠DOE=2∠BAO+2∠DAO=2(∠BAO+∠DAO)即∠BOD=2∠BAD,又∠C=2∠BAD,∴∠BOD=∠C;(2)连接OC,∵OB=OD,CB=CD,OC=OC,∴△OBC≌△ODC,∴∠BOC=∠DOC,∠BCO=∠DCO,∵∠BOD=∠BOC+∠DOC,∠BCD=∠BCO+∠DCO,∴∠BOC=∠BOD,∠BCO=∠BCD,又∠BOD=∠BCD,∴∠BOC=∠BCO,∴BO=BC,又OB=OD,BC=CD,∴OB=BC=CD=DO,∴四边形OBCD是菱形.3.(2018•淮安)如图,AB是⊙O的直径,AC是⊙O的切线,切点为A,BC交⊙O于点D,点E是AC的中点.(1)试判断直线DE与⊙O的位置关系,并说明理由;(2)若⊙O的半径为2,∠B=50°,AC=4.8,求图中阴影部分的面积.解:(1)直线DE与⊙O相切.理由如下:连接OE、OD,如图,∵AC是⊙O的切线,∴AB⊥AC,∴∠OAC=90°,∵点E是AC的中点,O点为AB的中点,∴OE∥BC,∴∠1=∠B,∠2=∠3,∵OB=OD,∴∠B=∠3,∴∠1=∠2,,∴△AOE≌△DOE,∴∠ODE=∠OAE=90°,∴OA⊥AE,∴DE为⊙O的切线;(2)∵点E是AC的中点,∴AE=AC=2.4,∵∠AOD=2∠B=2×50°=100°,∴图中阴影部分的面积=2•×2×2.4﹣=4.8﹣π.4.(2018•连云港)如图,矩形ABCD中,E是AD的中点,延长CE,BA交于点F,连接AC,DF.(1)求证:四边形ACDF是平行四边形;(2)当CF平分∠BCD时,写出BC与CD的数量关系,并说明理由.解:(1)∵四边形ABCD是矩形,∴AB∥CD,∴∠FAE=∠CDE,∵E是AD的中点,∴AE=DE,又∵∠FEA=∠CED,∴CD=FA,又∵CD∥AF,∴四边形ACDF是平行四边形;(2)BC=2CD.证明:∵CF平分∠BCD,∴∠DCE=45°,∵∠CDE=90°,∴△CDE是等腰直角三角形,∴CD=DE,∵E是AD的中点,∴AD=2CD,∵AD=BC,∴BC=2CD.5.(2018•南京)如图,在正方形ABCD中,E是AB上一点,连接DE.过点A作AF ⊥DE,垂足为F,⊙O经过点C、D、F,与AD相交于点G.(1)求证:△AFG∽△DFC;(2)若正方形ABCD的边长为4,AE=1,求⊙O的半径.(1)证明:在正方形ABCD中,∠ADC=90°,∴∠CDF+∠ADF=90°,∵AF⊥DE,∴∠AFD=90°,∴∠DAF+∠ADF=90°,∴∠DAF=∠CDF,∵四边形GFCD是⊙O的内接四边形,∴∠FCD+∠DGF=180°,∵∠FGA+∠DGF=180°,∴∠FGA=∠FCD,∴△AFG∽△DFC.(2)解:如图,连接CG.∵∠EAD=∠AFD=90°,∠EDA=∠ADF,∴△EDA∽△ADF,∴=,即=,∵△AFG∽△DFC,∴=,∴=,在正方形ABCD中,DA=DC,∴AG=EA=1,DG=DA﹣AG=4﹣1=3,∴CG==5,∵∠CDG=90°,∴CG是⊙O的直径,∴⊙O的半径为.6.(2018•无锡)如图,矩形ABCD中,AB=m,BC=n,将此矩形绕点B顺时针方向旋转θ(0°<θ<90°)得到矩形A1BC1D1,点A1在边CD上.(1)若m=2,n=1,求在旋转过程中,点D到点D1所经过路径的长度;(2)将矩形A1BC1D1继续绕点B顺时针方向旋转得到矩形A2BC2D2,点D2在BC的延长线上,设边A2B与CD交于点E,若=﹣1,求的值.解:(1)作A1H⊥AB于H,连接BD,BD1,则四边形ADA1H是矩形.∴AD=HA1=n=1,在Rt△A1HB中,∵BA1=BA=m=2,∴BA1=2HA1,∴∠ABA1=30°,∴旋转角为30°,∵BD==,∴D到点D1所经过路径的长度==π.(2)∵△BCE∽△BA2D2,∴==,∴CE=∵=﹣1∴=,∴AC=•,∴BH=AC==•,∴m2﹣n2=6•,∴m4﹣m2n2=6n4,1﹣=6•,∴=(负根已经舍弃).7.(2018•泰州)如图,AB为⊙O的直径,C为⊙O上一点,∠ABC的平分线交⊙O于点D,DE⊥BC于点E.(1)试判断DE与⊙O的位置关系,并说明理由;(2)过点D作DF⊥AB于点F,若BE=3,DF=3,求图中阴影部分的面积.解:(1)DE与⊙O相切,理由:连接DO,∵DO=BO,∴∠ODB=∠OBD,∵∠ABC的平分线交⊙O于点D,∴∠EBD=∠DBO,∴∠EBD=∠BDO,∴DO∥BE,∵DE⊥BC,∴∠DEB=∠EDO=90°,∴DE与⊙O相切;(2)∵∠ABC的平分线交⊙O于点D,DE⊥BE,DF⊥AB,∴DE=DF=3,∴BD==6,∵sin∠DBF==,∴∠DBA=30°,∴∠DOF=60°,∴sin60°===,∴DO=2,则FO=,故图中阴影部分的面积为:﹣××3=2π﹣.8.(2018•扬州)如图,在平行四边形ABCD中,DB=DA,点F是AB的中点,连接DF并延长,交CB的延长线于点E,连接AE.(1)求证:四边形AEBD是菱形;(2)若DC=,tan∠DCB=3,求菱形AEBD的面积.(1)证明:∵四边形ABCD是平行四边形,∴AD∥CE,∴∠DAF=∠EBF,∵∠AFD=∠EFB,AF=FB,∴△AFD≌△BFE,∴AD=EB,∵AD∥EB,∴四边形AEBD是平行四边形,∴四边形AEBD是菱形.(2)解:∵四边形ABCD是平行四边形,∴CD=AB=,AB∥CD,∴∠ABE=∠DCB,∴tan∠ABE=tan∠DCB=3,∵四边形AEBD是菱形,∴AB⊥DE,AF=FB,EF=DF,∴tan∠ABE==3,∵BF=,∴EF=,∴DE=3,=•AB•DE=•3=15.∴S菱形AEBD9.(2018•宿迁)如图,AB、AC分别是⊙O的直径和弦,OD⊥AC于点D.过点A作⊙O的切线与OD的延长线交于点P,PC、AB的延长线交于点F.(1)求证:PC是⊙O的切线;(2)若∠ABC=60°,AB=10,求线段CF的长.解:(1)连接OC,∵OD⊥AC,OD经过圆心O,∴AD=CD,∴PA=PC,在△OAP和△OCP中,∵,∴△OAP≌△OCP(SSS),∴∠OCP=∠OAP∵PA是半⊙O的切线,∴∠OAP=90°.∴∠OCP=90°,即OC⊥PC∴PC是⊙O的切线.(2)∵OB=OC,∠OBC=60°,∴△OBC是等边三角形,∴∠COB=60°,∵AB=10,∴OC=5,由(1)知∠OCF=90°,∴CF=OCtan∠COB=5.10.(2018•淮安)如果三角形的两个内角α与β满足2α+β=90°,那么我们称这样的三角形为“准互余三角形”.(1)若△ABC是“准互余三角形”,∠C>90°,∠A=60°,则∠B=15°;(2)如图①,在Rt△ABC中,∠ACB=90°,AC=4,BC=5.若AD是∠BAC的平分线,不难证明△ABD是“准互余三角形”.试问在边BC上是否存在点E(异于点D),使得△ABE也是“准互余三角形”?若存在,请求出BE的长;若不存在,请说明理由.(3)如图②,在四边形ABCD中,AB=7,CD=12,BD⊥CD,∠ABD=2∠BCD,且△ABC是“准互余三角形”,求对角线AC的长.解:(1)∵△ABC是“准互余三角形”,∠C>90°,∠A=60°,∴2∠B+∠A=60°,解得,∠B=15°,故答案为:15°;(2)如图①中,在Rt△ABC中,∵∠B+∠BAC=90°,∠BAC=2∠BAD,∴∠B+2∠BAD=90°,∴△ABD是“准互余三角形”,∵△ABE也是“准互余三角形”,∴只有2∠A+∠BAE=90°,∵∠A+∠BAE+∠EAC=90°,∴∠CAE=∠B,∵∠C=∠C=90°,∴△CAE∽△CBA,可得CA2=CE•CB,∴CE=,∴BE=5﹣=.(3)如图②中,将△BCD沿BC翻折得到△BCF.∴CF=CD=12,∠BCF=∠BCD,∠CBF=∠CBD,∵∠ABD=2∠BCD,∠BCD+∠CBD=90°,∴∠ABD+∠DBC+∠CBF=180°,∴A、B、F共线,∴∠A+∠ACF=90°∴2∠ACB+∠CAB≠90°,∴只有2∠BAC+∠ACB=90°,∴∠FCB=∠FAC,∵∠F=∠F,∴△FCB∽△FAC,∴CF2=FB•FA,设FB=x,则有:x(x+7)=122,∴x=9或﹣16(舍弃),∴AF=7+9=16,在Rt△ACF中,AC===20.11.(2018•盐城)如图,在以线段AB为直径的⊙O上取一点C,连接AC、BC.将△ABC沿AB翻折后得到△ABD.(1)试说明点D在⊙O上;(2)在线段AD的延长线上取一点E,使AB2=AC•AE.求证:BE为⊙O的切线;(3)在(2)的条件下,分别延长线段AE、CB相交于点F,若BC=2,AC=4,求线段EF的长.解:(1)∵AB为⊙O的直径,∴∠C=90°,∵将△ABC沿AB翻折后得到△ABD,∴△ABC≌△ABD,∴∠ADB=∠C=90°,∴点D在以AB为直径的⊙O上;(2)∵△ABC≌△ABD,∴AC=AD,∵AB2=AC•AE,∴AB2=AD•AE,即=,∵∠BAD=∠EAB,∴△ABD∽△AEB,∴∠ABE=∠ADB=90°,∵AB为⊙O的直径,∴BE是⊙O的切线;(3)∵AD=AC=4、BD=BC=2,∠ADB=90°,∴AB===2,∵=,∴=,解得:DE=1,∴BE==,∵四边形ACBD内接于⊙O,∴∠FBD=∠FAC,即∠FBE+∠DBE=∠BAE+∠BAC,又∵∠DBE+∠ABD=∠BAE+∠ABD=90°,∴∠DBE=∠BAE,∴∠FBE=∠BAC,又∠BAC=∠BAD,∴∠FBE=∠BAD,∴△FBE∽△FAB,∴=,即==,∴FB=2FE,在Rt△ACF中,∵AF2=AC2+CF2,∴(5+EF)2=42+(2+2EF)2,整理,得:3EF2﹣2EF﹣5=0,解得:EF=﹣1(舍)或EF=,∴EF=.12.(2018•扬州)如图,在△ABC中,AB=AC,AO⊥BC于点O,OE⊥AB于点E,以点O为圆心,OE为半径作半圆,交AO于点F.(1)求证:AC是⊙O的切线;(2)若点F是A的中点,OE=3,求图中阴影部分的面积;(3)在(2)的条件下,点P是BC边上的动点,当PE+PF取最小值时,直接写出BP 的长.(1)证明:作OH⊥AC于H,如图,∵AB=AC,AO⊥BC于点O,∴AO平分∠BAC,∵OE⊥AB,OH⊥AC,∴OH=OE,∴AC是⊙O的切线;(2)解:∵点F是AO的中点,∴AO=2OF=3,而OE=3,∴∠OAE=30°,∠AOE=60°,∴AE=OE=3,∴图中阴影部分的面积=S△AOE ﹣S扇形EOF=×3×3﹣=;(3)解:作F点关于BC的对称点F′,连接EF′交BC于P,如图,∵PF=PF′,∴PE+PF=PE+PF′=EF′,此时EP+FP最小,∵OF′=OF=OE,∴∠F′=∠OEF′,而∠AOE=∠F′+∠OEF′=60°,∴∠F′=30°,∴∠F′=∠EAF′,∴EF′=EA=3,即PE+PF最小值为3,在Rt△OPF′中,OP=OF′=,在Rt△ABO中,OB=OA=×6=2,∴BP=2﹣=,即当PE+PF取最小值时,BP的长为.13.(2018•南京)结果如此巧合!下面是小颖对一道题目的解答.题目:如图,Rt△ABC的内切圆与斜边AB相切于点D,AD=3,BD=4,求△ABC的面积.解:设△ABC的内切圆分别与AC、BC相切于点E、F,CE的长为x.根据切线长定理,得AE=AD=3,BF=BD=4,CF=CE=x.根据勾股定理,得(x+3)2+(x+4)2=(3+4)2.整理,得x2+7x=12.=AC•BC所以S△ABC=(x+3)(x+4)=(x2+7x+12)=×(12+12)=12.小颖发现12恰好就是3×4,即△ABC的面积等于AD与BD的积.这仅仅是巧合吗?请你帮她完成下面的探索.已知:△ABC的内切圆与AB相切于点D,AD=m,BD=n.可以一般化吗?(1)若∠C=90°,求证:△ABC的面积等于mn.倒过来思考呢?(2)若AC•BC=2mn,求证∠C=90°.改变一下条件……(3)若∠C=60°,用m、n表示△ABC的面积.解:设△ABC的内切圆分别与AC、BC相切于点E、F,CE的长为x,根据切线长定理,得:AE=AD=m、BF=BD=n、CF=CE=x,(1)如图1,在Rt△ABC中,根据勾股定理,得:(x+m)2+(x+n)2=(m+n)2,整理,得:x2+(m+n)x=mn,=AC•BC所以S△ABC=(x+m)(x+n)= [x2+(m+n)x+mn]=(mn+mn)=mn,(2)由AC•BC=2mn,得:(x+m)(x+n)=2mn,整理,得:x2+(m+n)x=mn,∴AC2+BC2=(x+m)2+(x+n)2=2[x2+(m+n)x]+m2+n2=2mn+m2+n2=(m+n)2=AB2,根据勾股定理逆定理可得∠C=90°;(3)如图2,过点A作AG⊥BC于点G,在Rt△ACG中,AG=AC•sin60°=(x+m),CG=AC•cos60°=(x+m),∴BG=BC﹣CG=(x+n)﹣(x+m),在Rt△ABG中,根据勾股定理可得:[(x+m)]2+[(x+n)﹣(x+m)]2=(m+n)2,整理,得:x2+(m+n)x=3mn,=BC•AG∴S△ABC=×(x+n)•(x+m)= [x2+(m+n)x+mn]=×(3mn+mn)=mn.14.(2018•盐城)【发现】如图①,已知等边△ABC,将直角三角板的60°角顶点D任意放在BC边上(点D不与点B、C重合),使两边分别交线段AB、AC于点E、F.(1)若AB=6,AE=4,BD=2,则CF=4;(2)求证:△EBD∽△DCF.【思考】若将图①中的三角板的顶点D在BC边上移动,保持三角板与边AB、AC的两个交点E、F都存在,连接EF,如图②所示,问:点D是否存在某一位置,使ED平分∠BEF且FD平分∠CFE?若存在,求出的值;若不存在,请说明理由.【探索】如图③,在等腰△ABC中,AB=AC,点O为BC边的中点,将三角形透明纸板的一个顶点放在点O处(其中∠MON=∠B),使两条边分别交边AB、AC于点E、F (点E、F均不与△ABC的顶点重合),连接EF.设∠B=α,则△AEF与△ABC的周长之比为1﹣cosα(用含α的表达式表示).(1)解:∵△ABC是等边三角形,∴AB=BC=AC=6,∠B=∠C=60°.∵AE=4,∴BE=2,则BE=BD,∴△BDE是等边三角形,∴∠BED=60°,又∵∠EDF=60°,∴∠CDF=180°﹣∠EDF﹣∠B=60°,则∠CDF=∠C=60°,∴△CDF是等边三角形,∴CF=CD=BC=BD=6﹣2=4.故答案是:4;(2)证明:如图①,∵∠EDF=60°,∠B=60°,∴∠CDF+BDE=120°,∠BED+∠BDE=120°,∴∠BED=∠CDF.又∠B=∠C=60°,∴△EBD∽△DCF;【思考】存在,如图②,过D作DM⊥BE,DG⊥EF,DN⊥CF,垂足分别是M、G、N,∵ED平分∠BEF且FD平分∠CFE.∴DM=DG=DN.又∠B=∠C=60°,∠BMD=∠CND=90°,∴△BDM≌△CDN,∴BD=CD,即点D是BC的中点,∴=;【探索】如图③,连接AO,作OG⊥BE,OD⊥EF,OH⊥CF,垂足分别是G、D、H.则∠BGO=∠CHO=90°,∵AB=AC,O是BC的中点,∴∠B=∠C,OB=OC,∴△OBG≌△OCH,∴OG=OH,GB=CH,∠BOG=∠COH=90°﹣α,则∠GOH=180°﹣(∠BOG+∠COH)=2α,∴∠EOF=∠B=α则∠GOH=2∠EOF=2α.由(2)题可猜想应用EF=ED+DF=GE+FH(可通过半角旋转证明),AE+EF+AF=AE+EG+FH+AF=AG+AH=2AG,则C△AEF设AB=m,则OB=mcosα,GB=mcos2α.====1﹣cosα.故答案是:1﹣cosα.15.(2018•扬州)问题呈现如图1,在边长为1的正方形网格中,连接格点D,N和E,C,DN和EC相交于点P,求tan∠CPN的值.方法归纳求一个锐角的三角函数值,我们往往需要找出(或构造出)一个直角三角形.观察发现问题中∠CPN不在直角三角形中,我们常常利用网格画平行线等方法解决此类问题,比如连接格点M,N,可得MN∥EC,则∠DNM=∠CPN,连接DM,那么∠CPN就变换到Rt△DMN中.问题解决(1)直接写出图1中tan∠CPN的值为2;(2)如图2,在边长为1的正方形网格中,AN与CM相交于点P,求cos∠CPN的值;思维拓展(3)如图3,AB⊥BC,AB=4BC,点M在AB上,且AM=BC,延长CB到N,使BN=2BC,连接AN交CM的延长线于点P,用上述方法构造网格求∠CPN的度数.解:(1)如图1中,∵EC∥MN,∴∠CPN=∠DNM,∴tan∠CPN=tan∠DNM,∵∠DMN=90°,∴tan∠CPN=tan∠DNM===2,故答案为2.(2)如图2中,取格点D,连接CD,DM.∵CD∥AN,∴∠CPN=∠DCM,∵△DCM是等腰直角三角形,∴∠DCM=∠D=45°,∴cos∠CPN=cos∠DCM=.(3)如图3中,如图取格点M,连接AN、MN.∵PC∥MN,∴∠CPN=∠ANM,∵AM=MN,∠AMN=90°,∴∠ANM=∠MAN=45°,∴∠CPN=45°.16.(2018•泰州)对给定的一张矩形纸片ABCD进行如下操作:先沿CE折叠,使点B 落在CD边上(如图①),再沿CH折叠,这时发现点E恰好与点D重合(如图②)(1)根据以上操作和发现,求的值;(2)将该矩形纸片展开.①如图③,折叠该矩形纸片,使点C与点H重合,折痕与AB相交于点P,再将该矩形纸片展开.求证:∠HPC=90°;②不借助工具,利用图④探索一种新的折叠方法,找出与图③中位置相同的P点,要求只有一条折痕,且点P在折痕上,请简要说明折叠方法.(不需说明理由)解:(1)由图①,可得∠BCE=∠BCD=45°,又∵∠B=90°,∴△BCE是等腰直角三角形,∴=cos45°=,即CE=BC,由图②,可得CE=CD,而AD=BC,∴CD=AD,∴=;(2)①设AD=BC=a,则AB=CD=a,BE=a,∴AE=(﹣1)a,如图③,连接EH,则∠CEH=∠CDH=90°,∵∠BEC=45°,∠A=90°,∴∠AEH=45°=∠AHE,∴AH=AE=(﹣1)a,设AP=x,则BP=a﹣x,由翻折可得,PH=PC,即PH2=PC2,∴AH2+AP2=BP2+BC2,即[(﹣1)a]2+x2=(a﹣x)2+a2,解得x=a,即AP=BC,又∵PH=CP,∠A=∠B=90°,∴Rt△APH≌Rt△BCP(HL),∴∠APH=∠BCP,又∵Rt△BCP中,∠BCP+∠BPC=90°,∴∠APH+∠BPC=90°,∴∠CPH=90°;②折法:如图,由AP=BC=AD,可得△ADP是等腰直角三角形,PD平分∠ADC,故沿着过D的直线翻折,使点A落在CD边上,此时折痕与AB的交点即为P;折法:如图,由∠BCE=∠PCH=45°,可得∠BCP=∠ECH,由∠DCE=∠PCH=45°,可得∠PCE=∠DCH,又∵∠DCH=∠ECH,∴∠BCP=∠PCE,即CP平分∠BCE,故沿着过点C的直线折叠,使点B落在CE上,此时,折痕与AB的交点即为P.17.(2018•宿迁)如图,在边长为1的正方形ABCD中,动点E、F分别在边AB、CD 上,将正方形ABCD沿直线EF折叠,使点B的对应点M始终落在边AD上(点M不与点A、D重合),点C落在点N处,MN与CD交于点P,设BE=x.(1)当AM=时,求x的值;(2)随着点M在边AD上位置的变化,△PDM的周长是否发生变化?如变化,请说明理由;如不变,请求出该定值;(3)设四边形BEFC的面积为S,求S与x之间的函数表达式,并求出S的最小值.解:(1)如图,在Rt△AEM中,AE=1﹣x,EM=BE=x,AM=,∵AE2+AM2=EM2,∴(1﹣x)2+()2=x2,∴x=.(2)△PDM的周长不变,为2.理由:设AM=y,则BE=EM=x,MD=1﹣y,在Rt△AEM中,由勾股定理得AE2+AM2=EM2,(1﹣x)2+y2=x2,解得1+y2=2x,∴1﹣y2=2(1﹣x)∵∠EMP=90°,∠A=∠D,∴Rt△AEM∽Rt△DMP,∴=,即=,解得DM+MP+DP==2.∴△DMP的周长为2.(3)作FH⊥AB于H.则四边形BCFH是矩形.连接BM交FN于O,交FH于K.在Rt△AEM中,AM==,∵B、M关于EF对称,∴BM⊥EF,∴∠KOF=∠KHB,∵∠OKF=∠BKH,∴∠KFO=∠KBH,∵AB=BC=FH,∠A=∠FHE=90°,∴△ABM≌△HFE,∴EH=AM=,∴CF=BH=x﹣,∴S=(BE+CF)•BC=(x+x﹣)= [()2﹣+1]=(﹣)2+.当=时,S有最小值=.18.(2018•连云港)在数学兴趣小组活动中,小亮进行数学探究活动.△ABC是边长为2的等边三角形,E是AC上一点,小亮以BE为边向BE的右侧作等边三角形BEF,连接CF.(1)如图1,当点E在线段AC上时,EF、BC相交于点D,小亮发现有两个三角形全等,请你找出来,并证明.(2)当点E在线段上运动时,点F也随着运动,若四边形ABFC的面积为,求AE 的长.(3)如图2,当点E在AC的延长线上运动时,CF、BE相交于点D,请你探求△ECD的面积S 1与△DBF 的面积S 2之间的数量关系.并说明理由. (4)如图2,当△ECD 的面积S 1=时,求AE 的长.解:(1)结论:△ABE ≌△CBF . 理由:如图1中,∴∵△ABC ,△BEF 都是等边三角形, ∴BA=BC ,BE=BF ,∠ABC=∠EBF , ∴∠ABE=∠CBF ,∴△ABE ≌△CBF .(2)如图1中,∵△ABE ≌△CBF , ∴S △ABE =S △BCF ,∴S 四边形BECF =S △BEC +s △BCF =S △BCE +S △ABE =S △ABC =, ∵S 四边形ABCF =, ∴S △ABE =, ∴•AE•AB•siin60°=, ∴AE=.(3)结论:S 2﹣S 1=.理由:如图2中,∵△ABC ,△BEF 都是等边三角形, ∴BA=BC ,BE=BF ,∠ABC=∠EBF , ∴∠ABE=∠CBF ,∴△ABE ≌△CBF ,∴S △ABE =S △BCF ,∵S △BCF ﹣S △BCE =S 2﹣S 1,∴S 2﹣S 1=S △ABE ﹣S △BCE =S △ABC =.(4)由(3)可知:S △BDF ﹣S △ECD =,∵S △ECD =, ∴S △BDF =,∵△ABE ≌△CBF ,∴AE=CF ,∠BAE=∠BCF=60°, ∴∠ABC=∠DCB ,∴CF ∥AB ,则△BDF 的BF 边上的高为,可得DF=,设CE=x ,则2+x=CD +DF=CD +,∴CD=x ﹣,∵CD ∥AB , ∴=,即=, 化简得:3x 2﹣x ﹣2=0,解得x=1或﹣(舍弃),∴CE=1,AE=3.。

人教版八下数学4.2 三角形(第01期)-2018年中考数学试题分项版解析汇编(解析版)

人教版八下数学4.2 三角形(第01期)-2018年中考数学试题分项版解析汇编(解析版)

一、单选题1.如图,AD,CE分别是△ABC的中线和角平分线.若AB=AC,∠CAD=20°,则∠ACE的度数是()A. 20°B. 35°C. 40°D. 70°【来源】浙江省湖州市2018年中考数学试题【答案】B点睛:本题考查了等腰三角形的两个底角相等的性质,等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合的性质,三角形内角和定理以及角平分线定义,求出∠ACB=70°是解题的关键.2.如图,已知在△ABC中,∠BAC>90°,点D为BC的中点,点E在AC上,将△CDE沿DE折叠,使得点C恰好落在BA的延长线上的点F处,连结AD,则下列结论不一定正确的是()A. AE=EFB. AB=2DEC. △ADF和△ADE的面积相等D. △ADE和△FDE的面积相等【来源】浙江省湖州市2018年中考数学试题【答案】C【解析】分析:先判断出△BFC是直角三角形,再利用三角形的外角判断出A正确,进而判断出AE=CE,得出CE是△ABC的中位线判断出B正确,利用等式的性质判断出D正确.详解:如图,连接CF,由折叠知,EF=CE,∴AE=CE,∵BD=CD,∴DE是△ABC的中位线,∴AB=2DE,故B正确,∵AE=CE,∴S△ADE=S△CDE,由折叠知,△CDE≌△△FDE,∴S△CDE=S△FDE,∴S△ADE=S△FDE,故D正确,∴C选项不正确,故选:C.点睛:此题主要考查了折叠的性质,直角三角形的判定和性质,三角形的中位线定理,作出辅助线是解本题的关键.学科*网3.我国古代伟大的数学家刘徽将勾股形(古人称直角三角形为勾股形)分割成一个正方形和两对全等的直角三角形,得到一个恒等式.后人借助这种分割方法所得的图形证明了勾股定理,如图所示的矩形由两个这样的图形拼成,若a=3,b=4,则该矩形的面积为()A. 20B. 24C.D.【来源】浙江省温州市2018年中考数学试卷【答案】B点睛: 本题考查了勾股定理的证明以及运用和一元二次方程的运用,求出小正方形的边长是解题的关键. 4.如图,在Rt△ABC中,CM平分∠ACB交AB于点M,过点M作MN∥BC交AC于点N,且MN平分∠AMC,若AN=1,则BC的长为()A. 4B. 6C.D. 8【来源】山东省淄博市2018年中考数学试题【答案】B【解析】分析:根据题意,可以求得∠B的度数,然后根据解直角三角形的知识可以求得NC的长,从而可以求得BC的长.点睛:本题考查30°角的直角三角形、平行线的性质、等腰三角形的判定与性质,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.5.如图,已知,添加以下条件,不能判定的是()A. B. C. D.【来源】四川省成都市2018年中考数学试题【答案】C点睛:本题考查了全等三角形的性质和判定,等腰三角形的性质的应用,能正确根据全等三角形的判定定理进行推理是解此题的关键,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS.6.如图,木工师傅在板材边角处作直角时,往往使用“三弧法”,其作法是:(1)作线段,分别以为圆心,以长为半径作弧,两弧的交点为;(2)以为圆心,仍以长为半径作弧交的延长线于点;(3)连接下列说法不正确的是( )A. B.C. 点是的外心D.【来源】山东省潍坊市2018年中考数学试题【答案】D【解析】分析:根据等边三角形的判定方法,直角三角形的判定方法以及等边三角形的性质,直角三角形的性质一一判断即可;详解:由作图可知:AC=AB=BC,∴△ABC是等边三角形,由作图可知:CB=CA=CD,∴点C是△ABD的外心,∠ABD=90°,BD=AB,∴S△ABD=AB2,∵AC=CD,∴S△BDC=AB2,故A、B、C正确,故选D.点睛:本题考查作图-基本作图,线段的垂直平分线的性质,三角形的外心等知识,直角三角形等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.7.如图,点,分别在线段,上,与相交于点,已知,现添加以下哪个条件仍不能...判定..()A. B. C. D.【来源】贵州省安顺市2018年中考数学试题【答案】D点睛:此题主要考查学生对全等三角形判定定理的理解和掌握,此类添加条件题,要求学生应熟练掌握全等三角形的判定定理.8.已知,用尺规作图的方法在上确定一点,使,则符合要求的作图痕迹是()A. B.C. D.【来源】贵州省安顺市2018年中考数学试题【答案】D点睛:本题主要考查了作图知识,解题的关键是根据中垂线的性质得出PA=PB.9.在直角三角形中,若勾为3,股为4,则弦为()A. 5B. 6C. 7D. 8【来源】山东省滨州市2018年中考数学试题【答案】A【解析】分析:直接根据勾股定理求解即可.详解:∵在直角三角形中,勾为3,股为4,∴弦为故选A.点睛:本题考查了勾股定理:在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方.10.在中,,于,平分交于,则下列结论一定成立的是()A. B. C. D.【来源】江苏省扬州市2018年中考数学试题【答案】C【解析】分析:根据同角的余角相等可得出∠BCD=∠A,根据角平分线的定义可得出∠ACE=∠DCE,再结合∠BEC=∠A+∠ACE、∠BCE=∠BCD+∠DCE即可得出∠BEC=∠BCE,利用等角对等边即可得出BC=BE,此题得解.点睛:本题考查了直角三角形的性质、三角形外角的性质、余角、角平分线的定义以及等腰三角形的判定,通过角的计算找出∠BEC=∠BCE是解题的关键.11.如图,,且.、是上两点,,.若,,,则的长为()A. B. C. D.【来源】江苏省南京市2018年中考数学试卷【答案】D【解析】分析:详解:如图,点睛:本题主要考查全等三角形的判定与性质,证明△ABF≌△CDE是关键.学科*网12.如图,将一张含有角的三角形纸片的两个顶点叠放在矩形的两条对边上,若,则的大小为()A. B. C. D.【来源】山东省泰安市2018年中考数学试题【答案】A详解:如图,∵矩形的对边平行,∴∠2=∠3=44°,根据三角形外角性质,可得:∠3=∠1+30°,∴∠1=44°﹣30°=14°.故选A.点睛:本题主要考查了平行线的性质以及三角形外角性质的运用,解题时注意:两直线平行,同位角相等.二、解答题13.如图,AB∥CD,E、F分别为AB、CD上的点,且EC∥BF,连接AD,分别与EC、BF相交与点G、H,若AB=CD,求证:AG=DH.【来源】陕西省2018年中考数学试题【答案】证明见解析.【解析】【分析】利用AAS先证明∆ABH≌∆DCG,根据全等三角形的性质可得AH=DG,再根据AH=AG+GH,DG=DH+GH即可证得AG=HD.【点睛】本题考查了全等三角形的判定与性质,熟练掌握全等三角形的判定与性质是解题的关键.14.如图,中,,小聪同学利用直尺和圆规完成了如下操作:①作的平分线交于点;②作边的垂直平分线,与相交于点;③连接,.请你观察图形解答下列问题:(1)线段,,之间的数量关系是________;(2)若,求的度数.【来源】湖北省孝感市2018年中考数学试题【答案】(1);(2)80°.【解析】分析:(1)根据线段的垂直平分线的性质可得:PA=PB=PC;(2)根据等腰三角形的性质得:∠ABC=∠ACB=70°,由三角形的内角和得:∠BAC=180°-2×70°=40°,由角平分线定义得:∠BAD=∠CAD=20°,最后利用三角形外角的性质可得结论.详解:(1)如图,PA=PB=PC,理由是:∵AB=AC,AM平分∠BAC,∴AD是BC的垂直平分线,∴PB=PC,∵EP是AB的垂直平分线,∴PA=PB,∴PA=PB=PC;故答案为:PA=PB=PC;点睛:本题考查了角平分线和线段垂直平分线的基本作图、等腰三角形的三线合一的性质、三角形的外角性质、线段的垂直平分线的性质,熟练掌握线段的垂直平分线的性质是关键.15.已知:如图,△ABC是任意一个三角形,求证:∠A+∠B+∠C=180°.【来源】山东省淄博市2018年中考数学试题【答案】证明见解析【解析】分析:过点A作EF∥BC,利用E F∥BC,可得∠1=∠B,∠2=∠C,而∠1+∠2+∠BAC=180°,利用等量代换可证∠BAC+∠B+∠C=180°.详解:证明:过点A作EF∥BC,点睛:本题考查了三角形的内角和定理的证明,作辅助线把三角形的三个内角转化到一个平角上是解题的关键.16.(1)操作发现:如图①,小明画了一个等腰三角形ABC,其中AB=AC,在△ABC的外侧分别以AB,AC为腰作了两个等腰直角三角形ABD,ACE,分别取BD,CE,BC的中点M,N,G,连接GM,GN.小明发现了:线段GM与GN的数量关系是__________;位置关系是__________.(2)类比思考:如图②,小明在此基础上进行了深入思考.把等腰三角形ABC换为一般的锐角三角形,其中AB>AC,其它条件不变,小明发现的上述结论还成立吗?请说明理由.(3)深入研究:如图③,小明在(2)的基础上,又作了进一步的探究.向△ABC的内侧分别作等腰直角三角形ABD,ACE,其它条件不变,试判断△GMN的形状,并给与证明.【来源】山东省淄博市2018年中考数学试题【答案】(1)MG=NG;MG⊥NG;(2)成立,MG=NG,MG⊥NG;(3)答案见解析【解析】分析:(1)利用SAS判断出△ACD≌△AEB,得出CD=BE,∠ADC=∠ABE,进而判断出∠BDC+∠DBH=90°,即:∠BHD=90°,最后用三角形中位线定理即可得出结论;(2)同(1)的方法即可得出结论;(3)同(1)的方法得出MG=NG,最后利用三角形中位线定理和等量代换即可得出结论.详解:(1)连接BE,CD相较于H,如图1,(2)连接CD,BE,相较于H,如图2,同(1)的方法得,MG=NG,MG⊥NG;(3)连接EB,DC,延长线相交于H,如图3.点睛:此题是三角形综合题,主要考查等腰直角三角形的性质,全等三角形的判定和性质,平行线的判定和性质,三角形的中位线定理,正确作出辅助线用类比的思想解决问题是解本题的关键.学科*网17.如图,D是△ABC的BC边上一点,连接AD,作△ABD的外接圆,将△ADC沿直线AD折叠,点C的对应点E落在上.(1)求证:AE=AB;(2)若∠CAB=90°,cos∠ADB=,BE=2,求BC的长.【来源】浙江省温州市2018年中考数学试卷【答案】(1)证明见解析;(2)BC=【解析】分析: (1)由翻折的性质得出△ADE≌△ADC,根据全等三角形对应角相等,对应边相等得出∠AED=∠ACD,AE=AC,根据同弧所对的圆周角相等得出∠ABD=∠AED,根据等量代换得出∠ABD=∠ACD,根据等角对等边得出AB=AC,从而得出结论;(2)如图,过点A作AH⊥BE于点H,根据等腰三角形的三线合一得出BH=EH=1,根据等腰三角形的性质及圆周角定理得出∠ABE=∠AEB=ADB,根据等角的同名三角函数值相等及余弦函数的定义得出BH∶AB = 1∶3,从而得出AC=AB=3,在Rt三角形ABC中,利用勾股定理得出BC的长.(2)解:如图,过点A作AH⊥BE于点H∵AB=AE,BE=2∴BH=EH=1∵∠ABE=∠AEB=ADB,cos∠ADB=∴cos∠ABE=cos∠ADB=∴=∴AC=AB=3∵∠BAC=90°,AC=AB∴BC=点睛: 本题主要考查三角形的外接圆,解题的关键是掌握折叠的性质、圆周角定理、等腰三角形的性质及三角函数的应用等知识点.18.如图,在四边形ABCD中,E是AB的中点,AD//EC,∠AED=∠B.(1)求证:△AED≌△EBC;(2)当AB=6时,求CD的长.【来源】浙江省温州市2018年中考数学试卷【答案】(1)证明见解析;(2)CD =3【解析】分析: (1)根据二直线平行同位角相等得出∠A=∠BEC,根据中点的定义得出AE=BE,然后由ASA判断出△AED≌△EBC;(2)根据全等三角形对应边相等得出AD=EC,然后根据一组对边平行且相等的四边形是平行四边形得出四边形AECD是平行四边形,根据平行四边形的对边相等得出答案.(2)解:∵△AED≌△EBC∴AD=EC∵AD∥EC∴四边形AECD是平行四边形∴CD=AE∵AB=6∴CD= AB=3点睛: 本题考查全等三角形的判定和性质、平行四边形的判定和性质等知识,解题的关键是正确寻找全等三角形解决问题,属于中考常考题型.19.如图,已知∠1=∠2,∠B=∠D,求证:CB=CD.【来源】四川省宜宾市2018年中考数学试题【答案】证明见解析.【解析】分析:由全等三角形的判定定理AAS证得△ABC≌△ADC,则其对应边相等.详解:证明:如图,点睛:考查了全等三角形的判定与性质.在应用全等三角形的判定时,要注意三角形间的公共边和公共角,必要时添加适当辅助线构造三角形.20.如图,在四边形中,∥,=2,为的中点,请仅用无刻度的直尺......分别按下列要求画图(保留作图痕迹)(1)在图1中,画出△ABD的BD边上的中线;(2)在图2中,若BA=BD, 画出△ABD的AD边上的高 .【来源】江西省2018年中等学校招生考试数学试题【答案】(1)作图见解析;(2)作图见解析.【详解】(1)如图AF是△ABD的BD边上的中线;(2)如图AH是△ABD的AD边上的高.【点睛】本题考查了利用无刻度的直尺......按要求作图,结合题意认真分析图形的成因是解题的关键.21.在菱形中,,点是射线上一动点,以为边向右侧作等边,点的位置随点的位置变化而变化.(1)如图1,当点在菱形内部或边上时,连接,与的数量关系是,与的位置关系是;(2)当点在菱形外部时,(1)中的结论是否还成立?若成立,请予以证明;若不成立,请说明理由(选择图2,图3中的一种情况予以证明或说理).(3) 如图4,当点在线段的延长线上时,连接,若,,求四边形的面积.【来源】江西省2018年中等学校招生考试数学试题【答案】(1)BP=CE;CE⊥AD;(2)成立,理由见解析;(3) .【详解】(1)①BP=CE,理由如下:连接AC,∵菱形ABCD,∠ABC=60°,∴△ABC是等边三角形,∴AB=AC,∠BAC=60°,∵△APE是等边三角形,∴AP=AE ,∠PAE=60°,∴∠BAP=∠CAE,∴△ABP≌△ACE,∴BP=CE;(2)(1)中的结论:BP=CE,CE⊥AD 仍然成立,理由如下:连接 AC, ∵菱形 ABCD,∠ABC=60°, ∴△ABC 和△ACD 都是等边三角形, ∴AB=AC,∠BAD=120° , ∠BAP=120°+∠DAP, ∵△APE 是等边三角形, ∴AP=AE , ∠PAE=60°,∴∠CAE=60°+60°+∠DAP=120°+∠DAP,∴∠BAP=∠CAE,∴△ABP≌△ACE,∴BP=CE,,∴∠DCE=30° ,∵∠ADC=60°,∴∠DCE+∠ADC=90°, ∴∠CHD=90°,∴CE⊥AD,∴(1)中的结论:BP=CE,CE⊥AD 仍然成立;(3) 连接 AC 交 BD 于点 O,CE,作 EH⊥AP 于 H,由(2)知 BP=CE=8,∴DP=2,∴OP=5,∴,∵△APE 是等边三角形,∴,,∵,∴,= = =,∴四边形 ADPE 的面积是 .【点睛】本题考查了菱形的性质,全等三角形的判定与性质,等边三角形判定与性质等,熟练掌握相关知识,正确添加辅助线是解题的关键. 学科*网22.已知:在 中,, 为 的中点,,,垂足分别为点 ,且.求证: 是等边三角形.【来源】浙江省嘉兴市 2018 年中考数学试题 【答案】证明见解析.点睛:本题考查了等边三角形的判定、等腰三角形的性质以及直角三角形全等的判定与性质.解题的关键 是证明∠A=∠C. 23.如图,⊙O 为锐角△ABC 的外接圆,半径为 5. (1)用尺规作图作出∠BAC 的平分线,并标出它与劣弧 BC 的交点 E(保留作图痕迹,不写作法); (2)若(1)中的点 E 到弦 BC 的距离为 3,求弦 CE 的长.【来源】安徽省 2018 年中考数学试题 【答案】(1)画图见解析;(2)CE=【详解】(1)如图所示,射线 AE 就是所求作的角平分线;(2)连接 OE 交 BC 于点 F,连接 OC、CE, ∵AE 平分∠BAC,∴,∴OE⊥BC,EF=3,∴OF=5-3=2,在 Rt△OFC 中,由勾股定理可得 FC==,在 Rt△EFC 中,由勾股定理可得 CE==.【点睛】本题考查了尺规作图——作角平分线,垂径定理等,熟练掌握角平分线的作图方法、推导得出OE⊥BC 是解题的关键.24.如图 1,Rt△ABC 中,∠ACB=90°,点 D 为边 AC 上一点,DE⊥AB 于点 E,点 M 为 BD 中点,CM的延长线交 AB 于点 F.(1)求证:CM=EM; (2)若∠BAC=50°,求∠EMF 的大小; (3)如图 2,若△DAE≌△CEM,点 N 为 CM 的中点,求证:AN∥EM.【来源】安徽省 2018 年中考数学试题 【答案】(1)证明见解析;(2)∠EMF=100°;(3)证明见解析.【详解】(1)∵M 为 BD 中点, Rt△DCB 中,MC= BD, Rt△DEB 中,EM= BD, ∴MC=ME; (2)∵∠BAC=50°,∠ACB=90°, ∴∠ABC=90°-50°=40°, ∵CM=MB, ∴∠MCB=∠CBM, ∴∠CMD=∠MCB+∠CBM=2∠CBM, 同理,∠DME=2∠EBM, ∴∠CME=2∠CBA=80°, ∴∠EMF=180°-80°=100°; (3)∵△DAE≌△CEM,CM=EM,∴AE=EM,DE=CM,∠CME=∠DEA=90°,∠ECM=∠ADE, ∵CM=EM,∴AE=ED,∴∠DAE=∠ADE=45°, ∴∠ABC=45°,∠ECM=45°, 又∵CM=ME= BD=DM, ∴DE=EM=DM, ∴△DEM 是等边三角形, ∴∠EDM=60°, ∴∠MBE=30°, ∵CM=BM,∴∠BCM=∠CBM, ∵∠MCB+∠ACE=45°, ∠CBM+∠MBE=45°, ∴∠ACE=∠MBE=30°, ∴∠ACM=∠ACE+∠ECM=75°,∵CM⊥EM, ∴AN∥CM.【点睛】本题考查了三角形全等的性质、直角三角形斜边中线的性质、等腰三角形的判定与性质、三角形 外角的性质等,综合性较强,正确添加辅助线、灵活应用相关知识是解题的关键.25.数学课上,张老师举了下面的例题:例 1 等腰三角形 中,,求 的度数.(答案: )例 2 等腰三角形 中,,求 的度数.(答案: 或 或 )张老师启发同学们进行变式,小敏编了如下一题:变式 等腰三角形 中,,求 的度数.(1)请你解答以上的变式题.(2)解(1)后,小敏发现, 的度数不同,得到 的度数的个数也可能不同.如果在等腰三角形中,设,当 有三个不同的度数时,请你探索 的取值范围.【来源】2018 年浙江省绍兴市中考数学试卷解析【答案】(1)或 或 ;(2)当且, 有三个不同的度数.【解析】【分析】(1)分 为顶角和 为底角,两种情况进行讨论.(2)分①当时,②当时,两种情况进行讨论.【点评】考查了等腰三角形的性质,注意分类讨论思想在数学中的应用.三、填空题26.在中,__________., 平分 , 平分 ,相交于点 ,且,则【来源】广东省深圳市 2018 年中考数学试题 【答案】【详解】如图,∵AD、BE 分别平分∠CAB 和∠CBA, ∴∠1=∠2,∠3=∠4, ∵∠C=90°,∴∠2+∠3=45°,∴∠AFE=45°, 过 E 作 EG⊥AD,垂足为 G,在 Rt△EFG 中,∠EFG=45°,EF= ,∴EG=FG=1,在 Rt△AEG 中,AG=AF-FG=4-1=3,∴AE=,过 F 分别作 FH⊥AC 垂足为 H, FM⊥BC 垂足为 M,FN⊥AB 垂足为 N,易得 CH=FH,设 EH=a,则 FH2=EF2-EH2=2-a2,在 Rt△AHF 中,AH2+HF2=AF2,即+2-a2=16,∴a= , ∴CH=FH= , ∴AC=AE+EH+HC= ,故答案为: .【点睛】本题考查了角平分线的性质,勾股定理的应用等,综合性质较强,正确添加辅助线是解题的关键.27.如图,四边形 ACDF 是正方形,和都是直角,且点 三点共线,,则阴影部分的面积是__________.【来源】广东省深圳市 2018 年中考数学试题 【答案】8 【解析】【分析】证明△AEC≌△FBA,根据全等三角形对应边相等可得 EC=AB=4,然后再利用三角形面积 公式进行求解即可.【点睛】本题考查了正方形的性质、全等三角形的判定与性质,三角形面积等,求出 CE=AB 是解题的关键.28.等腰三角形的一个底角为 ,则它的顶角的度数为__________. 【来源】四川省成都市 2018 年中考数学试题 【答案】点睛:本题考查等腰三角形的性质,即等边对等角.找出角之间的关系利用三角形内角和求角度是解答本题的关键.学科*网29.如图,在每个小正方形的边长为 1 的网格中,的顶点 , , 均在格点上.(1) 的大小为__________(度); (2)在如图所示的网格中, 是 边上任意一点. 为中心,取旋转角等于 ,把点 逆时针旋转,点 的对应点为 .当 最短时,请用无.刻.度.的直尺,画出点 ,并简要说明点 的位置是如何找到的(不要求 证明)__________. 【来源】天津市 2018 年中考数学试题 【答案】 ; 见解析 【解析】分析:(1)利用勾股定理即可解决问题; (2)如图,取格点 , ,连接 交 于点 ;取格点 , ,连接 交 延长线于点 ;取格点 ,连接 交 延长线于点 ,则点 即为所求. 详解:(1)∵每个小正方形的边长为 1,∴AC=,BC=,AB=,(2)如图,即为所求.点睛:本题考查作图-应用与设计、勾股定理等知识,解题的关键是利用数形结合的思想解决问题,学会用转化的思想思考问题.30.如图,在边长为4的等边中,,分别为,的中点,于点,为的中点,连接,则的长为__________.【来源】天津市2018年中考数学试题【答案】【解析】分析:连接DE,根据题意可得ΔDEG是直角三角形,然后根据勾股定理即可求解DG的长.详解:连接DE,点睛:本题主要考查了等边三角形的性质,勾股定理以及三角形中位线性质定理,记住和熟练运用性质是解题的关键.31.如图,△ABC的两条高AD,BE相交于点F,请添加一个条件,使得△ADC≌△BEC(不添加其他字母及辅助线),你添加的条件是_____.【来源】浙江省金华市2018年中考数学试题【答案】AC=BC.【解析】分析:添加AC=BC,根据三角形高的定义可得∠ADC=∠BEC=90°,再证明∠EBC=∠DAC,然后再添加AC=BC可利用AAS判定△ADC≌△BEC.点睛:此题主要考查了三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.学科*网32.在△ABC中,若∠A=30°,∠B=50°,则∠C=__________.【来源】山东省滨州市2018年中考数学试题【答案】100°【解析】分析:直接利用三角形内角和定理进而得出答案.详解:∵在△ABC中,∠A=30°,∠B=50°,∴∠C=180°﹣30°﹣50°=100°.故答案为:100°点睛:此题主要考查了三角形内角和定理,正确把握定义是解题关键.33.如图,在中,用直尺和圆规作、的垂直平分线,分别交、于点、,连接.若,则__________.【来源】江苏省南京市2018年中考数学试卷【答案】点睛:本题考查了三角形的中位线定理,属于基础题,解答本题的关键是掌握三角形的中位线定理. 34.如图,五边形是正五边形,若,则__________.【来源】江苏省南京市2018年中考数学试卷【答案】72【解析】分析:延长AB交于点F,根据得到∠2=∠3,根据五边形是正五边形得到∠FBC=72°,最后根据三角形的外角等于与它不相邻的两个内角的和即可求出.详解:延长AB交于点F,∵,∴∠2=∠3,∵五边形是正五边形,∴∠ABC=108°,∴∠FBC=72°,∠1-∠2=∠1-∠3=∠FBC=72°故答案为:72°.点睛:此题主要考查了平行线的性质和正五边形的性质,正确把握五边形的性质是解题关键.35.如图,为的平分线.,..则点到射线的距离为__________.【来源】山东省德州市2018年中考数学试题【答案】3点睛:本题主要考查了角平分线的性质,关键是掌握角的平分线上的点到角的两边的距离相等.36.等腰三角形中,顶角为,点在以为圆心,长为半径的圆上,且,则的度数为__________.【来源】2018年浙江省绍兴市中考数学试卷解析【答案】或【解析】【分析】画出示意图,分两种情况进行讨论即可.【解答】如图:分两种情况进行讨论.【点评】考查全等三角形的判定与性质,等腰三角形的性质等,注意分类讨论思想在数学中的应用. 37.在每个小正方形的边长为1的网格图形中,每个小正方形的顶点称为格点.以顶点都是格点的正方形ABCD的边为斜边,向内作四个全等的直角三角形,使四个直角顶点E,F,G,H都是格点,且四边形EFGH 为正方形,我们把这样的图形称为格点弦图.例如,在如图1所示的格点弦图中,正方形ABCD的边长为,此时正方形EFGH的而积为5.问:当格点弦图中的正方形ABCD的边长为时,正方形EFGH的面积的所有可能值是_____(不包括5).【来源】浙江省湖州市2018年中考数学试题【答案】9或13或49.点睛:本题考查作图-应用与设计、勾股定理等知识,解题的关键是学会利用数形结合的思想解决问题,属于中考填空题中的压轴题.学科*网。

(完整)江苏省2018年中考数学难题

(完整)江苏省2018年中考数学难题

1.(2018•无锡)如图,已知点E是矩形ABCD的对角线AC上的一动点,正方形EFGH的顶点G、H都在边AD上,若AB=3,BC=4,则tan∠AFE的值()3A.等于73B.等于33C.等于4D.随点E位置的变化而变化2.(2018•无锡)如图是一个沿3×3正方形方格纸的对角线AB剪下的图形,一质点P由A点出发,沿格点线每次向右或向上运动1个单位长度,则点P由A点运动到B点的不同路径共有()A.4条 B.5条 C.6条 D.7条3.(2018•常州)某数学研究性学习小组制作了如下的三角函数计算图尺:在半径为1的半圆形量角器中,画一个直径为1的圆,把刻度尺CA的0刻度固定在半圆的圆心O处,刻度尺可以绕点O 旋转.从图中所示的图尺可读出sin∠AOB 的值是( )A. 85B.87C.107D.544.(2018•苏州)如图,矩形ABCD 的顶点A ,B 在x 轴的正半轴上,反比例函数y=xk 在第一象限内的图象经过点D ,交BC 于点E .若AB=4,CE=2BE ,tan∠AOD=43,则k 的值为( ) A .3 B 。

32C .6D .125.(2018•连云港)如图,菱形ABCD 的两个顶点B 、D 在反比例函数y=xk 的图象上,对角线AC 与BD 的交点恰好是坐标原点O ,已知点A (1,1),∠ABC=60°,则k 的值是( ) A .—5 B .-4 C .-3 D .-26.(2018•扬州)如图,点A在线段BD上,在BD的同侧作等腰Rt△ABC和等腰Rt△ADE,CD 与BE、AE分别交于点P,M.对于下列结论:①△BAE∽△CAD;②MP•MD=MA•ME;③2CB2=CP•CM.其中正确的是()A.①②③ B.① C.①② D.②③7.(2018•泰州)如图,平面直角坐标系xOy中,点A的坐标为(9,6),AB⊥y轴,垂足为B,点P从原点O出发向x轴正方向运动,同时,点Q从点A出发向点B运动,当点Q到达点B时,点P、Q同时停止运动,若点P与点Q的速度之比为1:2,则下列说法正确的是()A.线段PQ始终经过点(2,3)B.线段PQ始终经过点(3,2)C.线段PQ始终经过点(2,2)D.线段PQ不可能始终经过某一定点8.(2018•南京)如图,在矩形ABCD中,AB=5,BC=4,以CD为直径作⊙O.将矩形ABCD绕点C 旋转,使所得矩形A′B′C′D′的边A′B′与⊙O相切,切点为E,边CD′与⊙O相交于点F,则CF的长为.9.(2018•无锡)如图,已知∠XOY=60°,点A在边OX上,OA=2.过点A作AC⊥OY于点C,以AC为一边在∠XOY内作等边三角形ABC,点P是△ABC围成的区域(包括各边)内的一点,过点P 作PD∥OY交OX于点D,作PE∥OX交OY于点E.设OD=a,OE=b,则a+2b的取值范围是.10.(2018•常州)如图,在△ABC纸板中,AC=4,BC=2,AB=5,P是AC上一点,过点P沿直线剪下一个与△ABC相似的小三角形纸板,如果有4种不同的剪法,那么AP长的取值范围是.11.(2018•苏州)如图,已知AB=8,P为线段AB上的一个动点,分别以AP,PB为边在AB的同侧作菱形APCD和菱形PBFE,点P,C,E在一条直线上,∠DAP=60°.M,N分别是对角线AC,BE的中点.当点P在线段AB上移动时,点M,N之间的距离最短为(结果留根号).12.(2018•连云港)如图,E、F,G、H分别为矩形ABCD的边AB、BC、CD、DA的中点,连接AC、HE、EC,GA,GF.已知AG⊥GF,AC=6,则AB的长为.13.(2018•淮安)如图,在平面直角坐标系中,直线l 为正比例函数y=x 的图象,点A 1的坐标为(1,0),过点A 1作x 轴的垂线交直线l 于点D 1,以A 1D 1为边作正方形A 1B 1C 1D 1;过点C 1作直线l 的垂线,垂足为A 2,交x 轴于点B 2,以A 2B 2为边作正方形A 2B 2C 2D 2;过点C 2作x 轴的垂线,垂足为A 3,交直线l 于点D 3,以A 3D 3为边作正方形A 3B 3C 3D 3,…,按此规律操作下所得到的正方形A n B n C n D n 的面积是 .14.(2018•盐城)如图,在直角△ABC 中,∠C=90°,AC=6,BC=8,P 、Q 分别为边BC 、AB 上的两个动点,若要使△APQ 是等腰三角形且△BPQ 是直角三角形,则AQ= .15.(2018•扬州)如图,在等腰Rt△ABO,∠A=90°,点B 的坐标为(0,2),若直线l :y=mx+m (m≠0)把△ABO 分成面积相等的两部分,则m 的值为 .16.(2018•泰州)如图,△ABC 中,∠ACB=90°,sinA=135,AC=12,将△ABC 绕点C 顺时针旋转90°得到△A'B'C,P 为线段A′B'上的动点,以点P 为圆心,PA′长为半径作⊙P,当⊙P 与△ABC 的边相切时,⊙P 的半径为 .17.(2018•宿迁)如图,将含有30°角的直角三角板ABC 放入平面直角坐标系,顶点A 、B 分别落在x 、y 轴的正半轴上,∠OAB=60°,点A 的坐标为(1,0).将三角板ABC 沿x 轴向右作无滑动的滚动(先绕点A 按顺时针方向旋转60°,再绕点C 按顺时针方向旋转90°…),当点B 第一次落在x 轴上时,则点B 运动的路径与两坐标轴围成的图形面积是 .18.(2018•南京)如图,在正方形ABCD 中,E 是AB 上一点,连接DE .过点A 作AF⊥DE,垂足为F ,⊙O 经过点C 、D 、F ,与AD 相交于点G . (1)求证:△AFG∽△DFC;(2)若正方形ABCD 的边长为4,AE=1,求⊙O 的半径.19.(2018•南京)结果如此巧合! 下面是小颖对一道题目的解答.题目:如图,Rt△ABC 的内切圆与斜边AB 相切于点D,AD=3,BD=4, 求△ABC 的面积.解:设△ABC 的内切圆分别与AC 、BC 相切于点E 、F ,CE 的长为x . 根据切线长定理,得AE=AD=3,BF=BD=4,CF=CE=x . 根据勾股定理,得(x+3)2+(x+4)2=(3+4)2. 整理,得x 2+7x=12.所以S△ABC=21AC •BC=21(x+3)(x+4)=21(x 2+7x+12)=21×(12+12)=12. 小颖发现12恰好就是3×4,即△ABC 的面积等于AD 与BD 的积.这仅仅是巧合吗? 请你帮她完成下面的探索.已知:△ABC 的内切圆与AB 相切于点D ,AD=m ,BD=n .可以一般化吗?(1)若∠C=90°,求证:△ABC的面积等于mn.倒过来思考呢?(2)若AC•BC=2mn,求证∠C=90°.改变一下条件……(3)若∠C=60°,用m、n表示△ABC的面积.20.如图,矩形ABCD中,AB=m,BC=n,将此矩形绕点B顺时针方向旋转θ(0°<θ<90°)得到矩形A1BC1D1,点A1在边CD上.(1)若m=2,n=1,求在旋转过程中,点D到点D1所经过路径的长度;(2)将矩形A1BC1D1继续绕点B顺时针方向旋转得到矩形A2BC2D2,点D2在BC的延长线上,设边A2B与CD交于点E,若ECEA1=6—1,求mn的值.21.(2018•无锡)已知:如图,一次函数y=kx —1的图象经过点A (35,m )(m >0),与y 轴交于点B .点C 在线段AB 上,且BC=2AC ,过点C 作x 轴的垂线,垂足为点D .若AC=CD . (1)求这个一次函数的表达式;(2)已知一开口向下、以直线CD 为对称轴的抛物线经过点A ,它的顶点为P ,若过点P 且垂直于AP 的直线与x 轴的交点为Q(—554,0),求这条抛物线的函数表达式.22.(2018•常州)阅读材料:各类方程的解法求解一元一次方程,根据等式的基本性质,把方程转化为x=a 的形式.求解二元一次方程组,把它转化为一元一次方程来解;类似的,求解三元一次方程组,把它转化为解二元一次方程组.求解一元二次方程,把它转化为两个一元一次方程来解.求解分式方程,把它转化为整式方程来解,由于“去分母”可能产生增根,所以解分式方程必须检验.各类方程的解法不尽相同,但是它们有一个共同的基本数学思想转化,把未知转化为已知.用“转化”的数学思想,我们还可以解一些新的方程.例如,一元三次方程x 3+x 2—2x=0,可以通过因式分解把它转化为x(x 2+x-2)=0,解方程x=0和x 2+x —2=0,可得方程x 3+x 2-2x=0的解. (1)问题:方程x 3+x 2-2x=0的解是x 1=0,x 2= ,x 3= ; (2)拓展:用“转化”思想求方程32 x =x 的解;(3)应用:如图,已知矩形草坪ABCD 的长AD=8m ,宽AB=3m ,小华把一根长为10m 的绳子的一端固定在点B ,沿草坪边沿BA,AD 走到点P 处,把长绳PB 段拉直并固定在点P ,然后沿草坪边沿PD 、DC 走到点C 处,把长绳剩下的一段拉直,长绳的另一端恰好落在点C .求AP 的长.23.(2018•常州)(1)如图1,已知EK 垂直平分BC ,垂足为D ,AB 与EK 相交于点F,连接CF .求证:∠AFE=∠CFD.(2)如图2,在Rt△GMN 中,∠M=90°,P 为MN 的中点.①用直尺和圆规在GN 边上求作点Q ,使得∠GQM=∠PQN(保留作图痕迹,不要求写作法); ②在①的条件下,如果∠G=60°,那么Q 是GN 的中点吗?为什么?24.(2018•常州)如图,二次函数y=-31x 2+bx+2的图象与x 轴交于点A 、B ,与y 轴交于点C,点A 的坐标为(-4,0),P 是抛物线上一点(点P 与点A 、B 、C 不重合). (1)b= ,点B 的坐标是 ;(2)设直线PB与直线AC相交于点M,是否存在这样的点P,使得PM:MB=1:2?若存在求出点P 的横坐标;若不存在,请说明理由;(3)连接AC、BC,判断∠CAB和∠CBA的数量关系,并说明理由.25.(2018•苏州)如图①,直线l表示一条东西走向的笔直公路,四边形ABCD是一块边长为100米的正方形草地,点A,D在直线l上,小明从点A出发,沿公路l向西走了若干米后到达点E处,然后转身沿射线EB方向走到点F处,接着又改变方向沿射线FC方向走到公路l上的点G 处,最后沿公路l回到点A处.设AE=x米(其中x>0),GA=y米,已知y与x之间的函数关系如图②所示,(1)求图②中线段MN所在直线的函数表达式;(2)试问小明从起点A出发直至最后回到点A处,所走过的路径(即△EFG)是否可以是一个等腰三角形?如果可以,求出相应x的值;如果不可以,说明理由.26.(2018•苏州)问题1:如图①,在△ABC 中,AB=4,D 是AB 上一点(不与A,B 重合),DE∥BC,交AC 于点E ,连接CD .设△ABC 的面积为S ,△DEC 的面积为S′. (1)当AD=3时,SS '= ; (2)设AD=m,请你用含字母m 的代数式表示SS '. 问题2:如图②,在四边形ABCD 中,AB=4,AD∥BC,AD=21BC,E 是AB 上一点(不与A ,B 重合),EF∥BC,交CD 于点F ,连接CE .设AE=n ,四边形ABCD 的面积为S ,△EFC 的面积为S′.请你利用问题1的解法或结论,用含字母n 的代数式表示SS '.27.(2018•苏州)如图,AB 是⊙O 的直径,点C 在⊙O 上,AD 垂直于过点C 的切线,垂足为D ,CE 垂直AB ,垂足为E .延长DA 交⊙O 于点F ,连接FC ,FC 与AB 相交于点G ,连接OC . (1)求证:CD=CE ;(2)若AE=GE ,求证:△CEO 是等腰直角三角形.28.(2018•连云港)如图1,图形ABCD是由两个二次函数y1=kx2+m(k<0)与y2=ax2+b(a>0)的部分图象围成的封闭图形.已知A(1,0)、B(0,1)、D(0,-3).(1)直接写出这两个二次函数的表达式;(2)判断图形ABCD是否存在内接正方形(正方形的四个顶点在图形ABCD上),并说明理由;(3)如图2,连接BC,CD,AD,在坐标平面内,求使得△BDC与△ADE相似(其中点C与点E是对应顶点)的点E的坐标29.(2018•连云港)在数学兴趣小组活动中,小亮进行数学探究活动.△ABC是边长为2的等边三角形,E是AC上一点,小亮以BE为边向BE的右侧作等边三角形BEF,连接CF.(1)如图1,当点E 在线段AC 上时,EF 、BC 相交于点D,小亮发现有两个三角形全等,请你找出来,并证明.(2)当点E 在线段上运动时,点F 也随着运动,若四边形ABFC 的面积为347,求AE 的长. (3)如图2,当点E 在AC 的延长线上运动时,CF 、BE 相交于点D ,请你探求△ECD 的面积S 1与△DBF 的面积S 2之间的数量关系.并说明理由. (4)如图2,当△ECD 的面积S 1=63时,求AE 的长.30.(2018•淮安)如果三角形的两个内角α与β满足2α+β=90°,那么我们称这样的三角形为“准互余三角形".(1)若△ABC 是“准互余三角形”,∠C>90°,∠A=60°,则∠B= °;(2)如图①,在Rt△ABC 中,∠ACB=90°,AC=4,BC=5.若AD 是∠BAC 的平分线,不难证明△ABD 是“准互余三角形".试问在边BC 上是否存在点E (异于点D ),使得△ABE 也是“准互余三角形”?若存在,请求出BE 的长;若不存在,请说明理由.(3)如图②,在四边形ABCD 中,AB=7,CD=12,BD⊥CD,∠ABD=2∠BCD,且△ABC 是“准互余三角形”,求对角线AC 的长.31.(2018•淮安)如图,在平面直角坐标系中,一次函数y=-32x+4的图象与x 轴和y 轴分别相交于A 、B 两点.动点P 从点A 出发,在线段AO 上以每秒3个单位长度的速度向点O 作匀速运动,到达点O 停止运动,点A 关于点P 的对称点为点Q ,以线段PQ 为边向上作正方形PQMN .设运动时间为t 秒.(1)当t=31秒时,点Q 的坐标是 ;(2)在运动过程中,设正方形PQMN 与△A OB 重叠部分的面积为S,求S 与t 的函数表达式; (3)若正方形PQMN 对角线的交点为T,请直接写出在运动过程中OT+PT 的最小值.32.(2018•盐城)【发现】如图①,已知等边△ABC,将直角三角板的60°角顶点D 任意放在BC 边上(点D 不与点B 、C 重合),使两边分别交线段AB 、AC 于点E 、F . (1)若AB=6,AE=4,BD=2,则CF= ; (2)求证:△EBD∽△DCF.【思考】若将图①中的三角板的顶点D 在BC 边上移动,保持三角板与边AB 、AC 的两个交点E 、F 都存在,连接EF ,如图②所示,问:点D 是否存在某一位置,使ED 平分∠BEF 且FD 平分∠CFE?若存在,求出BCBD的值;若不存在,请说明理由. 【探索】如图③,在等腰△ABC 中,AB=AC ,点O 为BC 边的中点,将三角形透明纸板的一个顶点放在点O 处(其中∠MON=∠B),使两条边分别交边AB 、AC 于点E 、F (点E 、F 均不与△ABC 的顶点重合),连接EF .设∠B=α,则△AEF 与△ABC 的周长之比为 (用含α的表达式表示).33.(2018•盐城)如图①,在平面直角坐标系xOy 中,抛物线y=ax2+bx+3经过点A (-1,0)、B(3,0)两点,且与y 轴交于点C . (1)求抛物线的表达式;(2)如图②,用宽为4个单位长度的直尺垂直于x 轴,并沿x 轴左右平移,直尺的左右两边所在的直线与抛物线相交于P 、Q 两点(点P 在点Q 的左侧),连接PQ ,在线段PQ 上方抛物线上有一动点D,连接DP 、DQ .(1)若点P 的横坐标为—21,求△DPQ 面积的最大值,并求此时点D 的坐标;(Ⅱ)直尺在平移过程中,△DPQ 面积是否有最大值?若有,求出面积的最大值;若没有,请说明理由.34.(2018•扬州)问题呈现如图1,在边长为1的正方形网格中,连接格点D ,N 和E ,C ,DN 和EC 相交于点P ,求tan∠CPN 的值. 方法归纳求一个锐角的三角函数值,我们往往需要找出(或构造出)一个直角三角形.观察发现问题中∠CPN 不在直角三角形中,我们常常利用网格画平行线等方法解决此类问题,比如连接格点M ,N ,可得MN∥EC,则∠DNM=∠CPN,连接DM ,那么∠CPN 就变换到Rt△DMN 中. 问题解决(1)直接写出图1中tan∠CPN 的值为 ;(2)如图2,在边长为1的正方形网格中,AN 与CM 相交于点P ,求cos∠CPN 的值;思维拓展(3)如图3,AB⊥BC,AB=4BC,点M 在AB 上,且AM=BC,延长CB 到N,使BN=2BC ,连接AN 交CM 的延长线于点P ,用上述方法构造网格求∠CPN 的度数.35.(2018•扬州)如图1,四边形OABC 是矩形,点A 的坐标为(3,0),点C 的坐标为(0,6),点P 从点O 出发,沿OA 以每秒1个单位长度的速度向点A 出发,同时点Q 从点A 出发,沿AB 以每秒2个单位长度的速度向点B 运动,当点P 与点A 重合时运动停止.设运动时间为t 秒. (1)当t=2时,线段PQ 的中点坐标为 ; (2)当△CBQ 与△PAQ 相似时,求t 的值;(3)当t=1时,抛物线y=x 2+bx+c 经过P ,Q 两点,与y 轴交于点M ,抛物线的顶点为K ,如图2所示,问该抛物线上是否存在点D ,使∠MQD=21∠MKQ?若存在,求出所有满足条件的D 的坐标;若不存在,说明理由.36.(2018•泰州)日照间距系数反映了房屋日照情况.如图①,当前后房屋都朝向正南时,日照间距系数=L:(H —H 1),其中L 为楼间水平距离,H 为南侧楼房高度,H 1为北侧楼房底层窗台至地面高度.如图②,山坡EF 朝北,EF 长为15m ,坡度为i=1:0。

2018年江苏省扬州市中考数学试卷含解析(完美打印版)

2018年江苏省扬州市中考数学试卷含解析(完美打印版)

2018年江苏省扬州市中考数学试卷(含解析)一、选择题(本大题共有8小题,每小题3分,共24分.在每小题给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置上)1.(3分)﹣5的倒数是()A.﹣B.C.5D.﹣52.(3分)使有意义的x的取值范围是()A.x>3B.x<3C.x≥3D.x≠33.(3分)如图所示的几何体的主视图是()A.B.C.D.4.(3分)下列说法正确的是()A.一组数据2,2,3,4,这组数据的中位数是2B.了解一批灯泡的使用寿命的情况,适合抽样调查C.小明的三次数学成绩是126分,130分,136分,则小明这三次成绩的平均数是131分D.某日最高气温是7℃,最低气温是﹣2℃,则该日气温的极差是5℃5.(3分)已知点A(x1,3),B(x2,6)都在反比例函数y=﹣的图象上,则下列关系式一定正确的是()A.x1<x2<0B.x1<0<x2C.x2<x1<0D.x2<0<x16.(3分)在平面直角坐标系的第二象限内有一点M,点M到x轴的距离为3,到y轴的距离为4,则点M的坐标是()A.(3,﹣4)B.(4,﹣3)C.(﹣4,3)D.(﹣3,4)7.(3分)在Rt△ABC中,∠ACB=90°,CD⊥AB于D,CE平分∠ACD交AB于E,则下列结论一定成立的是()A.BC=EC B.EC=BE C.BC=BE D.AE=EC8.(3分)如图,点A在线段BD上,在BD的同侧作等腰Rt△ABC和等腰Rt△ADE,CD与BE、AE分别交于点P,M.对于下列结论:①△BAE∽△CAD;②MP•MD=MA•ME;③2CB2=CP•CM.其中正确的是()A.①②③B.①C.①②D.②③二、填空题(本大题共有10小题,每小题3分,共30分.不需写出解答过程,请把答案直接填写在答题卡相应位置上)9.(3分)在人体血液中,红细胞直径约为0.00077cm,数据0.00077用科学记数法表示为.10.(3分)因式分解:18﹣2x2=.11.(3分)有4根细木棒,长度分别为2cm,3cm,4cm,5cm,从中任选3根,恰好能搭成一个三角形的概率是.12.(3分)若m是方程2x2﹣3x﹣1=0的一个根,则6m2﹣9m+2015的值为.13.(3分)用半径为10cm,圆心角为120°的扇形纸片围成一个圆锥的侧面,则这个圆锥的底面圆半径为cm.14.(3分)不等式组的解集为.15.(3分)如图,已知⊙O的半径为2,△ABC内接于⊙O,∠ACB=135°,则AB=.16.(3分)关于x的方程mx2﹣2x+3=0有两个不相等的实数根,那么m的取值范围是.17.(3分)如图,四边形OABC是矩形,点A的坐标为(8,0),点C的坐标为(0,4),把矩形OABC 沿OB折叠,点C落在点D处,则点D的坐标为.18.(3分)如图,在等腰Rt△ABO,∠A=90°,点B的坐标为(0,2),若直线l:y=mx+m(m≠0)把△ABO分成面积相等的两部分,则m的值为.三、解答题(本大题共有10小题,共96分.请在答题卡指定区域内作答,解答应写出文字说明、证明过程或演算步骤)19.(8分)计算或化简(1)()﹣1+||+tan60°(2)(2x+3)2﹣(2x+3)(2x﹣3)20.(8分)对于任意实数a,b,定义关于“⊗”的一种运算如下:a⊗b=2a+b.例如3⊗4=2×3+4=10.(1)求2⊗(﹣5)的值;(2)若x⊗(﹣y)=2,且2y⊗x=﹣1,求x+y的值.21.(8分)江苏省第十九届运动会将于2018年9月在扬州举行开幕式,某校为了了解学生“最喜爱的省运会项目”的情况,随机抽取了部分学生进行问卷调查,规定每人从“篮球”、“羽毛球”、“自行车”、“游泳”和“其他”五个选项中必须选择且只能选择一个,并将调查结果绘制成如下两幅不完整的统计图表.最喜爱的省运会项目的人数调查统计表根据以上信息,请回答下列问题:(1)这次调查的样本容量是,a+b=.(2)扇形统计图中“自行车”对应的扇形的圆心角为.(3)若该校有1200名学生,估计该校最喜爱的省运会项目是篮球的学生人数.22.(8分)4张相同的卡片分别写着数字﹣1、﹣3、4、6,将卡片的背面朝上,并洗匀.(1)从中任意抽取1张,抽到的数字是奇数的概率是;(2)从中任意抽取1张,并将所取卡片上的数字记作一次函数y=kx+b中的k;再从余下的卡片中任意抽取1张,并将所取卡片上的数字记作一次函数y=kx+b中的b.利用画树状图或列表的方法,求这个一次函数的图象经过第一、二、四象限的概率.23.(10分)京沪铁路是我国东部沿海地区纵贯南北的交通大动脉,全长1462km,是我国最繁忙的铁路干线之一.如果从北京到上海的客车速度是货车速度的2倍,客车比货车少用6h,那么货车的速度是多少?(精确到0.1km/h)24.(10分)如图,在平行四边形ABCD中,DB=DA,点F是AB的中点,连接DF并延长,交CB的延长线于点E,连接AE.(1)求证:四边形AEBD是菱形;(2)若DC=,tan∠DCB=3,求菱形AEBD的面积.25.(10分)如图,在△ABC中,AB=AC,AO⊥BC于点O,OE⊥AB于点E,以点O为圆心,OE为半径作半圆,交AO于点F.(1)求证:AC是⊙O的切线;(2)若点F是OA的中点,OE=3,求图中阴影部分的面积;(3)在(2)的条件下,点P是BC边上的动点,当PE+PF取最小值时,直接写出BP的长.26.(10分)“扬州漆器”名扬天下,某网店专门销售某种品牌的漆器笔筒,成本为30元/件,每天销售y (件)与销售单价x(元)之间存在一次函数关系,如图所示.(1)求y与x之间的函数关系式;(2)如果规定每天漆器笔筒的销售量不低于240件,当销售单价为多少元时,每天获取的利润最大,最大利润是多少?(3)该网店店主热心公益事业,决定从每天的销售利润中捐出150元给希望工程,为了保证捐款后每天剩余利润不低于3600元,试确定该漆器笔筒销售单价的范围.27.(12分)问题呈现如图1,在边长为1的正方形网格中,连接格点D,N和E,C,DN和EC相交于点P,求tan∠CPN的值.方法归纳求一个锐角的三角函数值,我们往往需要找出(或构造出)一个直角三角形.观察发现问题中∠CPN不在直角三角形中,我们常常利用网格画平行线等方法解决此类问题,比如连接格点M,N,可得MN∥EC,则∠DNM=∠CPN,连接DM,那么∠CPN就变换到Rt△DMN中.问题解决(1)直接写出图1中tan∠CPN的值为;(2)如图2,在边长为1的正方形网格中,AN与CM相交于点P,求cos∠CPN的值;思维拓展(3)如图3,AB⊥BC,AB=4BC,点M在AB上,且AM=BC,延长CB到N,使BN=2BC,连接AN交CM的延长线于点P,用上述方法构造网格求∠CPN的度数.28.(12分)如图1,四边形OABC是矩形,点A的坐标为(3,0),点C的坐标为(0,6),点P从点O 出发,沿OA以每秒1个单位长度的速度向点A出发,同时点Q从点A出发,沿AB以每秒2个单位长度的速度向点B运动,当点P与点A重合时运动停止.设运动时间为t秒.(1)当t=2时,线段PQ的中点坐标为;(2)当△CBQ与△P AQ相似时,求t的值;(3)当t=1时,抛物线y=x2+bx+c经过P,Q两点,与y轴交于点M,抛物线的顶点为K,如图2所示,问该抛物线上是否存在点D,使∠MQD=∠MKQ?若存在,求出所有满足条件的D的坐标;若不存在,说明理由.2018年江苏省扬州市中考数学试卷参考答案与试题解析一、选择题(本大题共有8小题,每小题3分,共24分.在每小题给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置上)1.(3分)﹣5的倒数是()A.﹣B.C.5D.﹣5【分析】依据倒数的定义求解即可.【解答】解:﹣5的倒数﹣.故选:A.2.(3分)使有意义的x的取值范围是()A.x>3B.x<3C.x≥3D.x≠3【分析】根据被开方数是非负数,可得答案.【解答】解:由题意,得x﹣3≥0,解得x≥3,故选:C.3.(3分)如图所示的几何体的主视图是()A.B.C.D.【分析】根据从正面看得到的图形是主视图,可得答案.【解答】解:从正面看第一层是两个小正方形,第二层左边一个小正方形,第三层左边一个小正方形,故选:B.4.(3分)下列说法正确的是()A.一组数据2,2,3,4,这组数据的中位数是2B.了解一批灯泡的使用寿命的情况,适合抽样调查C.小明的三次数学成绩是126分,130分,136分,则小明这三次成绩的平均数是131分D.某日最高气温是7℃,最低气温是﹣2℃,则该日气温的极差是5℃【分析】直接利用中位数的定义以及抽样调查的意义和平均数的求法、极差的定义分别分析得出答案.【解答】解:A、一组数据2,2,3,4,这组数据的中位数是2.5,故此选项错误;B、了解一批灯泡的使用寿命的情况,适合抽样调查,正确;C、小明的三次数学成绩是126分,130分,136分,则小明这三次成绩的平均数是130分,故此选项错误;D、某日最高气温是7℃,最低气温是﹣2℃,该日气温的极差是7﹣(﹣2)=9℃,故此选项错误;故选:B.5.(3分)已知点A(x1,3),B(x2,6)都在反比例函数y=﹣的图象上,则下列关系式一定正确的是()A.x1<x2<0B.x1<0<x2C.x2<x1<0D.x2<0<x1【分析】根据反比例函数的性质,可得答案.【解答】解:由题意,得k=﹣3,图象位于第二象限,或第四象限,在每一象限内,y随x的增大而增大,∵3<6,∴x1<x2<0,故选:A.6.(3分)在平面直角坐标系的第二象限内有一点M,点M到x轴的距离为3,到y轴的距离为4,则点M的坐标是()A.(3,﹣4)B.(4,﹣3)C.(﹣4,3)D.(﹣3,4)【分析】根据第二象限内点的坐标特征,可得答案.【解答】解:由题意,得x=﹣4,y=3,即M点的坐标是(﹣4,3),故选:C.7.(3分)在Rt△ABC中,∠ACB=90°,CD⊥AB于D,CE平分∠ACD交AB于E,则下列结论一定成立的是()A.BC=EC B.EC=BE C.BC=BE D.AE=EC【分析】根据同角的余角相等可得出∠BCD=∠A,根据角平分线的定义可得出∠ACE=∠DCE,再结合∠BEC=∠A+∠ACE、∠BCE=∠BCD+∠DCE即可得出∠BEC=∠BCE,利用等角对等边即可得出BC =BE,此题得解.【解答】解:∵∠ACB=90°,CD⊥AB,∴∠ACD+∠BCD=90°,∠ACD+∠A=90°,∴∠BCD=∠A.∵CE平分∠ACD,∴∠ACE=∠DCE.又∵∠BEC=∠A+∠ACE,∠BCE=∠BCD+∠DCE,∴∠BEC=∠BCE,∴BC=BE.故选:C.8.(3分)如图,点A在线段BD上,在BD的同侧作等腰Rt△ABC和等腰Rt△ADE,CD与BE、AE分别交于点P,M.对于下列结论:①△BAE∽△CAD;②MP•MD=MA•ME;③2CB2=CP•CM.其中正确的是()A.①②③B.①C.①②D.②③【分析】(1)由等腰Rt△ABC和等腰Rt△ADE三边份数关系可证;(2)通过等积式倒推可知,证明△P AM∽△EMD即可;(3)2CB2转化为AC2,证明△ACP∽△MCA,问题可证.【解答】解:由已知:AC=AB,AD=AE∴∵∠BAC=∠EAD∴∠BAE=∠CAD∴△BAE∽△CAD所以①正确∵△BAE∽△CAD∴∠BEA=∠CDA∵∠PME=∠AMD∴△PME∽△AMD∴∴MP•MD=MA•ME所以②正确由②MP•MD=MA•ME∠PMA=∠DME∴△PMA∽△EMD∴∠APD=∠AED=90°∵∠CAE=180°﹣∠BAC﹣∠EAD=90°∴△CAP∽△CMA∴AC2=CP•CM∵AC=AB∴2CB2=CP•CM所以③正确故选:A.二、填空题(本大题共有10小题,每小题3分,共30分.不需写出解答过程,请把答案直接填写在答题卡相应位置上)9.(3分)在人体血液中,红细胞直径约为0.00077cm,数据0.00077用科学记数法表示为7.7×10﹣4.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.00077=7.7×10﹣4,故答案为:7.7×10﹣4.10.(3分)因式分解:18﹣2x2=2(x+3)(3﹣x).【分析】原式提取2,再利用平方差公式分解即可.【解答】解:原式=2(9﹣x2)=2(x+3)(3﹣x),故答案为:2(x+3)(3﹣x)11.(3分)有4根细木棒,长度分别为2cm,3cm,4cm,5cm,从中任选3根,恰好能搭成一个三角形的概率是.【分析】根据题意,使用列举法可得从4根细木棒中任取3根的总共情况数目以及能搭成一个三角形的情况数目,根据概率的计算方法,计算可得答案.【解答】解:根据题意,从4根细木棒中任取3根,有2、3、4;3、4、5;2、3、5;2、4、5,共4种取法,而能搭成一个三角形的有2、3、4;3、4、5;2,4,5,3种;故其概率为:.12.(3分)若m是方程2x2﹣3x﹣1=0的一个根,则6m2﹣9m+2015的值为2018.【分析】根据一元二次方程的解的定义即可求出答案.【解答】解:由题意可知:2m2﹣3m﹣1=0,∴2m2﹣3m=1∴原式=3(2m2﹣3m)+2015=2018故答案为:201813.(3分)用半径为10cm,圆心角为120°的扇形纸片围成一个圆锥的侧面,则这个圆锥的底面圆半径为cm.【分析】圆锥的底面圆半径为r,根据圆锥的底面圆周长=扇形的弧长,列方程求解.【解答】解:设圆锥的底面圆半径为r,依题意,得2πr=,解得r=cm.故选:.14.(3分)不等式组的解集为﹣3<x≤.【分析】先求出每个不等式的解集,再根据口诀求出不等式组的解集即可.【解答】解:解不等式3x+1≥5x,得:x≤,解不等式>﹣2,得:x>﹣3,则不等式组的解集为﹣3<x≤,故答案为:﹣3<x≤.15.(3分)如图,已知⊙O的半径为2,△ABC内接于⊙O,∠ACB=135°,则AB=2.【分析】根据圆内接四边形对角互补和同弧所对的圆心角是圆周角的二倍,可以求得∠AOB的度数,然后根据勾股定理即可求得AB的长.【解答】解:连接AD、AE、OA、OB,∵⊙O的半径为2,△ABC内接于⊙O,∠ACB=135°,∴∠ADB=45°,∴∠AOB=90°,∵OA=OB=2,∴AB=2,故答案为:2.16.(3分)关于x的方程mx2﹣2x+3=0有两个不相等的实数根,那么m的取值范围是m<且m≠0.【分析】根据一元二次方程的定义以及根的判别式的意义可得△=4﹣12m>0且m≠0,求出m的取值范围即可.【解答】解:∵一元二次方程mx2﹣2x+3=0有两个不相等的实数根,∴△>0且m≠0,∴4﹣12m>0且m≠0,∴m<且m≠0,故答案为:m<且m≠0.17.(3分)如图,四边形OABC是矩形,点A的坐标为(8,0),点C的坐标为(0,4),把矩形OABC 沿OB折叠,点C落在点D处,则点D的坐标为(,﹣).【分析】由折叠的性质得到一对角相等,再由矩形对边平行得到一对内错角相等,等量代换及等角对等边得到BE=OE,利用AAS得到三角形OED与三角形BEA全等,由全等三角形对应边相等得到DE=AE,过D作DF垂直于OE,利用勾股定理及面积法求出DF与OF的长,即可确定出D坐标.【解答】解:由折叠得:∠CBO=∠DBO,∵矩形ABCO,∴BC∥OA,∴∠CBO=∠BOA,∴∠DBO=∠BOA,∴BE=OE,在△ODE和△BAE中,,∴△ODE≌△BAE(AAS),∴AE=DE,设DE=AE=x,则有OE=BE=8﹣x,在Rt△ODE中,根据勾股定理得:42+(8﹣x)2=x2,解得:x=5,即OE=5,DE=3,过D作DF⊥OA,∵S△OED=OD•DE=OE•DF,∴DF=,OF==,则D(,﹣).故答案为:(,﹣)18.(3分)如图,在等腰Rt△ABO,∠A=90°,点B的坐标为(0,2),若直线l:y=mx+m(m≠0)把△ABO分成面积相等的两部分,则m的值为.【分析】根据题意作出合适的辅助线,然后根据题意即可列出相应的方程,从而可以求得m的值.【解答】解:∵y=mx+m=m(x+1),∴函数y=mx+m一定过点(﹣1,0),当x=0时,y=m,∴点C的坐标为(0,m),由题意可得,直线AB的解析式为y=﹣x+2,,得,∵直线l:y=mx+m(m≠0)把△ABO分成面积相等的两部分,∴,解得,m1=,m2=(舍去),故答案为:.三、解答题(本大题共有10小题,共96分.请在答题卡指定区域内作答,解答应写出文字说明、证明过程或演算步骤)19.(8分)计算或化简(1)()﹣1+||+tan60°(2)(2x+3)2﹣(2x+3)(2x﹣3)【分析】(1)根据负整数幂、绝对值的运算法则和特殊三角函数值即可化简求值.(2)利用完全平方公式和平方差公式即可.【解答】解:(1)()﹣1+||+tan60°=2+(2﹣)+=2+2﹣+=4(2)(2x+3)2﹣(2x+3)(2x﹣3)=(2x)2+12x+9﹣[(2x)2﹣9]=(2x)2+12x+9﹣(2x)2+9=12x+1820.(8分)对于任意实数a,b,定义关于“⊗”的一种运算如下:a⊗b=2a+b.例如3⊗4=2×3+4=10.(1)求2⊗(﹣5)的值;(2)若x⊗(﹣y)=2,且2y⊗x=﹣1,求x+y的值.【分析】(1)依据关于“⊗”的一种运算:a⊗b=2a+b,即可得到2⊗(﹣5)的值;(2)依据x⊗(﹣y)=2,且2y⊗x=﹣1,可得方程组,即可得到x+y的值.【解答】解:(1)∵a⊗b=2a+b,∴2⊗(﹣5)=2×2+(﹣5)=4﹣5=﹣1;(2)∵x⊗(﹣y)=2,且2y⊗x=﹣1,∴,解得,∴x+y=﹣=.21.(8分)江苏省第十九届运动会将于2018年9月在扬州举行开幕式,某校为了了解学生“最喜爱的省运会项目”的情况,随机抽取了部分学生进行问卷调查,规定每人从“篮球”、“羽毛球”、“自行车”、“游泳”和“其他”五个选项中必须选择且只能选择一个,并将调查结果绘制成如下两幅不完整的统计图表.最喜爱的省运会项目的人数调查统计表根据以上信息,请回答下列问题:(1)这次调查的样本容量是50,a+b=11.(2)扇形统计图中“自行车”对应的扇形的圆心角为72°.(3)若该校有1200名学生,估计该校最喜爱的省运会项目是篮球的学生人数.【分析】(1)依据9÷18%,即可得到样本容量,进而得到a+b的值;(2)利用圆心角计算公式,即可得到“自行车”对应的扇形的圆心角;(3)依据最喜爱的省运会项目是篮球的学生所占的比例,即可估计该校最喜爱的省运会项目是篮球的学生人数.【解答】解:(1)样本容量是9÷18%=50,a+b=50﹣20﹣9﹣10=11,故答案为:50,11;(2)“自行车”对应的扇形的圆心角=×360°=72°,故答案为:72°;(3)该校最喜爱的省运会项目是篮球的学生人数为:1200×=480(人).22.(8分)4张相同的卡片分别写着数字﹣1、﹣3、4、6,将卡片的背面朝上,并洗匀.(1)从中任意抽取1张,抽到的数字是奇数的概率是;(2)从中任意抽取1张,并将所取卡片上的数字记作一次函数y=kx+b中的k;再从余下的卡片中任意抽取1张,并将所取卡片上的数字记作一次函数y=kx+b中的b.利用画树状图或列表的方法,求这个一次函数的图象经过第一、二、四象限的概率.【分析】(1)直接利用概率公式求解;(2)画树状图展示所有12种等可能的结果数,利用一次函数的性质,找出k<0,b>0的结果数,然后根据概率公式求解.【解答】解:(1)从中任意抽取1张,抽到的数字是奇数的概率=;故答案为;(2)画树状图为:共有12种等可能的结果数,其中k<0,b>0有4种结果,所以这个一次函数的图象经过第一、二、四象限的概率==.23.(10分)京沪铁路是我国东部沿海地区纵贯南北的交通大动脉,全长1462km,是我国最繁忙的铁路干线之一.如果从北京到上海的客车速度是货车速度的2倍,客车比货车少用6h,那么货车的速度是多少?(精确到0.1km/h)【分析】设货车的速度是x千米/小时,则客车的速度是2x千米/小时,根据时间=路程÷速度结合客车比货车少用6小时,即可得出关于x的分式方程,解之经检验后即可得出结论.【解答】解:设货车的速度是x千米/小时,则客车的速度是2x千米/小时,根据题意得:﹣=6,解得:x=121≈121.8.经检验,x=121.8为此分式方程的解.答:货车的速度约是121.8千米/小时.24.(10分)如图,在平行四边形ABCD中,DB=DA,点F是AB的中点,连接DF并延长,交CB的延长线于点E,连接AE.(1)求证:四边形AEBD是菱形;(2)若DC=,tan∠DCB=3,求菱形AEBD的面积.【分析】(1)由△AFD≌△BFE,推出AD=BE,可知四边形AEBD是平行四边形,再根据BD=AD可得结论;(2)解直角三角形求出EF的长即可解决问题;【解答】(1)证明:∵四边形ABCD是平行四边形,∴AD∥CE,∴∠DAF=∠EBF,∵∠AFD=∠EFB,AF=FB,∴△AFD≌△BFE,∴AD=EB,∵AD∥EB,∴四边形AEBD是平行四边形,∵BD=AD,∴四边形AEBD是菱形.(2)解:∵四边形ABCD是平行四边形,∴CD=AB=,AB∥CD,∴∠ABE=∠DCB,∴tan∠ABE=tan∠DCB=3,∵四边形AEBD是菱形,∴AB⊥DE,AF=FB,EF=DF,∴tan∠ABE==3,∵BF=,∴EF=,∴DE=3,∴S菱形AEBD=•AB•DE=•3=15.25.(10分)如图,在△ABC中,AB=AC,AO⊥BC于点O,OE⊥AB于点E,以点O为圆心,OE为半径作半圆,交AO于点F.(1)求证:AC是⊙O的切线;(2)若点F是OA的中点,OE=3,求图中阴影部分的面积;(3)在(2)的条件下,点P是BC边上的动点,当PE+PF取最小值时,直接写出BP的长.【分析】(1)作OH⊥AC于H,如图,利用等腰三角形的性质得AO平分∠BAC,再根据角平分线性质得OH=OE,然后根据切线的判定定理得到结论;(2)先确定∠OAE=30°,∠AOE=60°,再计算出AE=3,然后根据扇形面积公式,利用图中阴影部分的面积=S△AOE﹣S扇形EOF进行计算;(3)作F点关于BC的对称点F′,连接EF′交BC于P,如图,利用两点之间线段最短得到此时EP+FP 最小,通过证明∠F′=∠EAF′得到PE+PF最小值为3,然后计算出OP和OB得到此时PB的长.【解答】(1)证明:作OH⊥AC于H,如图,∵AB=AC,AO⊥BC于点O,∴AO平分∠BAC,∵OE⊥AB,OH⊥AC,∴OH=OE,∴AC是⊙O的切线;(2)解:∵点F是AO的中点,∴AO=2OF=6,而OE=3,∴∠OAE=30°,∠AOE=60°,∴AE=OE=3,∴图中阴影部分的面积=S△AOE﹣S扇形EOF=×3×3﹣=;(3)解:作F点关于BC的对称点F′,连接EF′交BC于P,如图,∵PF=PF′,∴PE+PF=PE+PF′=EF′,此时EP+FP最小,∵OF′=OF=OE,∴∠F′=∠OEF′,而∠AOE=∠F′+∠OEF′=60°,∴∠F′=30°,∴∠F′=∠EAF′,∴EF′=EA=3,即PE+PF最小值为3,在Rt△OPF′中,OP=OF′=,在Rt△ABO中,OB=OA=×6=2,∴BP=2﹣=,即当PE+PF取最小值时,BP的长为.26.(10分)“扬州漆器”名扬天下,某网店专门销售某种品牌的漆器笔筒,成本为30元/件,每天销售y(件)与销售单价x(元)之间存在一次函数关系,如图所示.(1)求y与x之间的函数关系式;(2)如果规定每天漆器笔筒的销售量不低于240件,当销售单价为多少元时,每天获取的利润最大,最大利润是多少?(3)该网店店主热心公益事业,决定从每天的销售利润中捐出150元给希望工程,为了保证捐款后每天剩余利润不低于3600元,试确定该漆器笔筒销售单价的范围.【分析】(1)可用待定系数法来确定y与x之间的函数关系式;(2)根据利润=销售量×单件的利润,然后将(1)中的函数式代入其中,求出利润和销售单件之间的关系式,然后根据其性质来判断出最大利润;(3)首先得出w与x的函数关系式,进而利用所获利润等于3600元时,对应x的值,根据增减性,求出x的取值范围.【解答】解:(1)设y=kx+b,∵直线y=kx+b经过点(40,300),(55,150),∴,解得:.故y与x之间的函数关系式为:y=﹣10x+700,(2)由题意,得﹣10x+700≥240,解得x≤46,∴30<x≤46,设利润为w=(x﹣30)•y=(x﹣30)(﹣10x+700),w=﹣10x2+1000x﹣21000=﹣10(x﹣50)2+4000,∵﹣10<0,∴x<50时,w随x的增大而增大,∴x=46时,w最大=﹣10(46﹣50)2+4000=3840,答:当销售单价为46元时,每天获取的利润最大,最大利润是3840元;(3)w﹣150=﹣10x2+1000x﹣21000﹣150=3600,﹣10(x﹣50)2=﹣250,x﹣50=±5,x1=55,x2=45,如图所示,由图象得:当45≤x≤55时,捐款后每天剩余利润不低于3600元.27.(12分)问题呈现如图1,在边长为1的正方形网格中,连接格点D,N和E,C,DN和EC相交于点P,求tan∠CPN的值.方法归纳求一个锐角的三角函数值,我们往往需要找出(或构造出)一个直角三角形.观察发现问题中∠CPN不在直角三角形中,我们常常利用网格画平行线等方法解决此类问题,比如连接格点M,N,可得MN∥EC,则∠DNM=∠CPN,连接DM,那么∠CPN就变换到Rt△DMN中.问题解决(1)直接写出图1中tan∠CPN的值为2;(2)如图2,在边长为1的正方形网格中,AN与CM相交于点P,求cos∠CPN的值;思维拓展(3)如图3,AB⊥BC,AB=4BC,点M在AB上,且AM=BC,延长CB到N,使BN=2BC,连接AN 交CM的延长线于点P,用上述方法构造网格求∠CPN的度数.【分析】(1)连接格点M,N,可得MN∥EC,则∠DNM=∠CPN,连接DM,那么∠CPN就变换到Rt △DMN中.(2)如图2中,取格点D,连接CD,DM.那么∠CPN就变换到等腰Rt△DMC中.(3)利用网格,构造等腰直角三角形解决问题即可;【解答】解:(1)如图1中,∵EC∥MN,∴∠CPN=∠DNM,∴tan∠CPN=tan∠DNM,∵∠DMN=90°,∴tan∠CPN=tan∠DNM===2,故答案为2.(2)如图2中,取格点D,连接CD,DM.∵CD∥AN,∴∠CPN=∠DCM,∵△DCM是等腰直角三角形,∴∠DCM=∠D=45°,∴cos∠CPN=cos∠DCM=.(3)如图3中,如图取格点H,连接AN、HN.∵PC∥HN,∴∠CPN=∠ANH,∵AH=HN,∠AHN=90°,∴∠ANH=∠HAN=45°,∴∠CPN=45°.28.(12分)如图1,四边形OABC是矩形,点A的坐标为(3,0),点C的坐标为(0,6),点P从点O 出发,沿OA以每秒1个单位长度的速度向点A出发,同时点Q从点A出发,沿AB以每秒2个单位长度的速度向点B运动,当点P与点A重合时运动停止.设运动时间为t秒.(1)当t=2时,线段PQ的中点坐标为(,2);(2)当△CBQ与△P AQ相似时,求t的值;(3)当t=1时,抛物线y=x2+bx+c经过P,Q两点,与y轴交于点M,抛物线的顶点为K,如图2所示,问该抛物线上是否存在点D,使∠MQD=∠MKQ?若存在,求出所有满足条件的D的坐标;若不存在,说明理由.【分析】(1)先根据时间t=2,和P,Q的运动速度可得动点P和Q的路程OP和AQ的长,再根据中点坐标公式可得结论;(2)根据矩形的性质得:∠B=∠P AQ=90°,所以当△CBQ与△P AQ相似时,存在两种情况:①当△P AQ∽△QBC时,,②当△P AQ∽△CBQ时,,分别列方程可得t的值;(3)根据t=1求抛物线的解析式,根据Q(3,2),M(0,2),可得MQ∥x轴,∴KM=KQ,KE⊥MQ,画出符合条件的点D,证明△KEQ∽△QMH,列比例式可得点D的坐标,同理根据对称可得另一个点D.【解答】解:(1)如图1,∵点A的坐标为(3,0),∴OA=3,当t=2时,OP=t=2,AQ=2t=4,∴P(2,0),Q(3,4),∴线段PQ的中点坐标为:(,),即(,2);故答案为:(,2);(2)如图1,∵当点P与点A重合时运动停止,且△P AQ可以构成三角形,∴0<t<3,∵四边形OABC是矩形,∴∠B=∠P AQ=90°∴当△CBQ与△P AQ相似时,存在两种情况:①当△P AQ∽△QBC时,,∴,4t2﹣15t+9=0,(t﹣3)(t﹣)=0,t1=3(舍),t2=,②当△P AQ∽△CBQ时,,∴,t2﹣9t+9=0,t=,∵>7,∴x=不符合题意,舍去,综上所述,当△CBQ与△P AQ相似时,t的值是或;(3)当t=1时,P(1,0),Q(3,2),把P(1,0),Q(3,2)代入抛物线y=x2+bx+c中得:,解得:,∴抛物线:y=x2﹣3x+2=(x﹣)2﹣,∴顶点k(,﹣),∵Q(3,2),M(0,2),∴MQ∥x轴,作抛物线对称轴,交MQ于E,∴KM=KQ,KE⊥MQ,∴∠MKE=∠QKE=∠MKQ,如图2,∠MQD=∠MKQ=∠QKE,设DQ交y轴于H,∵∠HMQ=∠QEK=90°,∴△KEQ∽△QMH,∴,∴,∴MH=2,∴H(0,4),易得HQ的解析式为:y=﹣x+4,则,x2﹣3x+2=﹣x+4,解得:x1=3(舍),x2=﹣,∴D(﹣,);同理,在M的下方,y轴上存在点H,如图3,使∠HQM=∠MKQ=∠QKE,由对称性得:H(0,0),易得OQ的解析式:y=x,则,x2﹣3x+2=x,解得:x1=3(舍),x2=,∴D(,);综上所述,点D的坐标为:D(﹣,)或(,).。

2018年中考数学真题知识分类练习试卷:方程(含答案)

2018年中考数学真题知识分类练习试卷:方程(含答案)

方程一、单选题1.某旅店一共70个房间,大房间每间住8个人,小房间每间住6个人,一共480个学生刚好住满,设大房间有个,小房间有个.下列方程正确的是( )A. B. C. D.【来源】广东省深圳市2018年中考数学试题【答案】A2.学校八年级师生共466人准备参加社会实践活动,现已预备了49座和37座两种客车共10辆,刚好坐满.设49座客车x辆,37座客车y辆,根据题意可列出方程组()A. B. C. D.【来源】浙江省温州市2018年中考数学试卷【答案】A3.方程组的解是()A. B. C. D.【来源】天津市2018年中考数学试题【答案】A【解析】分析:根据加减消元法,可得方程组的解.详解:,①-②得x=6,把x=6代入①,得y=4,原方程组的解为.故选A.点睛:本题考查了解二元一次方程组,利用加减消元法是解题关键.4.夏季来临,某超市试销、两种型号的风扇,两周内共销售30台,销售收入5300元,型风扇每台200元,型风扇每台150元,问、两种型号的风扇分别销售了多少台?若设型风扇销售了台,型风扇销售了台,则根据题意列出方程组为()A. B.C. D.【来源】山东省泰安市2018年中考数学试题5.已知一元二次方程x2+kx-3=0有一个根为1,则k的值为()A. -2B. 2C. -4D. 4【来源】江苏省盐城市2018年中考数学试题【答案】B【解析】分析:根据一元二次方程的解的定义,把把x=1代入方程得关于k的一次方程1-3+k=0,然后解一次方程即可.详解:把x=1代入方程得1+k-3=0,解得k=2.故选:B.点睛:本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.6.已知关于的一元二次方程有两个不相等的实数根,若,则的值是( )A. 2B. -1C. 2或-1D. 不存在【来源】山东省潍坊市2018年中考数学试题【答案】A7.某市从2017年开始大力发展“竹文化”旅游产业.据统计,该市2017年“竹文化”旅游收入约为2亿元.预计2019“竹文化”旅游收入达到2.88亿元,据此估计该市2018年、2019年“竹文化”旅游收入的年平均增长率约为()A. 2%B. 4.4%C. 20%D. 44%【来源】四川省宜宾市2018年中考数学试题【答案】C8.一元二次方程x2﹣2x=0的两根分别为x1和x2,则x1x2为()A. ﹣2B. 1C. 2D. 0【来源】四川省宜宾市2018年中考数学试题【答案】D【解析】分析:根据根与系数的关系可得出x1x2=0,此题得解.详解:∵一元二次方程x2﹣2x=0的两根分别为x1和x2,故选D.点睛:本题考查了根与系数的关系,牢记两根之积等于是解题的关键.学科#网9.关于的一元二次方程的根的情况是()A. 有两不相等实数根B. 有两相等实数根C. 无实数根D. 不能确定【来源】湖南省娄底市2018年中考数学试题【答案】A【解析】【分析】根据一元二次方程的根的判别式进行判断即可.【详解】,△=[-(k+3)]2-4k=k2+6k+9-4k=(k+1)2+8,∵(k+1)2≥0,∴(k+1)2+8>0,即△>0,∴方程有两个不相等实数根,故选A.【点睛】本题考查了一元二次方程ax2+bx+c=0(a≠0,a,b,c为常数)的根的判别式△=b2-4ac.当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程没有实数根.10.关于的一元二次方程有两个实数根,则的取值范围是()A. B. C. D.【来源】2018年甘肃省武威市(凉州区)中考数学试题【答案】C11.欧几里得的《原本》记载,形如的方程的图解法是:画,使,,,再在斜边上截取.则该方程的一个正根是()A. 的长B. 的长C. 的长D. 的长【来源】2018年浙江省舟山市中考数学试题12.若关于的一元二次方程x(x+1)+ax=0有两个相等的实数根,则实数a的值为()A. B. 1 C. D.【来源】安徽省2018年中考数学试题【答案】A【解析】【分析】整理成一般式后,根据方程有两个相等的实数根,可得△=0,得到关于a 的方程,解方程即可得.【详解】x(x+1)+ax=0,x2+(a+1)x=0,由方程有两个相等的实数根,可得△=(a+1)2-4×1×0=0,解得:a1=a2=-1,故选A.【点睛】本题考查一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.13.一元二次方程根的情况是()A. 无实数根B. 有一个正根,一个负根C. 有两个正根,且都小于3D. 有两个正根,且有一根大于3【来源】山东省泰安市2018年中考数学试题【答案】D【解析】分析:直接整理原方程,进而解方程得出x的值.详解:(x+1)(x﹣3)=2x﹣5整理得:x2﹣2x﹣3=2x﹣5,则x2﹣4x+2=0,(x﹣2)2=2,解得:x1=2+>3,x2=2﹣,故有两个正根,且有一根大于3.故选D.点睛:本题主要考查了一元二次方程的解法,正确解方程是解题的关键.14.“绿水青山就是金山银山”.某工程队承接了60万平方米的荒山绿化任务,为了迎接雨季的到来,实际工作时每天的工作效率比原计划提高了25%,结果提前30天完成了这一任务.设实际工作时每天绿化的面积为x万平方米,则下面所列方程中正确的是()A. B.C. D.【来源】山东省淄博市2018年中考数学试题15.分式方程的解是()A. B. C. D.【来源】四川省成都市2018年中考数学试题【答案】A【解析】分析:观察可得最简公分母是x(x-2),方程两边乘最简公分母,可以把分式方程转化为整式方程求解.详解:,去分母,方程两边同时乘以x(x-2)得:(x+1)(x-2)+x=x(x-2),x2-x-2+x=x2-2x,x=1,经检验,x=1是原分式方程的解,故选A.点睛:考查了解分式方程,(1)解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.(2)解分式方程一定注意要验根.学科#网16.分式方程的解为()A. B. C. D. 无解【来源】山东省德州市2018年中考数学试题【答案】D17.若数使关于x的不等式组有且只有四个整数解,且使关于y的方程的解为非负数,则符合条件的所有整数的和为()A. B. C. 1 D. 2【来源】【全国省级联考】2018年重庆市中考数学试卷(A卷)【答案】C二、填空题18.若关于x、y的二元一次方程组的解是,则关于a、b的二元一次方程组的解是_______.【来源】山东省滨州市2018年中考数学试题【答案】【解析】分析:利用关于x、y的二元一次方程组的解是可得m、n的数值,代入关于a、b的方程组即可求解,利用整体的思想找到两个方程组的联系再求解的方法更好.详解:∵关于x、y的二元一次方程组的解是,∴将解代入方程组可得m=﹣1,n=2∴关于a、b的二元一次方程组整理为:解得:点睛:本题考查二元一次方程组的求解,重点是整体考虑的数学思想的理解运用在此题体现明显.19.中国的《九章算术》是世界现代数学的两大源泉之一,其中有一问题:“今有牛五,羊二,值金十两.牛二,羊五,值金八两。

备考2022年中考数学一轮复习-图形的性质_圆_圆内接四边形的性质-填空题专训及答案

备考2022年中考数学一轮复习-图形的性质_圆_圆内接四边形的性质-填空题专训及答案

备考2022年中考数学一轮复习-图形的性质_圆_圆内接四边形的性质-填空题专训及答案圆内接四边形的性质填空题专训1、(2018扬州.中考真卷) 如图,已知的半径为2,内接于,,则________.2、(2015泰州.中考真卷) 如图,⊙O的内接四边形ABCD中,∠A=115°,则∠BOD 等于________3、(2019长春.中考模拟) 如图,四边形ABCD内接于⊙O,若∠ADC=130°,则∠AOC 的大小为________度.4、(2018射阳.中考模拟) 如图,⊙O的半径为6,四边形ABCD内接于⊙O,连接OB,OD,若∠BOD=∠BCD,则弧BD的长为________.5、(2018阜宁.中考模拟) 如图,⊙O内接四边形ABCD中,点E在BC延长线上,∠BOD =160°则∠DCE=________.6、(2018盐城.中考模拟) 如图,A、B、C是⊙O上的三点,且四边形OABC是菱形.若点D是圆上异于A、B、C的另一点,则∠ADC的度数是________.7、(2017滨海.中考模拟) 如图,四边形ABCD是⊙O的内接四边形,点E在AB的延长线上,BF是∠CBE的平分线,∠ADC=100°,则∠FBE=________°.8、(2017濉溪.中考模拟) 如图,四边形ABCD是⊙O的内接四边形,⊙O的半径为2,∠B=135°,则的长________.9、(2017庆云.中考模拟) 如图,在菱形ABCD中,tanA= ,点E、F分别是AB、AD上任意的点(不与端点重合),且AE=DF,连接BF与DE相交于点G,连接CG 与BD相交于点H,给出如下几个结论:(1)△AED≌△DFB;(2)CG与BD一定= CG2;其中正确结论的序不垂直;(3)∠BGE的大小为定值;(4)S四边形BCDG号为________.10、(2019荆州.中考模拟) 已知点A、B、C、D均在圆上,AD∥BC,AC 平分∠BCD,∠ADC=120°,四边形的周长为10cm.,则∠ABC的度数为________.11、(2017隆回.中考模拟) 在圆的内接四边形ABCD中,∠A、∠B、∠C的度数之比为2:3:4,则∠D的度数是________°.12、(2018广西壮族自治区.中考模拟) 如图,在⊙O中,圆周角∠ACB=150°,弦AB=4,则扇形OAB的面积是________.13、(2019铜仁.中考真卷) 如图,四边形ABCD为⊙O的内接四边形,∠A=100°,则∠DCE的度数为________;14、(2019顺城.中考模拟) 如图,四边形ABCD是的内接四边形,点是的中点,点是上的一点,若,则________.15、(2019平顶山.中考模拟) 如图所示,四边形ABCD内接于⊙O,AB=AD,∠BCE=50°,连接BD,则∠ABD=________度.16、(2019长春.中考模拟) 如图,是的直径,点、在上,若,则________.17、(2020南通.中考模拟) 如图,A,B,C三个点都在⊙O上,∠AOC=130°,则∠ABC 的度数是________.18、(2020宜昌.中考模拟) 如图,四边形ABCD为⊙O的内接四边形,已知∠BOD=100°,则∠BCD=________.19、(2020南宁.中考模拟) 已知:矩形的边,,点E从点A 出发沿线段向点B匀速运动,点F同时从点C出发沿线段向点B匀速运动,速度均为,当一个点到达终点时另一个点也停止运动.连接,以为对角线作正方形,连接,则的长度为________.20、(2020泰兴.中考模拟) P是△ABC的内心,BC=4,∠BAC=90°,则△PBC的外接圆半径为________.圆内接四边形的性质填空题答案1.答案:2.答案:3.答案:4.答案:5.答案:6.答案:7.答案:8.答案:9.答案:10.答案:11.答案:12.答案:13.答案:14.答案:15.答案:16.答案:17.答案:18.答案:19.答案:20.答案:。

【真题】扬州市中考数学试卷含答案解析()

【真题】扬州市中考数学试卷含答案解析()

江苏省扬州市中考数学试卷一、选择题(本大题共有8小题,每小题3分,共24分.在每小题给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置上)1.(3分)﹣5的倒数是()A.﹣ B.C.5 D.﹣52.(3分)使有意义的x的取值范围是()A.x>3 B.x<3 C.x≥3 D.x≠33.(3分)如图所示的几何体的主视图是()A.B.C.D.4.(3分)下列说法正确的是()A.一组数据2,2,3,4,这组数据的中位数是2B.了解一批灯泡的使用寿命的情况,适合抽样调查C.小明的三次数学成绩是126分,130分,136分,则小明这三次成绩的平均数是131分D.某日最高气温是7℃,最低气温是﹣2℃,则改日气温的极差是5℃5.(3分)已知点A(x1,3),B(x2,6)都在反比例函数y=﹣的图象上,则下列关系式一定正确的是()A.x1<x2<0 B.x1<0<x2C.x2<x1<0 D.x2<0<x16.(3分)在平面直角坐标系的第二象限内有一点M,点M到x轴的距离为3,到y轴的距离为4,则点M的坐标是()A.(3,﹣4)B.(4,﹣3)C.(﹣4,3)D.(﹣3,4)7.(3分)在Rt△ABC中,∠ACB=90°,CD⊥AB于D,CE平分∠ACD交AB于E,则下列结论一定成立的是()A.BC=EC B.EC=BE C.BC=BE D.AE=EC8.(3分)如图,点A在线段BD上,在BD的同侧做等腰Rt△ABC和等腰Rt△ADE,CD与BE、AE分别交于点P,M.对于下列结论:①△BAE∽△CAD;②MP•MD=MA•ME;③2CB2=CP•CM.其中正确的是()A.①②③B.①C.①②D.②③二、填空题(本大题共有10小题,每小题3分,共30分.不需写出解答过程,请把答案直接填写在答题卡相应位置上)9.(3分)在人体血液中,红细胞直径约为0.00077cm,数据0.00077用科学记数法表示为.10.(3分)因式分解:18﹣2x2=.11.(3分)有4根细木棒,长度分别为2cm,3cm,4cm,5cm,从中任选3根,恰好能搭成一个三角形的概率是.12.(3分)若m是方程2x2﹣3x﹣1=0的一个根,则6m2﹣9m+的值为.13.(3分)用半径为10cm,圆心角为120°的扇形纸片围成一个圆锥的侧面,则这个圆锥的底面圆半径为cm.14.(3分)不等式组的解集为.15.(3分)如图,已知⊙O的半径为2,△ABC内接于⊙O,∠ACB=135°,则AB=.16.(3分)关于x的方程mx2﹣2x+3=0有两个不相等的实数根,那么m的取值范围是.17.(3分)如图,四边形OABC是矩形,点A的坐标为(8,0),点C的坐标为(0,4),把矩形OABC沿OB折叠,点C落在点D处,则点D的坐标为.18.(3分)如图,在等腰Rt△ABO,∠A=90°,点B的坐标为(0,2),若直线l:y=mx+m(m≠0)把△ABO分成面积相等的两部分,则m的值为.三、解答题(本大题共有10小题,共96分.请在答题卡指定区域内作答,解答应写出文字说明、证明过程或演算步骤)19.(8分)计算或化简(1)()﹣1+||+tan60°(2)(2x+3)2﹣(2x+3)(2x﹣3)20.(8分)对于任意实数a,b,定义关于“⊗”的一种运算如下:a⊗b=2a+b.例如3⊗4=2×3+4=10.(1)求2⊗(﹣5)的值;(2)若x⊗(﹣y)=2,且2y⊗x=﹣1,求x+y的值.21.(8分)江苏省第运动会将于9月在扬州举行开幕式,某校为了了解学生“最喜爱的省运动会项目”的情况,随机抽取了部分学生进行问卷调查,规定每人从“篮球”、“羽毛球”、“自行车”、“游泳”和“其他”五个选项中必须选择且只能选择一个,并将调查结果绘制成如下两幅不完整的统计图表.最喜爱的省运会项目的人数调查统计表最喜爱的项目人数篮球20羽毛球9自行车10游泳a其他b合计根据以上信息,请回答下列问题:(1)这次调查的样本容量是,a+b.(2)扇形统计图中“自行车”对应的扇形的圆心角为.(3)若该校有1200名学生,估计该校最喜爱的省运会项目是篮球的学生人数.22.(8分)4张相同的卡片分别写着数字﹣1、﹣3、4、6,将卡片的背面朝上,并洗匀.(1)从中任意抽取1张,抽到的数字是奇数的概率是;(2)从中任意抽取1张,并将所取卡片上的数字记作一次函数y=kx+b中的k;再从余下的卡片中任意抽取1张,并将所取卡片上的数字记作一次函数y=kx+b 中的b.利用画树状图或列表的方法,求这个一次函数的图象经过第一、二、四象限的概率.23.(10分)京沪铁路是我国东部沿海地区纵贯南北的交通大动脉,全长1462km,是我国最繁忙的铁路干线之一.如果从北京到上海的客车速度是货车速度的2倍,客车比货车少用6h,那么货车的速度是多少?(精确到0.1km/h)24.(10分)如图,在平行四边形ABCD中,DB=DA,点F是AB的中点,连接DF并延长,交CB的延长线于点E,连接AE.(1)求证:四边形AEBD是菱形;(2)若DC=,tan∠DCB=3,求菱形AEBD的面积.25.(10分)如图,在△ABC中,AB=AC,AO⊥BC于点O,OE⊥AB于点E,以点O为圆心,OE为半径作半圆,交AO于点F.(1)求证:AC是⊙O的切线;(2)若点F是A的中点,OE=3,求图中阴影部分的面积;(3)在(2)的条件下,点P是BC边上的动点,当PE+PF取最小值时,直接写出BP的长.26.(10分)“扬州漆器”名扬天下,某网店专门销售某种品牌的漆器笔筒,成本为30元/件,每天销售y(件)与销售单价x(元)之间存在一次函数关系,如图所示.(1)求y与x之间的函数关系式;(2)如果规定每天漆器笔筒的销售量不低于240件,当销售单价为多少元时,每天获取的利润最大,最大利润是多少?(3)该网店店主热心公益事业,决定从每天的销售利润中捐出150元给希望工程,为了保证捐款后每天剩余利润不低于3600元,试确定该漆器笔筒销售单价的范围.27.(12分)问题呈现如图1,在边长为1的正方形网格中,连接格点D,N和E,C,DN和EC相交于点P,求tan∠CPN的值.方法归纳求一个锐角的三角函数值,我们往往需要找出(或构造出)一个直角三角形.观察发现问题中∠CPN不在直角三角形中,我们常常利用网格画平行线等方法解决此类问题,比如连接格点M,N,可得MN∥EC,则∠DNM=∠CPN,连接DM,那么∠CPN就变换到Rt△DMN中.问题解决(1)直接写出图1中tan∠CPN的值为;(2)如图2,在边长为1的正方形网格中,AN与CM相交于点P,求cos∠CPN 的值;思维拓展(3)如图3,AB⊥BC,AB=4BC,点M在AB上,且AM=BC,延长CB到N,使BN=2BC,连接AN交CM的延长线于点P,用上述方法构造网格求∠CPN的度数.28.(12分)如图1,四边形OABC是矩形,点A的坐标为(3,0),点C的坐标为(0,6),点P从点O出发,沿OA以每秒1个单位长度的速度向点A出发,同时点Q从点A出发,沿AB以每秒2个单位长度的速度向点B运动,当点P与点A重合时运动停止.设运动时间为t秒.(1)当t=2时,线段PQ的中点坐标为;(2)当△CBQ与△PAQ相似时,求t的值;(3)当t=1时,抛物线y=x2+bx+c经过P,Q两点,与y轴交于点M,抛物线的顶点为K,如图2所示,问该抛物线上是否存在点D,使∠MQD=∠MKQ?若存在,求出所有满足条件的D的坐标;若不存在,说明理由.江苏省扬州市中考数学试卷参考答案与试题解析一、选择题(本大题共有8小题,每小题3分,共24分.在每小题给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置上)1.(3分)﹣5的倒数是()A.﹣ B.C.5 D.﹣5【分析】依据倒数的定义求解即可.【解答】解:﹣5的倒数﹣.故选:A.【点评】本题主要考查的是倒数的定义,掌握倒数的定义是解题的关键.2.(3分)使有意义的x的取值范围是()A.x>3 B.x<3 C.x≥3 D.x≠3【分析】根据被开方数是非负数,可得答案.【解答】解:由题意,得x﹣3≥0,解得x≥3,故选:C.【点评】本题考查了二次根式有意义的条件,利用得出不等式是解题关键.3.(3分)如图所示的几何体的主视图是()A.B.C.D.【分析】根据从正面看得到的图形是主视图,可得答案.【解答】解:从正面看第一层是两个小正方形,第二层左边一个小正方形,第三层左边一个小正方形,故选:B.【点评】本题考查了简单组合体的三视图,从正面看得到的图形是主视图.4.(3分)下列说法正确的是()A.一组数据2,2,3,4,这组数据的中位数是2B.了解一批灯泡的使用寿命的情况,适合抽样调查C.小明的三次数学成绩是126分,130分,136分,则小明这三次成绩的平均数是131分D.某日最高气温是7℃,最低气温是﹣2℃,则改日气温的极差是5℃【分析】直接利用中位数的定义以及抽样调查的意义和平均数的求法、极差的定义分别分析得出答案.【解答】解:A、一组数据2,2,3,4,这组数据的中位数是2.5,故此选项错误;B、了解一批灯泡的使用寿命的情况,适合抽样调查,正确;C、小明的三次数学成绩是126分,130分,136分,则小明这三次成绩的平均数是130分,故此选项错误;D、某日最高气温是7℃,最低气温是﹣2℃,则改日气温的极差是7﹣(﹣2)=9℃,故此选项错误;故选:B.【点评】此题主要考查了中位数、抽样调查的意义和平均数的求法、极差,正确把握相关定义是解题关键.5.(3分)已知点A(x1,3),B(x2,6)都在反比例函数y=﹣的图象上,则下列关系式一定正确的是()A.x1<x2<0 B.x1<0<x2C.x2<x1<0 D.x2<0<x1【分析】根据反比例函数的性质,可得答案.【解答】解:由题意,得k=﹣3,图象位于第二象限,或第四象限,在每一象限内,y随x的增大而增大,∵3<6,∴x1<x2<0,故选:A.【点评】本题考查了反比例函数,利用反比例函数的性质是解题关键.6.(3分)在平面直角坐标系的第二象限内有一点M,点M到x轴的距离为3,到y轴的距离为4,则点M的坐标是()A.(3,﹣4)B.(4,﹣3)C.(﹣4,3)D.(﹣3,4)【分析】根据地二象限内点的坐标特征,可得答案.【解答】解:由题意,得x=﹣4,y=3,即M点的坐标是(﹣4,3),故选:C.【点评】本题考查了点的坐标,熟记点的坐标特征是解题关键.7.(3分)在Rt△ABC中,∠ACB=90°,CD⊥AB于D,CE平分∠ACD交AB于E,则下列结论一定成立的是()A.BC=EC B.EC=BE C.BC=BE D.AE=EC【分析】根据同角的余角相等可得出∠BCD=∠A,根据角平分线的定义可得出∠ACE=∠DCE,再结合∠BEC=∠A+∠ACE、∠BCE=∠BCD+∠DCE即可得出∠BEC=∠BCE,利用等角对等边即可得出BC=BE,此题得解.【解答】解:∵∠ACB=90°,CD⊥AB,∴∠ACD+∠BCD=90°,∠ACD+∠A=90°,∴∠BCD=∠A.∵CE平分∠ACD,∴∠ACE=∠DCE.又∵∠BEC=∠A+∠ACE,∠BCE=∠BCD+∠DCE,∴∠BEC=∠BCE,∴BC=BE.故选:C.【点评】本题考查了直角三角形的性质、三角形外角的性质、余角、角平分线的定义以及等腰三角形的判定,通过角的计算找出∠BEC=∠BCE是解题的关键.8.(3分)如图,点A在线段BD上,在BD的同侧做等腰Rt△ABC和等腰Rt△ADE,CD与BE、AE分别交于点P,M.对于下列结论:①△BAE∽△CAD;②MP•MD=MA•ME;③2CB2=CP•CM.其中正确的是()A.①②③B.①C.①②D.②③【分析】(1)由等腰Rt△ABC和等腰Rt△ADE三边份数关系可证;(2)通过等积式倒推可知,证明△PAM∽△EMD即可;(3)2CB2转化为AC2,证明△ACP∽△MCA,问题可证.【解答】解:由已知:AC=AB,AD=AE∴∵∠BAC=∠EAD∴∠BAE=∠CAD∴△BAE∽△CAD所以①正确∵△BAE∽△CAD∴∠BEA=∠CDA∵∠PME=∠AMD∴△PME∽△AMD∴∴MP•MD=MA•ME所以②正确∵∠BEA=∠CDA∠PME=∠AMD∴P、E、D、A四点共圆∴∠APD=∠EAD=90°∵∠CAE=180°﹣∠BAC﹣∠EAD=90°∴△CAP∽△CMA∴AC2=CP•CM∵AC=AB∴2CB2=CP•CM所以③正确故选:A.【点评】本题考查了相似三角形的性质和判断.在等积式和比例式的证明中应注意应用倒推的方法寻找相似三角形进行证明,进而得到答案.二、填空题(本大题共有10小题,每小题3分,共30分.不需写出解答过程,请把答案直接填写在答题卡相应位置上)9.(3分)在人体血液中,红细胞直径约为0.00077cm,数据0.00077用科学记数法表示为7.7×10﹣4.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.00077=7.7×10﹣4,故答案为:7.7×10﹣4.【点评】本题主要考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.10.(3分)因式分解:18﹣2x2=2(x+3)(3﹣x).【分析】原式提取2,再利用平方差公式分解即可.【解答】解:原式=2(9﹣x2)=2(x+3)(3﹣x),故答案为:2(x+3)(3﹣x)【点评】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.11.(3分)有4根细木棒,长度分别为2cm,3cm,4cm,5cm,从中任选3根,恰好能搭成一个三角形的概率是.【分析】根据题意,使用列举法可得从有4根细木棒中任取3根的总共情况数目以及能搭成一个三角形的情况数目,根据概率的计算方法,计算可得答案.【解答】解:根据题意,从有4根细木棒中任取3根,有2、3、4;3、4、5;2、3、5;2、4、5,共4种取法,而能搭成一个三角形的有2、3、4;3、4、5;2,4,5,3种;故其概率为:.【点评】本题考查概率的计算方法,使用列举法解题时,注意按一定顺序,做到不重不漏.用到的知识点为:概率=所求情况数与总情况数之比.12.(3分)若m是方程2x2﹣3x﹣1=0的一个根,则6m2﹣9m+的值为.【分析】根据一元二次方程的解的定义即可求出答案.【解答】解:由题意可知:2m2﹣3m﹣1=0,∴2m2﹣3m=1∴原式=3(2m2﹣3m)+=故答案为:【点评】本题考查一元二次方程的解,解题的关键是正确理解一元二次方程的解的定义,本题属于基础题型.13.(3分)用半径为10cm,圆心角为120°的扇形纸片围成一个圆锥的侧面,则这个圆锥的底面圆半径为cm.【分析】圆锥的底面圆半径为r,根据圆锥的底面圆周长=扇形的弧长,列方程求解.【解答】解:设圆锥的底面圆半径为r,依题意,得2πr=,解得r=cm.故选:.【点评】本题考查了圆锥的计算.圆锥的侧面展开图为扇形,计算要体现两个转化:1、圆锥的母线长为扇形的半径,2、圆锥的底面圆周长为扇形的弧长.14.(3分)不等式组的解集为﹣3<x≤.【分析】先求出每个不等式的解集,再根据口诀求出不等式组的解集即可.【解答】解:解不等式3x+1≥5x,得:x≤,解不等式>﹣2,得:x>﹣3,则不等式组的解集为﹣3<x≤,故答案为:﹣3<x≤.【点评】此题考查了一元一次不等式组的求法,其简便求法就是用口诀求解.求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解).15.(3分)如图,已知⊙O的半径为2,△ABC内接于⊙O,∠ACB=135°,则AB=2.【分析】根据圆内接四边形对边互补和同弧所对的圆心角是圆周角的二倍,可以求得∠AOB的度数,然后根据勾股定理即可求得AB的长.【解答】解:连接AD、AE、OA、OB,∵⊙O的半径为2,△ABC内接于⊙O,∠ACB=135°,∴∠ADB=45°,∴∠AOB=90°,∵OA=OB=2,∴AB=2,故答案为:2.【点评】本题考查三角形的外接圆和外心,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.16.(3分)关于x的方程mx2﹣2x+3=0有两个不相等的实数根,那么m的取值范围是m<且m≠0.【分析】根据一元二次方程的定义以及根的判别式的意义可得△=4﹣12m>0且m≠0,求出m的取值范围即可.【解答】解:∵一元二次方程mx2﹣2x+3=0有两个不相等的实数根,∴△>0且m≠0,∴4﹣12m>0且m≠0,∴m<且m≠0,故答案为:m<且m≠0.【点评】本题考查了一元二次方程ax2+bx+c=0(a≠0,a,b,c为常数)根的判别式△=b2﹣4ac.当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.也考查了一元二次方程的定义.17.(3分)如图,四边形OABC是矩形,点A的坐标为(8,0),点C的坐标为(0,4),把矩形OABC沿OB折叠,点C落在点D处,则点D的坐标为(,﹣).【分析】由折叠的性质得到一对角相等,再由矩形对边平行得到一对内错角相等,等量代换及等角对等边得到BE=OE,利用AAS得到三角形OED与三角形BEA全等,由全等三角形对应边相等得到DE=AE,过D作DF垂直于OE,利用勾股定理及面积法求出DF与OF的长,即可确定出D坐标.【解答】解:由折叠得:∠CBO=∠DBO,∵矩形ABCO,∴BC∥OA,∴∠CBO=∠BOA,∴∠DBO=∠BOA,∴BE=OE,在△ODE和△BAE中,,∴△ODE≌△BAE(AAS),∴AE=DE,设DE=AE=x,则有OE=BE=8﹣x,在Rt△ODE中,根据勾股定理得:42+(8﹣x)2=x2,解得:x=5,即OE=5,DE=3,过D作DF⊥OA,=OD•DE=OE•DF,∵S△OED∴DF=,OF==,则D(,﹣).故答案为:(,﹣)【点评】此题考查了翻折变化(折叠问题),坐标与图形变换,以及矩形的性质,熟练掌握折叠的性质是解本题的关键.18.(3分)如图,在等腰Rt△ABO,∠A=90°,点B的坐标为(0,2),若直线l:y=mx+m(m≠0)把△ABO分成面积相等的两部分,则m的值为.【分析】根据题意作出合适的辅助线,然后根据题意即可列出相应的方程,从而可以求得m的值.【解答】解:∵y=mx+m=m(x+1),∴函数y=mx+m一定过点(﹣1,0),当x=0时,y=m,∴点C的坐标为(0,m),由题意可得,直线AB的解析式为y=﹣x+2,,得,∵直线l:y=mx+m(m≠0)把△ABO分成面积相等的两部分,∴,解得,m=或m=(舍去),故答案为:.【点评】本题考查一次函数图象上点的坐标特征、等腰直角三角形,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.三、解答题(本大题共有10小题,共96分.请在答题卡指定区域内作答,解答应写出文字说明、证明过程或演算步骤)19.(8分)计算或化简(1)()﹣1+||+tan60°(2)(2x+3)2﹣(2x+3)(2x﹣3)【分析】(1)根据负整数幂、绝对值的运算法则和特殊三角函数值即可化简求值.(2)利用完全平方公式和平方差公式即可.【解答】解:(1)()﹣1+||+tan60°=2+(2﹣)+=2+2﹣+=4(2)(2x+3)2﹣(2x+3)(2x﹣3)=(2x)2+12x+9﹣[(2x2)﹣9]=(2x)2+12x+9﹣(2x)2+9=12x+18【点评】本题考查实数的混合运算和乘法公式,负整数指数幂的运算和相反数容易混淆,运用平方差公式计算时,关键要找相同项和相反项,其结果是相同项的平方减去相反项的平方.20.(8分)对于任意实数a,b,定义关于“⊗”的一种运算如下:a⊗b=2a+b.例如3⊗4=2×3+4=10.(1)求2⊗(﹣5)的值;(2)若x⊗(﹣y)=2,且2y⊗x=﹣1,求x+y的值.【分析】(1)依据关于“⊗”的一种运算:a⊗b=2a+b,即可得到2⊗(﹣5)的值;(2)依据x⊗(﹣y)=2,且2y⊗x=﹣1,可得方程组,即可得到x+y的值.【解答】解:(1)∵a⊗b=2a+b,∴2⊗(﹣5)=2×2+(﹣5)=4﹣5=﹣1;(2)∵x⊗(﹣y)=2,且2y⊗x=﹣1,∴,解得,∴x+y=﹣=.【点评】本题主要考查解一元一次方程组以及有理数的混合运算的运用,根据题意列出方程组是解题的关键.21.(8分)江苏省第运动会将于9月在扬州举行开幕式,某校为了了解学生“最喜爱的省运动会项目”的情况,随机抽取了部分学生进行问卷调查,规定每人从“篮球”、“羽毛球”、“自行车”、“游泳”和“其他”五个选项中必须选择且只能选择一个,并将调查结果绘制成如下两幅不完整的统计图表.最喜爱的省运会项目的人数调查统计表最喜爱的项目人数篮球20羽毛球9自行车10游泳a其他b合计根据以上信息,请回答下列问题:(1)这次调查的样本容量是50,a+b11.(2)扇形统计图中“自行车”对应的扇形的圆心角为72°.(3)若该校有1200名学生,估计该校最喜爱的省运会项目是篮球的学生人数.【分析】(1)依据9÷18%,即可得到样本容量,进而得到a+b的值;(2)利用圆心角计算公式,即可得到“自行车”对应的扇形的圆心角;(3)依据最喜爱的省运会项目是篮球的学生所占的比例,即可估计该校最喜爱的省运会项目是篮球的学生人数.【解答】解:(1)样本容量是9÷18%=50,a+b=50﹣20﹣9﹣10=11,故答案为:50,11;(2)“自行车”对应的扇形的圆心角=×360°=72°,故答案为:72°;(3)该校最喜爱的省运会项目是篮球的学生人数为:1200×=480(人).【点评】本题考查的是统计表和扇形统计图的综合运用.读懂统计图,从不同的统计表和统计图中得到必要的信息是解决问题的关键.扇形统计图直接反映部分占总体的百分比大小.22.(8分)4张相同的卡片分别写着数字﹣1、﹣3、4、6,将卡片的背面朝上,并洗匀.(1)从中任意抽取1张,抽到的数字是奇数的概率是;(2)从中任意抽取1张,并将所取卡片上的数字记作一次函数y=kx+b中的k;再从余下的卡片中任意抽取1张,并将所取卡片上的数字记作一次函数y=kx+b 中的b.利用画树状图或列表的方法,求这个一次函数的图象经过第一、二、四象限的概率.【分析】(1)直接利用概率公式求解;(2)画树状图展示所有12种等可能的结果数,利用一次获胜的性质,找出k<0,b>0的结果数,然后根据概率公式求解.【解答】解:(1)从中任意抽取1张,抽到的数字是奇数的概率=;故答案为;(2)画树状图为:共有12种等可能的结果数,其中k<0,b>0有4种结果,所以这个一次函数的图象经过第一、二、四象限的概率==.【点评】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.也考查了一次函数的性质.23.(10分)京沪铁路是我国东部沿海地区纵贯南北的交通大动脉,全长1462km,是我国最繁忙的铁路干线之一.如果从北京到上海的客车速度是货车速度的2倍,客车比货车少用6h,那么货车的速度是多少?(精确到0.1km/h)【分析】设货车的速度是x千米/小时,则客车的速度是2x千米/小时,根据时间=路程÷速度结合客车比货车少用6小时,即可得出关于x的分式方程,解之经检验后即可得出结论.【解答】解:设货车的速度是x千米/小时,则客车的速度是2x千米/小时,根据题意得:﹣=6,解得:x=121≈121.8.答:货车的速度约是121.8千米/小时.【点评】本题考查了分式方程的应用,找准等量关系,正确列出分式方程是解题的关键.24.(10分)如图,在平行四边形ABCD中,DB=DA,点F是AB的中点,连接DF并延长,交CB的延长线于点E,连接AE.(1)求证:四边形AEBD是菱形;(2)若DC=,tan∠DCB=3,求菱形AEBD的面积.【分析】(1)由△AFD≌△BFE,推出AD=BE,可知四边形AEBD是平行四边形,再根据BD=AD可得结论;(2)解直角三角形求出EF的长即可解决问题;【解答】(1)证明:∵四边形ABCD是平行四边形,∴AD∥CE,∴∠DAF=∠EBF,∵∠AFD=∠EFB,AF=FB,∴△AFD≌△BFE,∴AD=EB,∵AD∥EB,∴四边形AEBD是平行四边形,∵BD=AD,∴四边形AEBD是菱形.(2)解:∵四边形ABCD是平行四边形,∴CD=AB=,AB∥CD,∴∠ABE=∠DCB,∴tan∠ABE=tan∠DCB=3,∵四边形AEBD是菱形,∴AB⊥DE,AF=FB,EF=DF,∴tan∠ABE==3,∵BF=,∴EF=,∴DE=3,∴S=•AB•DE=•3=15.菱形AEBD【点评】本题考查平行四边形的判定和性质、菱形的判定和性质、全等三角形的判定和性质等知识,解题的关键是正确寻找全等三角形解决问题,属于中考常考题型.25.(10分)如图,在△ABC中,AB=AC,AO⊥BC于点O,OE⊥AB于点E,以点O为圆心,OE为半径作半圆,交AO于点F.(1)求证:AC是⊙O的切线;(2)若点F是A的中点,OE=3,求图中阴影部分的面积;(3)在(2)的条件下,点P是BC边上的动点,当PE+PF取最小值时,直接写出BP的长.【分析】(1)作OH⊥AC于H,如图,利用等腰三角形的性质得AO平分∠BAC,再根据角平分线性质得OH=OE,然后根据切线的判定定理得到结论;(2)先确定∠OAE=30°,∠AOE=60°,再计算出AE=3,然后根据扇形面积公式,利用图中阴影部分的面积=S△AOE ﹣S扇形EOF进行计算;(3)作F点关于BC的对称点F′,连接EF′交BC于P,如图,利用两点之间线段最短得到此时EP+FP最小,通过证明∠F′=∠EAF′得到PE+PF最小值为3,然后计算出OP和OB得到此时PB的长.【解答】(1)证明:作OH⊥AC于H,如图,∵AB=AC,AO⊥BC于点O,∴AO平分∠BAC,∵OE⊥AB,OH⊥AC,∴OH=OE,∴AC是⊙O的切线;(2)解:∵点F是AO的中点,∴AO=2OF=3,而OE=3,∴∠OAE=30°,∠AOE=60°,∴AE=OE=3,∴图中阴影部分的面积=S△AOE ﹣S扇形EOF=×3×3﹣=;(3)解:作F点关于BC的对称点F′,连接EF′交BC于P,如图,∵PF=PF′,∴PE+PF=PE+PF′=EF′,此时EP+FP最小,∵OF′=OF=OE,∴∠F′=∠OEF′,而∠AOE=∠F′+∠OEF′=60°,∴∠F′=30°,∴∠F′=∠EAF′,∴EF′=EA=3,即PE+PF最小值为3,在Rt△OPF′中,OP=OF′=,在Rt△ABO中,OB=OA=×6=2,∴BP=2﹣=,即当PE+PF取最小值时,BP的长为.【点评】本题考查了切线的判定与性质:经过半径的外端且垂直于这条半径的直线是圆的切线;圆的切线垂直于经过切点的半径.判定切线时“连圆心和直线与圆的公共点”或“过圆心作这条直线的垂线”.也考查了等腰三角形的性质和最短路径问题.26.(10分)“扬州漆器”名扬天下,某网店专门销售某种品牌的漆器笔筒,成本为30元/件,每天销售y(件)与销售单价x(元)之间存在一次函数关系,如图所示.(1)求y与x之间的函数关系式;(2)如果规定每天漆器笔筒的销售量不低于240件,当销售单价为多少元时,每天获取的利润最大,最大利润是多少?(3)该网店店主热心公益事业,决定从每天的销售利润中捐出150元给希望工程,为了保证捐款后每天剩余利润不低于3600元,试确定该漆器笔筒销售单价的范围.【分析】(1)可用待定系数法来确定y与x之间的函数关系式;(2)根据利润=销售量×单件的利润,然后将(1)中的函数式代入其中,求出利润和销售单件之间的关系式,然后根据其性质来判断出最大利润;(3)首先得出w与x的函数关系式,进而利用所获利润等于3600元时,对应x 的值,根据增减性,求出x的取值范围.【解答】解:(1)由题意得:,解得:.故y与x之间的函数关系式为:y=﹣10x+700,(2)由题意,得﹣10x+700≥240,解得x≤46,设利润为w=(x﹣30)•y=(x﹣30)(﹣10x+700),w=﹣10x2+1000x﹣21000=﹣10(x﹣50)2+4000,∵﹣10<0,∴x<50时,w随x的增大而增大,=﹣10(46﹣50)2+4000=3840,∴x=46时,w大答:当销售单价为46元时,每天获取的利润最大,最大利润是3840元;(3)w﹣150=﹣10x2+1000x﹣21000﹣150=3600,﹣10(x﹣50)2=﹣250,x﹣50=±5,x1=55,x2=45,如图所示,由图象得:当45≤x≤55时,捐款后每天剩余利润不低于3600元.【点评】此题主要考查了二次函数的应用、一次函数的应用和一元二次方程的应用,利用函数增减性得出最值是解题关键,能从实际问题中抽象出二次函数模型是解答本题的重点和难点.27.(12分)问题呈现如图1,在边长为1的正方形网格中,连接格点D,N和E,C,DN和EC相交于点P,求tan∠CPN的值.方法归纳求一个锐角的三角函数值,我们往往需要找出(或构造出)一个直角三角形.观察发现问题中∠CPN不在直角三角形中,我们常常利用网格画平行线等方法解决此类问题,比如连接格点M,N,可得MN∥EC,则∠DNM=∠CPN,连接DM,那么∠CPN就变换到Rt△DMN中.问题解决(1)直接写出图1中tan∠CPN的值为2;(2)如图2,在边长为1的正方形网格中,AN与CM相交于点P,求cos∠CPN 的值;思维拓展(3)如图3,AB⊥BC,AB=4BC,点M在AB上,且AM=BC,延长CB到N,使。

2018年中考数学三角形与四边形习题汇总

2018年中考数学三角形与四边形习题汇总

海璧:2018全国中考三角形与四边形题【2018北京】在四边形ABCD中,AB∥DC,AB=AD,对角线AC,BD交于点O,AC平分∠BAD,过点C作CE ⊥AB交AB的延长线于点E,连接OE.(1)求证:四边形ABCD是菱形(2)若AB=5,BD=2,求OE的长【2018福建】□ABCD中,对角线AC与BD相交于点O,EF过点O,交AD于点E,交BC于点F.求证:OE=OF【2018福建】已知Rt△ABC中,∠B=90°,AC=8,AB=10.将AD是由AB绕点A逆时针旋转90°得到的,再将△ABC沿射线CB平移得到△EFG,使射线FE经过点D,连接BD、BG.(1)求∠BDF的度数(2)求CG的长D【2018兰州】如图,在∆ABC 中,过点C 作CD AB,E 是AC 的中点,连接DE 并延长,交AB 于点F ,交CB 的延长线于点G.连接AD 、CF.(1)求证:四边形AFCD 是平行四边形 (2)若GB=3,BC=6,BF=32,求AB 的长.【2018广州】如图,AB 与CD 相交于点E ,AE=CE ,DE=BE .求证:∠A=∠C .【2018广东】如图,矩形ABCD 中,AD AB >,把矩形沿对角线AC 所在直线折叠,使点B 落在点E 处,AE 交CD 于点F ,连接DE . (1)求证:△ADF ≌△CED (2)求证:△DEF 是等腰三角形.【2018深圳】如果菱形的一个角与三角形的一个角重合,这个角的对角顶点在这个重合角的对边上,则这个菱形则称为这个三角形的亲密菱形。

如图,在CFE ∆中,6,12,45CF CE FCE ==∠=。

以点C 为圆心,以小于CF 的长为半径画弧,交AF 、CE 于点A 、D 。

若再分别以点A 、D 为圆心,大于12AD 长为半径作弧,两弧恰好交EF 于点B ,且满足AB ∥CD .(1)求证:四边形ACDB 是CFE ∆的亲密菱形 (2)求四边形ACDB 的面积【2018贵阳】如图,在平行四边形ABCD 中,AE 是BC 边上的高,点F 是DE 的中点,AB 与AG 关于AE 对称,AE 与AF 关于AG 对称. (1)求证:△AEF 是等边三角形 (2)若AB=2,求△AFD 的面积.【2018安顺】如图,在△ABC 中,AD 是BC 边上的中线,E 是AD 的中点,过点A 作BC 的平行线交BE 的延长线于点F ,连接CF . (1)求证:AF=DC(2)若AC ⊥AB ,试判断四边形ADCF 的形状,并证明你的结论.CαN MPDC BA图13【2018铜仁】如图,点A 、D 、C 、B 在同一条直线上,AD=BC ,AE=BF ,CE=DF ,求证:AE ∥BF .【2018遵义】如图,正方形ABCD 的对角线交于点O ,点E 、F 分别在AB 、BC 上(AE <BE ),且∠EOF=90°,OE 、DA 的延长线交于点M ,OF 、AB 的延长线交于点N ,连接MN . (1)求证:OM=ON(2)若正方形ABCD 的边长为4,E 为OM 的中点,求MN 的长【2018河北】如图,∠A=∠B=50°,P 为AB 中点,点M 为射线AC 上(不与点A 重合)的任意一点,连接MP ,并使MP 的延长线交射线BD 于点N ,设∠BPN=α. (1)求证:△APM ≌△BPN(2)当MN=2BN 时,求α的度数(3)若△BPN 的外心在该三角形的内部,直接写出α的取值范围【2018大庆】如图,在Rt△ABC中,∠ACB=90°,D、E分别是AB、AC的中点,连接CD,过E作EF∥DC交BC的延长线于F.(1)证明:四边形CDEF是平行四边形(2)若四边形CDEF的周长是25cm,AC的长为5cm,求线段AB的长度【2018黄冈】如图,在▱ABCD中,分别以边BC,CD作等腰△BCF,△CDE,使BC=BF,CD=DE,∠CBF=∠CDE,连接AF,AE.(1)求证△ABF≌△EDA(2)延长AB与CF相交于G.若AF⊥AE,求证BF⊥BC.【2018荆门】如图,在Rt△ABC中,∠BAC=30°,E为AB边的中点,以BE为边作等边△BDE,连接AD,CD.(1)求证:△ADE≌△CDB(2)若BC=,在AC边上找一点H,使得BH+EH最小,并求出这个最小值【2018武汉】如图,点E、F在BC上,BE=CF,AB=DC,∠B=∠C,AF与DE交于点G,求证:GE=GF【2018孝感】如图,B,E,C,F在一条直线上,已知AB∥DE,AC∥DF,BE=CF,连接AD.求证:四边形ABED 是平行四边形.【2018郴州】如图,在▱ABCD中,作对角线BD的垂直平分线EF,垂足为O,分别交AD,BC于E,F,连接BE,DF.求证:四边形BFDE是菱形.【2018衡阳】如图,已知线段AC,BD相交于点E,AE=DE,BE=CE.(1)求证:△ABE≌△DCE;(2)当AB=5时,求CD的长.【2018娄底】如图,已知四边形ABCD中,对角线AC、BD相交于点O,且OA=OC,OB=OD,过O点作EF ⊥BD,分别交AD、BC于点E、F.(1)求证:△AOE≌△COF(2)判断四边形BEDF的形状,并说明理由【2018湘潭】如图,在正方形ABCD中,AF=BE,AE与DF相交于于点O.(1)求证:△DAF≌△ABE(2)求∠AOD的度数【2018永州】如图,在△ABC中,∠ACB=90°,∠CAB=30°,以线段AB为边向外作等边△ABD,点E是线段AB 的中点,连接CE并延长交线段AD于点F.(1)求证:四边形BCFD为平行四边形;(2)若AB=6,求平行四边形BCFD的面积.【2018岳阳】如图,在平行四边形ABCD中,AE=CF,求证:四边形BFDE是平行四边形.【2018张家界】在矩形ABCD中,点E在BC上,AE=AD,DF⊥AE,垂足为F.(1)求证.DF=AB(2)若∠FDC=30°,且AB=4,求ADN【2018株洲】如图,在Rt △ABM 和Rt △ADN 的斜边分别为正方形的边AB 和AD ,其中AM=AN 。

备考2021年中考数学二轮复习:图形的性质_圆_圆内接四边形的性质,填空题专训及答案

备考2021年中考数学二轮复习:图形的性质_圆_圆内接四边形的性质,填空题专训及答案

备考2021年中考数学二轮复习:图形的性质_圆_圆内接四边形的性质,填空题专训及答案备考2021中考数学二轮复习:图形的性质_圆_圆内接四边形的性质,填空题专训1、(2018扬州.中考真卷) 如图,已知的半径为2,内接于,,则 ________.2、(2015南京.中考真卷) 如图,在⊙O的内接五边形ABCDE中,∠CAD=35°,则∠B+∠E=________ .3、(2017昌平.中考模拟) 如图,四边形ABCD的顶点均在⊙O上,∠A=70°,则∠C=________°.4、(2017丹东.中考模拟) 如图,在⊙O中,点A,B,C在⊙O上,且∠ACB=110°,则∠α=________.5、(2018南京.中考模拟) 如图,在⊙O的内接五边形ABCDE中,∠B+∠E=210°,则∠CAD=________°.6、(2018扬州.中考模拟) 如图,四边形ABCD是平行四边形,⊙O经过点A,C,D,与BC交于点E,连接AE,若∠D =72°,则∠BAE =________°.7、(2017扬州.中考模拟) 如图,在⊙O的内接四边形ABCD中,AB=AD,∠C=110°.若点E在上,则∠E=________°.8、(2015泉州.中考真卷) 如图,在⊙O的内接四边形ABCD中,点E在DC的延长线上.若∠A=50°,则∠BCE=________ .9、(2017新泰.中考模拟) 如图,四边形ABCD内接于⊙O,AB是直径,过C点的切线与AB的延长线交于P点,若∠P=40°,则∠D的度数为________.10、(2017槐荫.中考模拟) 如图,圆内接四边形ABDC,延长BA和DC相交于圆外一点P,∠P=30°,∠D=70°,则∠ACP=_ _______.11、(2019江陵.中考模拟) 如图,四边形ABCD内接于⊙O,E为CD延长线上一点.若∠B=110°,则∠ADE的度数为_____ ___.12、(2019荆州.中考模拟) 已知点A、B、C、D均在圆上,AD∥BC,AC 平分∠BCD,∠ADC=120°,四边形的周长为10c m.,则∠ABC的度数为________.13、(2017荆州.中考真卷) 如图,A、B、C是⊙O上的三点,且四边形OABC是菱形.若点D是圆上异于A、B、C的另一点,则∠ADC的度数是________.14、(2016岳阳.中考真卷) 如图,四边形ABCD为⊙O的内接四边形,已知∠BCD=110°,则∠BAD=________度.15、(2018曲靖.中考真卷) 如图:四边形ABCD内接于⊙O,E为BC延长线上一点,若∠A=n°,则∠DCE=________°.16、(2019盘龙.中考模拟) 如图,四边形ABCD内接于⊙O,∠BCD=120°,则∠BOD=________度.17、(2019北京.中考模拟) 如图,点A,B,C,D是⊙O上的四个点,点B是弧AC的中点,如果∠ABC=70°,那∠ADB=_ _______.18、(2020沈阳.中考模拟) 如图,四边形ABCD内接于⊙O,OC∥AD,∠DAB=60°,∠ADC=106°,则∠OCB=______ __°.19、(2020宜昌.中考模拟) 如图,四边形ABCD为⊙O的内接四边形,已知∠BOD=100°,则∠BCD=________.20、(2020南京.中考模拟) 如图,四边形ABCD是菱形,⊙O经过点A、C、D,与BC相交于点E,连接AC、AE.若∠D=70°,则∠EAC的度数为________.备考2021中考数学二轮复习:图形的性质_圆_圆内接四边形的性质,填空题答案1.答案:2.答案:3.答案:4.答案:5.答案:6.答案:7.答案:8.答案:9.答案:10.答案:11.答案:12.答案:13.答案:14.答案:15.答案:16.答案:17.答案:18.答案:19.答案:20.答案:。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

扬州市2018年初中毕业、升学统一考试数学试题
一、选择题
1.-5的倒数是( ) A.51- B.5
1 C.5 D.-5 2.使3-x 有意义的x 的取值范围是( )
A.3>x
B.3<x
C.3≥x
D.3≠x
3.如图所示的几何体的主视图是( )
4.下列说法正确的是( )
A.一组数据2,2,3,4,这组数据的中位数是2
B.了解一批灯泡的使用寿命的情况,适合抽样调查
C.小明的三次数学成绩是126分,130分,136分,则小明这三次成绩的平均数是131分
D.某日最高气温是C 7,最低气温是C 2-,则改日气温的极差是C 5
5.已知点)()、(6,3,21x B x A 都在反比例函数x
y 3-
=的图像上,则下列关系式一定正确的是( )
A.021<<x x
B.210x x <<
C.012<<x x
D.120x x <<
6.在平面直角坐标系的第二象限内有一点M ,点M 到x 轴的距离为3,到y 轴的距离为4,则点M 的坐标是( )
A.(3,-4)
B.(4,-3)
C.(-4,3)
D.(-3,4)
7.在ABC Rt ∆中, 90=∠ABC ,AB CD ⊥于D ,CE 平分ACD ∠交AB 于E ,则下列结论一定成立的是( )
A.EC BC =
B.BE EC =
C.BE BC =
D.EC AE =
8.如图,点A 在线段BD 上,在BD 的同侧做等腰ABC Rt ∆和等腰ADE Rt ∆,CD 与BE 、AE 分别交于点M P 、.对于下列结论:
①BAE ∆∽CAD ∆;②ME MA MD MP ⋅=⋅;③CM CP CB ⋅=22.其中正确的是( )
A.①②③
B.①
C.①②
D.②③
二、填空题
9.在人体血液中,红细胞直径约为cm 00077.0,数据00077.0用科学记数法表示为 .
10.因式分解:2
2-18x = . 11.有4根细木棒,长度分别为cm cm cm cm 5432、、、
,从中任选3根,恰好能搭成一个三角形的概率是 .
12.若m 是方程01322=--x x 的一个根,则2015962
+-m m 的值为 .
13.用半径为cm 10,圆心角为 120的扇形纸片围成一个圆锥的侧面,则这个圆锥的底面圆半径为 cm . 14.不等式组⎪⎩⎪⎨⎧->-≥+22
1513x x x 的解集为 . 15.如图,已知⊙O 的半径为2,ABC ∆内接于⊙O ,
135=∠ACB ,则AB =
.
16.关于x 的方程0322
=+-x mx 有两个不相等的实数根,那么m 的取值范围是 .
17.如图,四边形OABC 是矩形,点A 的坐标为(8,0),点C 的坐标为(0,4),把矩形OABC 沿OB 折叠,点C 落在点D 处,则点D 的坐标为 .
18.如图,在等腰ABO Rt ∆, 90=∠A ,点B 的坐标为(0,2),若直线:l )0(≠+=m m mx y 把ABO ∆分成面积相等的两部分,则m 的值为 .
三、解答题
19.计算或化简 (1) 60tan 2-3211
-++⎪⎭
⎫ ⎝⎛ (2))32)(32()32(2-+-+x x x
20.对于任意实数b a ,,定义关于“⊗”的一种运算如下:b a b a +=⊗2.例如
.1043243=+⨯=⊗
(1)求)(5-2⊗的值;
(2)若,2)(=-⊗y x 且,12-=⊗x y 求y x +的值.
21.江苏省第十九届运动会将于2018年9月在扬州举行开幕式,某校为了了解学生“最喜爱的省运动会项目”的情况,随机抽取了部分学生进行问卷调查,规定每人从“篮球”、“羽毛球”、“自行车”、“游泳”和“其他”五个选项中必须选择且只能选择一个,并将调查结果绘制成如下两幅不完整的统计图表.
根据以上信息,请回答下列问题:
(1)这次调查的样本容量是 ,=+b a .
(2)扇形统计图中“自行车”对应的扇形的圆心角为 .
(3)若该校有1200名学生,估计该校最喜爱的省运会项目是篮球的学生人数.
22.4张相同的卡片分别写着数字-1、-3、4、6,将卡片的背面朝上,并洗匀.
(1)从中任意抽取1张,抽到的数字是奇数的概率是 ;
(2)从中任意抽取1张,并将所取卡片上的数字记作一次函数b kx y +=中的k ;再从余下的卡片中任意抽取1张,并将所取卡片上的数字记作一次函数b kx y +=中的b .利用画树状图或列表的方法,求这个一次函数的图像经过第一、二、四象限的概率.
23.京沪铁路是我国东部沿海地区纵贯南北的交通大动脉,全长1462km ,是我国最繁忙的铁路干线之一.如果从北京到上海的客车速度是货车速度的2倍,客车比货车少用6h ,那么货车的速度是多少?(精确到0.1km/h )
24.如图,在平行四边形ABCD 中,DA DB =,点F 是AB 的中点,连接DF 并延长,交CB 的延长线于点E ,连接AE .
(1)求证:四边形AEBD 是菱形;
(2)若3tan ,10=∠=DCB DC ,求菱形AEBD 的面积.
25.如图,在ABC ∆中,AC AB =,BC AO ⊥于点O ,AB OE ⊥于点E ,以点O 为圆心,OE 为半径作半圆,交AO 于点F .
(1)求证:AC 是⊙O 的切线;
(2)若点F 是AO 的中点,3=OE ,求图中阴影部分的面积;
(3)在(2)的条件下,点P 是BC 边上的动点,当PF PE +取最小值时,直接写出BP 的长.
26.“扬州漆器”名扬天下,某网店专门销售某种品牌的漆器笔筒,成本为30元/件,每天销售y (件)与销售单价x (元)之间存在一次函数关系,如图所示.
(1)求y 与x 之间的函数关系式;
(2)如果规定每天漆器笔筒的销售量不低于240件,当销售单价为多少元时,每天获取的利润最大,最大利润是多少?
(3)该网店店主热心公益事业,决定从每天的销售利润中捐出150元给希望工程,为了保证捐款后每天剩余利润不低于3600元,试确定该漆器笔筒销售单价的范围.
27.问题呈现
如图1,在边长为1的正方形网格中,连接格点N D 、和E C 、,DN 和EC 相交于点P ,求CPN ∠tan 的值.
方法归纳
求一个锐角的三角函数值,我们往往需要找出(或构造出)一个直角三角形.观察发现问题中CPN ∠不在直角三角形中,我们常常利用网格画平行线等方法解决此类问题,比如连接格点N M 、,可得MN ∥EC ,则CPN DNM ∠=∠,连接DM ,那么CPN ∠就变换到DMN Rt ∆中.
问题解决
(1)直接写出图1中CPN ∠tan 的值为 ;
(2)如图2,在边长为1的正方形网格中,AN 与CM 相交于点P ,求CPN ∠cos 的值; 思维拓展
(3)如图3,BC AB ⊥,BC AB 4=,点M 在AB 上,且BC AM =,延长CB 到N ,使BC BN 2=,连接AN 交CM 的延长线于点P ,用上述方法构造网格求CPN ∠的度数.
28.如图1,四边形OABC 是矩形,点A 的坐标为(3,0),点C 的坐标为(0,6),点P 从点O 出发,沿OA 以每秒1个单位长度的速度向点A 出发,同时点Q 从点A 出发,沿AB 以每秒2个单位长度的速度向点B 运动,当点P 与点A 重合时运动停止.设运动时间为t 秒.
(1)当t =2时,线段PQ 的中点坐标为 ;
(2)当CBQ ∆与PAQ ∆相似时,求t 的值;
(3)当t =1时,抛物线c bx x y ++=2经过Q P 、两点,与y 轴交于点M ,抛物线的顶点为K ,如图2所示,问该抛物线上是否存在点D ,使M KQ M QD ∠=
∠2
1,若存在,求出所有满足条件的D 的坐标;若不存在,说明理由.。

相关文档
最新文档